Marine invertebrates exhibit a wide range of modifications to survive in poorly oxygenated waters, including breathing tubes as in mollusc siphons. Fish have gills instead of lungs, although some species of fish, such as the lungfish, have both. Marine mammals (e.g. dolphins, whales, otters, and seals) need to surface periodically to breathe air. (Full article...)
Entries here consist of Good and Featured articles, which meet a core set of high editorial standards.
Image 1
Pinnipedia is an infraorder of mammals in the orderCarnivora, composed of seals, sea lions, and the walrus. A member of this group is called a pinniped or a seal. They are widespread throughout the ocean and some larger lakes, primarily in colder waters. Pinnipeds range in size from the 1.1 m (3 ft 7 in) and 50 kg (110 lb) Baikal seal to the 6 m (20 ft) and 3,700 kg (8,200 lb) male southern elephant seal, which is also the largest member of Carnivora. Several species exhibit sexual dimorphism, such as the southern elephant seal, where the males can be more than three times as long and six times as massive as the females, or the Ross seal, which has females typically larger than the males. Four seal species are estimated to have over one million members, while six are classified as endangered with population counts as low as 600, and two, the Caribbean monk seal and the Japanese sea lion, went extinct in the 20th century.
The 34 extant species of Pinnipedia are split into 22 genera within 3 families: Odobenidae, comprising the walrus; Otariidae, the eared seals, split between the sea lions and fur seals; and Phocidae, the earless or true seals. Odobenidae and Otariidae are combined into the superfamilyOtarioidea, with Phocidae in Phocoidea. Extinct species have also been placed into the three extant families, as well as the extinct family Desmatophocidae, though most extinct species have not been categorized into a subfamily. Nearly one hundred extinct Pinnipedia species have been discovered, though due to ongoing research and discoveries the exact number and categorization is not fixed. (Full article...)
Depending on the species, adult ctenophores range from a few millimeters to 1.5 m (5 ft) in size. Only 186 living species are currently recognised. (Full article...)
Image 3
The false killer whale (Pseudorca crassidens) is a species of oceanic dolphin that is the only extant representative of the genus Pseudorca. It is found in oceans worldwide but mainly in tropical regions. It was first described in 1846 as a species of porpoise based on a skull, which was revised when the first carcasses were observed in 1861. The name "false killer whale" comes from having a skull similar to the orca (Orcinus orca), or killer whale.
The false killer whale reaches a maximum length of 6 m (20 ft), though size can vary around the world. It is highly sociable, known to form pods of up to 50 members, and can also form pods with other dolphin species, such as the common bottlenose dolphin (Tursiops truncatus). It can form close bonds with other species, as well as have sexual interactions with them. But the false killer whale has also been known to eat other dolphins, though it typically eats squid and fish. It is a deep-diver; maximum known depth is 927.5 m (3,043 ft); maximum speed is ~ 29 km/h (18 mph). (Full article...)
A typical sea anemone is a single polyp attached to a hard surface by its base, but some species live in soft sediment, and a few float near the surface of the water. The polyp has a columnar trunk topped by an oral disc with a ring of tentacles and a central mouth. The tentacles can be retracted inside the body cavity or expanded to catch passing prey. They are armed with cnidocytes (stinging cells). In many species, additional nourishment comes from a symbiotic relationship with single-celleddinoflagellates, with zooxanthellae, or with green algae, zoochlorellae, that live within the cells. Some species of sea anemone live in association with clownfish, hermit crabs, small fish, or other animals to their mutual benefit. (Full article...)
Steller's sea cow (Hydrodamalis gigas) is an extinctsirenian described by Georg Wilhelm Steller in 1741. At that time, it was found only around the Commander Islands in the Bering Sea between Alaska and Russia; its range extended across the North Pacific during the Pleistoceneepoch, and likely contracted to such an extreme degree due to the glacial cycle. It is possible indigenous populations interacted with the animal before Europeans. Steller first encountered it on Vitus Bering's Great Northern Expedition when the crew became shipwrecked on Bering Island. Much of what is known about its behavior comes from Steller's observations on the island, documented in his posthumous publication On the Beasts of the Sea. Within 27 years of its discovery by Europeans, the slow-moving and easily-caught mammal was hunted into extinction for its meat, fat, and hide.
Some 18th-century adults would have reached weights of 8–10 t (8.8–11.0 short tons) and lengths up to 9 m (30 ft). It was a member of the family Dugongidae, of which the 3 m (9.8 ft) long dugong (Dugong dugon) is the sole living member. It had a thicker layer of blubber than other members of the order, an adaptation to the cold waters of its environment. Its tail was forked, like that of whales or dugongs. Lacking true teeth, it had an array of white bristles on its upper lip and two keratinous plates within its mouth for chewing. It fed mainly on kelp, and communicated with sighs and snorting sounds. Steller believed it was a monogamous and social animal living in small family groups and raising its young, similar to modern sirenians. (Full article...)
Hemiramphidae is a family of fishes that are commonly called halfbeaks, spipe fish or spipefish. They are a geographically widespread and numerically abundant family of epipelagic fish inhabiting warm waters around the world. The halfbeaks are named for their distinctive jaws, in which the lower jaws are significantly longer than the upper jaws. The similar viviparous halfbeaks (family Zenarchopteridae) have often been included in this family.
Brachiopods (/ˈbrækioʊˌpɒd/), phylumBrachiopoda, are a phylum of trochozoan animals that have hard "valves" (shells) on the upper and lower surfaces, unlike the left and right arrangement in bivalvemolluscs. Brachiopod valves are hinged at the rear end, while the front can be opened for feeding or closed for protection. Two major categories are traditionally recognized, articulate and inarticulate brachiopods. The word "articulate" is used to describe the tooth-and-groove structures of the valve-hinge which is present in the articulate group, and absent from the inarticulate group. This is the leading diagnostic skeletal feature, by which the two main groups can be readily distinguished as fossils. Articulate brachiopods have toothed hinges and simple, vertically oriented opening and closing muscles. Conversely, inarticulate brachiopods have weak, untoothed hinges and a more complex system of vertical and oblique (diagonal) muscles used to keep the two valves aligned. In many brachiopods, a stalk-like pedicle projects from an opening near the hinge of one of the valves, known as the pedicle or ventral valve. The pedicle, when present, keeps the animal anchored to the seabed but clear of sediment which would obstruct the opening.
Brachiopod lifespans range from three to over thirty years. Ripe gametes (ova or sperm) float from the gonads into the main coelom and then exit into the mantle cavity. The larvae of inarticulate brachiopods are miniature adults, with lophophores that enable the larvae to feed and swim for months until the animals become heavy enough to settle to the seabed. The planktonic larvae of articulate species do not resemble the adults, but rather look like blobs with yolk sacs, and remain among the plankton for only a few days before leaving the water column upon metamorphosing. (Full article...)
Image 9
Cast of a partial Kimberella fossil.
Kimberella is an extinct genus of bilaterian known only from rocks of the Ediacaran period. The slug-like organism fed by scratching the microbial surface on which it dwelt in a manner similar to the gastropods, although its affinity with this group is contentious.
Specimens were first found in Australia's Ediacara Hills, but recent research has concentrated on the numerous finds near the White Sea in Russia, which cover an interval of time from 555 to 558 million years ago. As with many fossils from this time, its evolutionary relationships to other organisms are hotly debated. Paleontologists initially classified Kimberella as a type of Cubozoan, but, since 1997, features of its anatomy and its association with scratch marks resembling those made by a radula have been interpreted as signs that it may have been a mollusc. Although some paleontologists dispute its classification as a mollusc, it is generally accepted as being at least a bilaterian. (Full article...)
Image 10
The goblin shark (Mitsukurina owstoni) is a rare species of deep-sea shark. Sometimes called a "living fossil", it is the only extant representative of the familyMitsukurinidae, a lineage some 125 million years old. This pink-skinned animal has a distinctive profile with an elongated, flat snout, and highly protrusible jaws containing prominent nail-like teeth. It is usually between 3 and 4 m (10 and 13 ft) long when mature, though it can grow considerably larger such as one captured in 2000 that is thought to have measured 6 m (20 ft). Goblin sharks are benthopelagic creatures that inhabit upper continental slopes, submarine canyons, and seamounts throughout the world at depths greater than 100 m (330 ft), with adults found deeper than juveniles. Some researchers believe that these sharks could also dive to depths of up to 1,300 m (4,270 ft), for short periods of time.
Solar radiation can have positive (+) or negative (−) effects resulting in increases or decreases in the heterotrophic activity of bacterioplankton. (from Marine prokaryotes)
Image 2
Model of the energy generating mechanism in marine bacteria
(1) When sunlight strikes a rhodopsin molecule (2) it changes its configuration so a proton is expelled from the cell (3) the chemical potential causes the proton to flow back to the cell (4) thus generating energy (5) in the form of adenosine triphosphate. (from Marine prokaryotes)
Image 4Tidepools on rocky shores make turbulent habitats for many forms of marine life (from Marine habitat)
Image 5Dickinsonia may be the earliest animal. They appear in the fossil record 571 million to 541 million years ago. (from Marine invertebrates)
Image 6Ocean surface chlorophyll concentrations in October 2019. The concentration of chlorophyll can be used as a proxy to indicate how many phytoplankton are present. Thus on this global map green indicates where a lot of phytoplankton are present, while blue indicates where few phytoplankton are present. – NASA Earth Observatory 2019. (from Marine food web)
Image 7640 μm microplastic found in the deep sea amphipod Eurythenes plasticus (from Marine habitat)
Image 10Ernst Haeckel's 96th plate, showing some marine invertebrates. Marine invertebrates have a large variety of body plans, which are currently categorised into over 30 phyla. (from Marine invertebrates)
Image 13Archaea were initially viewed as extremophiles living in harsh environments, such as the yellow archaea pictured here in a hot spring, but they have since been found in a much broader range of habitats. (from Marine prokaryotes)
Image 14The distribution of anthropogenic stressors faced by marine species threatened with extinction in various marine regions of the world. Numbers in the pie charts indicate the percentage contribution of an anthropogenic stressors' impact in a specific marine region. (from Marine food web)
Image 15Whales were close to extinction until legislation was put in place. (from Marine conservation)
Image 16Sea ice food web and the microbial loop. AAnP = aerobic anaerobic phototroph, DOC = dissolved organic carbon, DOM = dissolved organic matter, POC = particulate organic carbon, PR = proteorhodopsins. (from Marine food web)
Image 17Waves and currents shape the intertidal shoreline, eroding the softer rocks and transporting and grading loose particles into shingles, sand or mud (from Marine habitat)
Image 19Cycling of marine phytoplankton. Phytoplankton live in the photic zone of the ocean, where photosynthesis is possible. During photosynthesis, they assimilate carbon dioxide and release oxygen. If solar radiation is too high, phytoplankton may fall victim to photodegradation. For growth, phytoplankton cells depend on nutrients, which enter the ocean by rivers, continental weathering, and glacial ice meltwater on the poles. Phytoplankton release dissolved organic carbon (DOC) into the ocean. Since phytoplankton are the basis of marine food webs, they serve as prey for zooplankton, fish larvae and other heterotrophic organisms. They can also be degraded by bacteria or by viral lysis. Although some phytoplankton cells, such as dinoflagellates, are able to migrate vertically, they are still incapable of actively moving against currents, so they slowly sink and ultimately fertilize the seafloor with dead cells and detritus. (from Marine food web)
Image 27Halfbeak as larvae are one of the organisms adapted to the unique properties of the microlayer (from Marine habitat)
Image 28Reconstruction of an ammonite, a highly successful early cephalopod that first appeared in the Devonian (about 400 mya). They became extinct during the same extinction event that killed the land dinosaurs (about 66 mya). (from Marine invertebrates)
Image 29Microplastics found in sediments on the seafloor (from Marine habitat)
Image 30
Different bacteria shapes (cocci, rods and spirochetes) and their sizes compared with the width of a human hair. A few bacteria are comma-shaped (vibrio). Archaea have similar shapes, though the archaeon Haloquadratum is flat and square.
The unit μm is a measurement of length, the micrometer, equal to 1/1,000 of a millimeter
Image 31Antarctic marine food web. Potter Cove 2018. Vertical position indicates trophic level and node widths are proportional to total degree (in and out). Node colors represent functional groups. (from Marine food web)
Parasitic chytrids can transfer material from large inedible phytoplankton to zooplankton. Chytrids zoospores are excellent food for zooplankton in terms of size (2–5 μm in diameter), shape, nutritional quality (rich in polyunsaturated fatty acids and cholesterols). Large colonies of host phytoplankton may also be fragmented by chytrid infections and become edible to zooplankton. (from Marine fungi)
Image 35Conference events, such as the events hosted by the United Nations, help to bring together many stakeholders for awareness and action. (from Marine conservation)
Image 41Schematic representation of the changes in abundance between trophic groups in a temperate rocky reef ecosystem. (a) Interactions at equilibrium. (b) Trophic cascade following disturbance. In this case, the otter is the dominant predator and the macroalgae are kelp. Arrows with positive (green, +) signs indicate positive effects on abundance while those with negative (red, -) indicate negative effects on abundance. The size of the bubbles represents the change in population abundance and associated altered interaction strength following disturbance. (from Marine food web)
Image 42Phylogenetic and symbiogenetic tree of living organisms, showing a view of the origins of eukaryotes and prokaryotes (from Marine prokaryotes)
Image 44Lampreys are often parasitic and have a toothed, funnel-like sucking mouth (from Marine vertebrate)
Image 45Marine Species Changes in Latitude and Depth in three different ocean regions(1973–2019) (from Marine food web)
Image 46
Mycoloop links between phytoplankton and zooplankton
Chytrid‐mediated trophic links between phytoplankton and zooplankton (mycoloop). While small phytoplankton species can be grazed upon by zooplankton, large phytoplankton species constitute poorly edible or even inedible prey. Chytrid infections on large phytoplankton can induce changes in palatability, as a result of host aggregation (reduced edibility) or mechanistic fragmentation of cells or filaments (increased palatability). First, chytrid parasites extract and repack nutrients and energy from their hosts in form of readily edible zoospores. Second, infected and fragmented hosts including attached sporangia can also be ingested by grazers (i.e. concomitant predation). (from Marine fungi)
Image 47Conceptual diagram of faunal community structure and food-web patterns along fluid-flux gradients within Guaymas seep and vent ecosystems. (from Marine food web)
Image 52A 2016 metagenomic representation of the tree of life using ribosomal protein sequences. The tree includes 92 named bacterial phyla, 26 archaeal phyla and five eukaryotic supergroups. Major lineages are assigned arbitrary colours and named in italics with well-characterized lineage names. Lineages lacking an isolated representative are highlighted with non-italicized names and red dots. (from Marine prokaryotes)
Image 53The deep sea amphipodEurythenes plasticus, named after microplastics found in its body, demonstrating plastic pollution affects marine habitats even 6000m below sea level. (from Marine habitat)
Image 54Estuaries occur when rivers flow into a coastal bay or inlet. They are nutrient rich and have a transition zone which moves from freshwater to saltwater. (from Marine habitat)
Image 60On average there are more than one million microbial cells in every drop of seawater, and their collective metabolisms not only recycle nutrients that can then be used by larger organisms but also catalyze key chemical transformations that maintain Earth's habitability. (from Marine food web)
Image 62Sponges have no nervous, digestive or circulatory system (from Marine invertebrates)
Image 63Chytrid parasites of marine diatoms. (A) Chytrid sporangia on Pleurosigma sp. The white arrow indicates the operculate discharge pore. (B) Rhizoids (white arrow) extending into diatom host. (C) Chlorophyll aggregates localized to infection sites (white arrows). (D and E) Single hosts bearing multiple zoosporangia at different stages of development. The white arrow in panel E highlights branching rhizoids. (F) Endobiotic chytrid-like sporangia within diatom frustule. Bars = 10 μm. (from Marine fungi)
Image 68This algae bloom occupies sunlit epipelagic waters off the southern coast of England. The algae are maybe feeding on nutrients from land runoff or upwellings at the edge of the continental shelf. (from Marine habitat)
Image 77Only 29 percent of the world surface is land. The rest is ocean, home to the marine habitats. The oceans are nearly four kilometres deep on average and are fringed with coastlines that run for nearly 380,000 kilometres.
Image 79Elevation-area graph showing the proportion of land area at given heights and the proportion of ocean area at given depths (from Marine habitat)
Image 80Ocean Conservation Namibia rescuing a seal that was entangled in discarded fishing nets. (from Marine conservation)
Image 81Coral reefs provide marine habitats for tube sponges, which in turn become marine habitats for fishes (from Marine habitat)
Image 82Oceanic pelagic food web showing energy flow from micronekton to top predators. Line thickness is scaled to the proportion in the diet. (from Marine food web)
Image 83Cnidarians are the simplest animals with cells organised into tissues. Yet the starlet sea anemone contains the same genes as those that form the vertebrate head. (from Marine invertebrates)
Image 88In the open ocean, sunlit surface epipelagic waters get enough light for photosynthesis, but there are often not enough nutrients. As a result, large areas contain little life apart from migrating animals. (from Marine habitat)
Image 89Some representative ocean animal life (not drawn to scale) within their approximate depth-defined ecological habitats. Marine microorganisms exist on the surfaces and within the tissues and organs of the diverse life inhabiting the ocean, across all ocean habitats. (from Marine habitat)
Estimates of microbial species counts in the three domains of life
Bacteria are the oldest and most biodiverse group, followed by Archaea and Fungi (the most recent groups). In 1998, before awareness of the extent of microbial life had gotten underway, Robert M. May estimated there were 3 million species of living organisms on the planet. But in 2016, Locey and Lennon estimated the number of microorganism species could be as high as 1 trillion. (from Marine prokaryotes)
Image 93A microbial mat encrusted with iron oxide on the flank of a seamount can harbour microbial communities dominated by the iron-oxidizing Zetaproteobacteria (from Marine prokaryotes)
Image 94Sandy shores provide shifting homes to many species (from Marine habitat)
Image 97Phylogenetic tree representing bacterial OTUs from clone libraries and next-generation sequencing. OTUs from next-generation sequencing are displayed if the OTU contained more than two sequences in the unrarefied OTU table (3626 OTUs). (from Marine prokaryotes)
Image 98Topological positions versus mobility: (A) bottom-up groups (sessile and drifters), (B) groups at the top of the food web. Phyto, phytoplankton; MacroAlga, macroalgae; Proto, pelagic protozoa; Crus, Crustacea; PelBact, pelagic bacteria; Echino, Echinoderms; Amph, Amphipods; HerbFish, herbivorous fish; Zoopl, zooplankton; SuspFeed, suspension feeders; Polych, polychaetes; Mugil, Mugilidae; Gastropod, gastropods; Blenny, omnivorous blennies; Decapod, decapods; Dpunt, Diplodus puntazzo; Macropl, macroplankton; PlFish, planktivorous fish; Cephalopod, cephalopods; Mcarni, macrocarnivorous fish; Pisc, piscivorous fish; Bird, seabirds; InvFeed1 through InvFeed4, benthic invertebrate feeders. (from Marine food web)
Image 111The pelagic food web, showing the central involvement of marine microorganisms in how the ocean imports nutrients from and then exports them back to the atmosphere and ocean floor (from Marine food web)
Image 113Common-enemy graph of Antarctic food web. Potter Cove 2018. Nodes represent basal species and links indirect interactions (shared predators). Node and link widths are proportional to number of shared predators. Node colors represent functional groups. (from Marine food web)
Image 115An in situ perspective of a deep pelagic food web derived from ROV-based observations of feeding, as represented by 20 broad taxonomic groupings. The linkages between predator to prey are coloured according to predator group origin, and loops indicate within-group feeding. The thickness of the lines or edges connecting food web components is scaled to the log of the number of unique ROV feeding observations across the years 1991–2016 between the two groups of animals. The different groups have eight colour-coded types according to main animal types as indicated by the legend and defined here: red, cephalopods; orange, crustaceans; light green, fish; dark green, medusa; purple, siphonophores; blue, ctenophores and grey, all other animals. In this plot, the vertical axis does not correspond to trophic level, because this metric is not readily estimated for all members. (from Marine food web)
Image 116Food web structure in the euphotic zone. The linear food chain large phytoplankton-herbivore-predator (on the left with red arrow connections) has fewer levels than one with small phytoplankton at the base. The microbial loop refers to the flow from the dissolved organic carbon (DOC) via heterotrophic bacteria (Het. Bac.) and microzooplankton to predatory zooplankton (on the right with black solid arrows). Viruses play a major role in the mortality of phytoplankton and heterotrophic bacteria, and recycle organic carbon back to the DOC pool. Other sources of dissolved organic carbon (also dashed black arrows) includes exudation, sloppy feeding, etc. Particulate detritus pools and fluxes are not shown for simplicity. (from Marine food web)
Image 119Scanning electron micrograph of a strain of Roseobacter, a widespread and important genus of marine bacteria. For scale, the membrane pore size is 0.2μm in diameter. (from Marine prokaryotes)
Image 123The Ocean Cleanup is one of many organizations working toward marine conservation such at this interceptor vessel that prevents plastic from entering the ocean. (from Marine conservation)
Image 16Ecosystem services delivered by epibenthicbivalve reefs. Reefs provide coastal protection through erosion control and shoreline stabilization, and modify the physical landscape by ecosystem engineering, thereby providing habitat for species by facilitative interactions with other habitats such as tidal flat benthic communities, seagrasses and marshes. (from Marine ecosystem)
Image 17General characteristics of a large marine ecosystem (Gulf of Alaska) (from Marine ecosystem)
Image 18Global distribution of coral, mangrove, and seagrass diversity (from Marine ecosystem)
... that The Inland Whale, by Theodora Kroeber, sought to demonstrate the literary merit of Indigenous American oral traditions?
... that a sensational story in 1888 claimed that James Wickham, a British scientist, introduced two whales to the Great Salt Lake in an attempt to start a whale oil industry?
... that the Southern Right Whale got its name because it was the ‘right’ whale to kill? Because they swim slowly, close to the shore and float when killed, the whalers thought them the right whales to kill!
... cetaceans with pointed beaks have good binocular vision, but others, such as the Sperm Whale cannot see directly in front or behind.
... in spite of their enormous mass, baleen whales are capable of leaping completely out of the water, particularly the Humpback Whale.
The Antarctic krill (Euphausia superba) is a species of krill found in the Antarctic waters of the Southern Ocean. Antarctic krill are shrimp-like invertebrates that live in large schools, called swarms, sometimes reaching densities of 10,000 - 30,000 individual animals per cubic meter.
Although the uses for and reasons behind the development of their massive black compound eyes (pictured above) remain a mystery, there is no doubt that Antarctic krill have one of the most fantastic structures for vision seen in nature.
Krill can shrink in size from one molt to the next, which is generally thought to be a survival strategy to adapt to scarce food supplies (a smaller body needs less energy, i.e., food). However, the animal's eyes do not shrink when this happens. The ratio between eye size and body length has thus been found to be a reliable indicator of starvation.