Solar eclipse of October 24, 2060

An annular solar eclipse will occur at the Moon's descending node of orbit on Sunday, October 24, 2060,[1] with a magnitude of 0.9277. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 18 hours before apogee (on October 25, 2060, at 1:20 UTC), the Moon's apparent diameter will be smaller.[2]

Solar eclipse of October 24, 2060
Map
Type of eclipse
NatureAnnular
Gamma−0.2625
Magnitude0.9277
Maximum eclipse
Duration486 s (8 min 6 s)
Coordinates25°48′S 28°06′E / 25.8°S 28.1°E / -25.8; 28.1
Max. width of band281 km (175 mi)
Times (UTC)
Greatest eclipse9:24:10
References
Saros144 (19 of 70)
Catalog # (SE5000)9643

The path of annularity will be visible from parts of southern Guinea, Sierra Leone, Liberia, Côte d'Ivoire, the Annobón Natural Reserve, Angola, northeastern Namibia, Botswana, and South Africa. A partial solar eclipse will also be visible for parts of eastern Brazil, Africa, and Antarctica.

Eclipse details

edit

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[3]

October 24, 2060 Solar Eclipse Times
Event Time (UTC)
First Penumbral External Contact 2060 October 24 at 06:19:40.5 UTC
First Umbral External Contact 2060 October 24 at 07:26:08.2 UTC
First Central Line 2060 October 24 at 07:29:18.5 UTC
First Umbral Internal Contact 2060 October 24 at 07:32:29.2 UTC
First Penumbral Internal Contact 2060 October 24 at 08:43:57.6 UTC
Greatest Eclipse 2060 October 24 at 09:24:10.4 UTC
Ecliptic Conjunction 2060 October 24 at 09:27:20.1 UTC
Equatorial Conjunction 2060 October 24 at 09:39:25.2 UTC
Greatest Duration 2060 October 24 at 09:41:30.5 UTC
Last Penumbral Internal Contact 2060 October 24 at 10:04:00.7 UTC
Last Umbral Internal Contact 2060 October 24 at 11:15:41.4 UTC
Last Central Line 2060 October 24 at 11:18:52.9 UTC
Last Umbral External Contact 2060 October 24 at 11:22:03.9 UTC
Last Penumbral External Contact 2060 October 24 at 12:28:35.3 UTC
October 24, 2060 Solar Eclipse Parameters
Parameter Value
Eclipse Magnitude 0.92766
Eclipse Obscuration 0.86055
Gamma −0.26249
Sun Right Ascension 13h58m17.5s
Sun Declination -12°04'28.2"
Sun Semi-Diameter 16'04.8"
Sun Equatorial Horizontal Parallax 08.8"
Moon Right Ascension 13h57m52.2s
Moon Declination -12°17'09.7"
Moon Semi-Diameter 14'42.1"
Moon Equatorial Horizontal Parallax 0°53'57.3"
ΔT 91.0 s

Eclipse season

edit

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight. The first and last eclipse in this sequence is separated by one synodic month.

Eclipse season of October–November 2060
October 9
Ascending node (full moon)
October 24
Descending node (new moon)
November 8
Ascending node (full moon)
   
Penumbral lunar eclipse
Lunar Saros 118
Annular solar eclipse
Solar Saros 144
Penumbral lunar eclipse
Lunar Saros 156
edit

Eclipses in 2060

edit

Metonic

edit

Tzolkinex

edit

Half-Saros

edit

Tritos

edit

Solar Saros 144

edit

Inex

edit

Triad

edit

Solar eclipses of 2058–2061

edit

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[4]

The partial solar eclipse on June 21, 2058 occurs in the previous lunar year eclipse set.

Solar eclipse series sets from 2058 to 2061
Ascending node   Descending node
Saros Map Gamma Saros Map Gamma
119 May 22, 2058
 
Partial
−1.3194 124 November 16, 2058
 
Partial
1.1224
129 May 11, 2059
 
Total
−0.508 134 November 5, 2059
 
Annular
0.4454
139 April 30, 2060
 
Total
0.2422 144 October 24, 2060
 
Annular
−0.2625
149 April 20, 2061
 
Total
0.9578 154 October 13, 2061
 
Annular
−0.9639

Saros 144

edit

This eclipse is a part of Saros series 144, repeating every 18 years, 11 days, and containing 70 events. The series started with a partial solar eclipse on April 11, 1736. It contains annular eclipses from July 7, 1880 through August 27, 2565. There are no hybrid or total eclipses in this set. The series ends at member 70 as a partial eclipse on May 5, 2980. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity will be produced by member 51 at 9 minutes, 52 seconds on December 29, 2168. All eclipses in this series occur at the Moon’s descending node of orbit.[5]

Series members 5–26 occur between 1801 and 2200:
5 6 7
 
May 25, 1808
 
June 5, 1826
 
June 16, 1844
8 9 10
 
June 27, 1862
 
July 7, 1880
 
July 18, 1898
11 12 13
 
July 30, 1916
 
August 10, 1934
 
August 20, 1952
14 15 16
 
August 31, 1970
 
September 11, 1988
 
September 22, 2006
17 18 19
 
October 2, 2024
 
October 14, 2042
 
October 24, 2060
20 21 22
 
November 4, 2078
 
November 15, 2096
 
November 27, 2114
23 24 25
 
December 7, 2132
 
December 19, 2150
 
December 29, 2168
26
 
January 9, 2187

Metonic series

edit

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

22 eclipse events between June 1, 2011 and October 24, 2098
May 31–June 1 March 19–20 January 5–6 October 24–25 August 12–13
118 120 122 124 126
 
June 1, 2011
 
March 20, 2015
 
January 6, 2019
 
October 25, 2022
 
August 12, 2026
128 130 132 134 136
 
June 1, 2030
 
March 20, 2034
 
January 5, 2038
 
October 25, 2041
 
August 12, 2045
138 140 142 144 146
 
May 31, 2049
 
March 20, 2053
 
January 5, 2057
 
October 24, 2060
 
August 12, 2064
148 150 152 154 156
 
May 31, 2068
 
March 19, 2072
 
January 6, 2076
 
October 24, 2079
 
August 13, 2083
158 160 162 164
 
June 1, 2087
 
October 24, 2098

Tritos series

edit

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
 
October 9, 1809
(Saros 121)
 
September 7, 1820
(Saros 122)
 
August 7, 1831
(Saros 123)
 
July 8, 1842
(Saros 124)
 
June 6, 1853
(Saros 125)
 
May 6, 1864
(Saros 126)
 
April 6, 1875
(Saros 127)
 
March 5, 1886
(Saros 128)
 
February 1, 1897
(Saros 129)
 
January 3, 1908
(Saros 130)
 
December 3, 1918
(Saros 131)
 
November 1, 1929
(Saros 132)
 
October 1, 1940
(Saros 133)
 
September 1, 1951
(Saros 134)
 
July 31, 1962
(Saros 135)
 
June 30, 1973
(Saros 136)
 
May 30, 1984
(Saros 137)
 
April 29, 1995
(Saros 138)
 
March 29, 2006
(Saros 139)
 
February 26, 2017
(Saros 140)
 
January 26, 2028
(Saros 141)
 
December 26, 2038
(Saros 142)
 
November 25, 2049
(Saros 143)
 
October 24, 2060
(Saros 144)
 
September 23, 2071
(Saros 145)
 
August 24, 2082
(Saros 146)
 
July 23, 2093
(Saros 147)
 
June 22, 2104
(Saros 148)
 
May 24, 2115
(Saros 149)
 
April 22, 2126
(Saros 150)
 
March 21, 2137
(Saros 151)
 
February 19, 2148
(Saros 152)
 
January 19, 2159
(Saros 153)
 
December 18, 2169
(Saros 154)
 
November 17, 2180
(Saros 155)
 
October 18, 2191
(Saros 156)

Inex series

edit

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
 
April 3, 1829
(Saros 136)
 
March 15, 1858
(Saros 137)
 
February 22, 1887
(Saros 138)
 
February 3, 1916
(Saros 139)
 
January 14, 1945
(Saros 140)
 
December 24, 1973
(Saros 141)
 
December 4, 2002
(Saros 142)
 
November 14, 2031
(Saros 143)
 
October 24, 2060
(Saros 144)
 
October 4, 2089
(Saros 145)
 
September 15, 2118
(Saros 146)
 
August 26, 2147
(Saros 147)
 
August 4, 2176
(Saros 148)

References

edit
  1. ^ "October 24, 2060 Annular Solar Eclipse". timeanddate. Retrieved 17 August 2024.
  2. ^ "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 17 August 2024.
  3. ^ "Annular Solar Eclipse of 2060 Oct 24". EclipseWise.com. Retrieved 17 August 2024.
  4. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  5. ^ "NASA - Catalog of Solar Eclipses of Saros 144". eclipse.gsfc.nasa.gov.
edit