Jump to content

IRAS F11119+3257

From Wikipedia, the free encyclopedia
IRAS F11119+3257
The quasar IRAS F11119+3257
Observation data (J2000 epoch)
ConstellationUrsa Major
Right ascension11h 14m 38.91s
Declination+32d 41m 33.34s
Redshift0.187580
Heliocentric radial velocity56,235 km/s
Distance2.519 Gly (772.3 Mpc)
Apparent magnitude (V)0.54
Apparent magnitude (B)0.43
Surface brightness19.2
Characteristics
TypeSbrst; ULIRG, Sy1
Apparent size (V)0.13' x 0.10'
Notable featuresLuminous infrared galaxy
Other designations
B2 1111+32, PGC 34264, F2M J111438.91+324133.29, NVSS J111438+324133, FIRST J111438.9+324133, IVS B1111+329

IRAS F11119+3257 or simply as F11119+3257, is a galaxy located in constellation Ursa Major. With a redshift of 0.187580, it has a light travel time distance of 2.5 billion light-years[1] and is considered an ultraluminous infrared galaxy (ULIRG).[2]

Characteristics

[edit]
Artist's impression of strong galactic wind emitting out from supermassive black hole similar to IRAS F11119+3257

The nucleus of IRAS F11119+3257 is active. It has been classified as a narrow-line Seyfert 1 galaxy[3] and has a post-merger morphology. It is also a type-1 quasar, emitting out (LX 10^44 erg/s at z=0.189) with a persistent ultra-fast outflow at v 0.25c, observed with both NuSTAR and Suzaku. IRAS F11119+3257 is said to be the first system which is possible to connect nuclear outflow with a galaxy-scale molecular outflow, observed in hydroxide (OH) and carbon monoxide (CO) transitions.[4] The high-ionization emission lines ([O III], [Ne III], and [Ne V]) are dominated by blueshifted components at similar speeds to the mini-BAL QSOs.[5]

The emission in IRAS F11119+3257, is dominated by its active galactic nucleus (AGN) component.[6] Researchers found that there is direct evidence of a quasar accretion disk driving a massive (>100 M ⊙ yr-1) molecular outflow.[7] They saw that the energetics of the accretion disk wind and molecular outflow are consistent with the predictions of quasar feedback models where the molecular outflow is driven by a hot energy-conserving bubble, inflated by its inner quasar accretion disk wind, but the conclusion is uncertain. However, they were able to confirm the presence of the molecular outflow in IRAS F11119+3257, based on the detection of ~±1000 km/s blue and redshifted wings in the CO(1–0) emission line profile derived from deep ALMA observations obtained in the compact array configuration (~2.8″ resolution).[7]

With a supermassive black hole mass of Mbh ≈ 2 × 107 M calibrated for a sample of similar ULIRG sources,[8] the bolometric luminosity for IRAS F11119+3257 is Lb = 5LEdd, where LEdd is the Eddington luminosity, suggesting that the active galactic nucleus is responsible for about 80 per cent of its emission, with a quasar-like luminosity of 1.5 × 1046 ergs per second.[9] From the correlation relation between infrared and radio luminosities for starburst galaxies, the AGN component in IRAS F11119+3257 is found to exceed the starburst contribution.[10] Apart from the molecular outflows, the galaxy hosts a wide-aperture energetic radiation-driven X-ray emitting winds, suggesting a likely energy conserving quasar-mode feedback.[9][11]

Researchers also found that IRAS F11119+3257 has a relatively bright radio counterpart. The early survey of the Bologna Northern Cross Radio Telescope (BNCRT) at 408 MHz, conducted by Colla et al. (1970)[12] found there is a half-Jy radio counterpart in the galaxy. Later, it was observed by more radio telescopes at multiple radio frequencies, whom they found IRAS F11119+3257 indicates a compact emission structure.[13] Moreover, its radio spectrum between 0.15 and 96 GHz shows a peak at 0.53 ± 0.06 GHz and a steep slope of ν−1.31±0.02 in the optically thin part.[7]

From the EVN Observation, at 1.66 and 4.93 GHz, IRAS F11119+3257 displays a two-sided jet with a projected separation of about 200 parsec, which has an intrinsic speed of ≥0.57c. This is higher than that observed in the X-ray winds.[7]

References

[edit]
  1. ^ "Your NED Search Results". ned.ipac.caltech.edu. Retrieved 2024-05-21.
  2. ^ Kim, D. -C.; Sanders, D. B. (1998-11-01). "The IRAS 1 Jy Survey of Ultraluminous Infrared Galaxies. I. The Sample and Luminosity Function". The Astrophysical Journal Supplement Series. 119 (1): 41–58. arXiv:astro-ph/9806148. Bibcode:1998ApJS..119...41K. doi:10.1086/313148. ISSN 0067-0049.
  3. ^ Véron-Cetty, M. -P.; Véron, P. (2006-08-01). "A catalogue of quasars and active nuclei: 12th edition". Astronomy and Astrophysics. 455 (2): 773–777. Bibcode:2006A&A...455..773V. doi:10.1051/0004-6361:20065177. ISSN 0004-6361.
  4. ^ Lanzuisi, Giorgio (2020-10-01). "Physics and Energetics of the Ultra Fast Outflow in IRAS F11119+3257". XMM-Newton Proposal: 43. Bibcode:2020xmm..prop...43L.
  5. ^ Pan, Xiang; Zhou, Hongyan; Liu, Wenjuan; Liu, Bo; Ji, Tuo; Shi, Xiheng; Zhang, Shaohua; Jiang, Peng; Wang, Huiyuan; Hao, Lei (2019-10-01). "Discovery of Metastable He I* λ10830 Mini-broad Absorption Lines and Very Narrow Paschen α Emission Lines in the ULIRG Quasar IRAS F11119+3257". The Astrophysical Journal. 883 (2): 173. arXiv:1910.05068. Bibcode:2019ApJ...883..173P. doi:10.3847/1538-4357/ab40b5. ISSN 0004-637X.
  6. ^ Veilleux, S.; Meléndez, M.; Sturm, E.; Gracia-Carpio, J.; Fischer, J.; González-Alfonso, E.; Contursi, A.; Lutz, D.; Poglitsch, A.; Davies, R.; Genzel, R.; Tacconi, L.; de Jong, J. A.; Sternberg, A.; Netzer, H. (2013-10-01). "Fast Molecular Outflows in Luminous Galaxy Mergers: Evidence for Quasar Feedback from Herschel". The Astrophysical Journal. 776 (1): 27. arXiv:1308.3139. Bibcode:2013ApJ...776...27V. doi:10.1088/0004-637X/776/1/27. ISSN 0004-637X.
  7. ^ a b c d Veilleux, S.; Bolatto, A.; Tombesi, F.; Meléndez, M.; Sturm, E.; González-Alfonso, E.; Fischer, J.; Rupke, D. S. N. (2017-07-01). "Quasar Feedback in the Ultraluminous Infrared Galaxy F11119+3257: Connecting the Accretion Disk Wind with the Large-scale Molecular Outflow". The Astrophysical Journal. 843 (1): 18. arXiv:1706.00443. Bibcode:2017ApJ...843...18V. doi:10.3847/1538-4357/aa767d. ISSN 0004-637X.
  8. ^ Kawakatu, Nozomu; Imanishi, Masatoshi; Nagao, Tohru (2007-06-01). "Anticorrelation between the Mass of a Supermassive Black Hole and the Mass Accretion Rate in Type 1 Ultraluminous Infrared Galaxies and Nearby QSOs". The Astrophysical Journal. 661 (2): 660. arXiv:astro-ph/0702552. Bibcode:2007ApJ...661..660K. doi:10.1086/516563. ISSN 0004-637X.
  9. ^ a b Tombesi, F.; Meléndez, M.; Veilleux, S.; Reeves, J. N.; González-Alfonso, E.; Reynolds, C. S. (2015-03-01). "Wind from the black-hole accretion disk driving a molecular outflow in an active galaxy". Nature. 519 (7544): 436–438. arXiv:1501.07664. Bibcode:2015Natur.519..436T. doi:10.1038/nature14261. hdl:2108/209839. ISSN 0028-0836. PMID 25810204.
  10. ^ Yang, Jun; Paragi, Zsolt; An, Tao; A Baan, Willem; Mohan, Prashanth; Liu, Xiang. "A two-sided but significantly beamed jet in the supercritical accretion quasar IRAS F11119+3257". academic.oup.com. Retrieved 2024-05-21.
  11. ^ Tombesi, F.; Veilleux, S.; Meléndez, M.; Lohfink, A.; Reeves, J. N.; Piconcelli, E.; Fiore, F.; Feruglio, C. (2017-12-01). "NuSTAR View of the Black Hole Wind in the Galaxy Merger IRAS F11119+3257". The Astrophysical Journal. 850 (2): 151. arXiv:1710.07485. Bibcode:2017ApJ...850..151T. doi:10.3847/1538-4357/aa9579. ISSN 0004-637X.
  12. ^ Colla, G.; Fanti, C.; Ficarra, A.; Formiggini, L.; Gandolfi, E.; Grueff, G.; Lari, C.; Padrielli, L.; Roffi, G.; Tomasi, P.; Vigotti, M. (1970-03-01). "A catalogue of 3235 radio sources at 408 MHz". Astronomy and Astrophysics Supplement Series. 1 (3): 281. Bibcode:1970A&AS....1..281C. ISSN 0365-0138.
  13. ^ Berton, M.; Congiu, E.; Järvelä, E.; Antonucci, R.; Kharb, P.; Lister, M. L.; Tarchi, A.; Caccianiga, A.; Chen, S.; Foschini, L.; Lähteenmäki, A.; Richards, J. L.; Ciroi, S.; Cracco, V.; Frezzato, M. (2018-06-01). "Radio-emitting narrow-line Seyfert 1 galaxies in the JVLA perspective". Astronomy and Astrophysics. 614: A87. arXiv:1801.03519. Bibcode:2018A&A...614A..87B. doi:10.1051/0004-6361/201832612. ISSN 0004-6361.