Newton–Cartan theory (or geometrized Newtonian gravitation) is a geometrical re-formulation, as well as a generalization, of Newtonian gravity first introduced by Élie Cartan[1][2] and Kurt Friedrichs[3] and later developed by G. Dautcourt,[4] W. G. Dixon,[5] P. Havas,[6] H. Künzle,[7] Andrzej Trautman,[8] and others. In this re-formulation, the structural similarities between Newton's theory and Albert Einstein's general theory of relativity are readily seen, and it has been used by Cartan and Friedrichs to give a rigorous formulation of the way in which Newtonian gravity can be seen as a specific limit of general relativity, and by Jürgen Ehlers to extend this correspondence to specific solutions of general relativity.
Classical spacetimes
editIn Newton–Cartan theory, one starts with a smooth four-dimensional manifold and defines two (degenerate) metrics. A temporal metric with signature , used to assign temporal lengths to vectors on and a spatial metric with signature . One also requires that these two metrics satisfy a transversality (or "orthogonality") condition, . Thus, one defines a classical spacetime as an ordered quadruple , where and are as described, is a metrics-compatible covariant derivative operator; and the metrics satisfy the orthogonality condition. One might say that a classical spacetime is the analog of a relativistic spacetime , where is a smooth Lorentzian metric on the manifold .
Geometric formulation of Poisson's equation
editIn Newton's theory of gravitation, Poisson's equation reads
where is the gravitational potential, is the gravitational constant and is the mass density. The weak equivalence principle motivates a geometric version of the equation of motion for a point particle in the potential
where is the inertial mass and the gravitational mass. Since, according to the weak equivalence principle , the corresponding equation of motion
no longer contains a reference to the mass of the particle. Following the idea that the solution of the equation then is a property of the curvature of space, a connection is constructed so that the geodesic equation
represents the equation of motion of a point particle in the potential . The resulting connection is
with and ( ). The connection has been constructed in one inertial system but can be shown to be valid in any inertial system by showing the invariance of and under Galilei-transformations. The Riemann curvature tensor in inertial system coordinates of this connection is then given by
where the brackets mean the antisymmetric combination of the tensor . The Ricci tensor is given by
which leads to following geometric formulation of Poisson's equation
More explicitly, if the roman indices i and j range over the spatial coordinates 1, 2, 3, then the connection is given by
the Riemann curvature tensor by
and the Ricci tensor and Ricci scalar by
where all components not listed equal zero.
Note that this formulation does not require introducing the concept of a metric: the connection alone gives all the physical information.
Bargmann lift
editIt was shown that four-dimensional Newton–Cartan theory of gravitation can be reformulated as Kaluza–Klein reduction of five-dimensional Einstein gravity along a null-like direction.[9] This lifting is considered to be useful for non-relativistic holographic models.[10]
References
edit- ^ Cartan, Élie (1923), "Sur les variétés à connexion affine et la théorie de la relativité généralisée (Première partie)" (PDF), Annales Scientifiques de l'École Normale Supérieure, 40: 325, doi:10.24033/asens.751
- ^ Cartan, Élie (1924), "Sur les variétés à connexion affine, et la théorie de la relativité généralisée (Première partie) (Suite)" (PDF), Annales Scientifiques de l'École Normale Supérieure, 41: 1, doi:10.24033/asens.753
- ^ Friedrichs, K. O. (1927), "Eine Invariante Formulierung des Newtonschen Gravitationsgesetzes und der Grenzüberganges vom Einsteinschen zum Newtonschen Gesetz", Mathematische Annalen, 98: 566–575, doi:10.1007/bf01451608, S2CID 121571333
- ^ Dautcourt, G. (1964), "Die Newtonische Gravitationstheorie als strenger Grenzfall der allgemeinen Relativitätstheorie", Acta Physica Polonica, 65: 637–646
- ^ Dixon, W. G. (1975), "On the uniqueness of the Newtonian theory as a geometric theory of gravitation", Communications in Mathematical Physics, 45 (2): 167–182, Bibcode:1975CMaPh..45..167D, doi:10.1007/bf01629247, S2CID 120158054
- ^ Havas, P. (1964), "Four-dimensional formulations of Newtonian mechanics and their relation to the special and general theory of relativity", Reviews of Modern Physics, 36 (4): 938–965, Bibcode:1964RvMP...36..938H, doi:10.1103/revmodphys.36.938
- ^ Künzle, H. (1976), "Covariant Newtonian limts of Lorentz space-times", General Relativity and Gravitation, 7 (5): 445–457, Bibcode:1976GReGr...7..445K, doi:10.1007/bf00766139, S2CID 117098049
- ^ Trautman, A. (1965), Deser, Jürgen; Ford, K. W. (eds.), Foundations and current problems of general relativity, vol. 98, Englewood Cliffs, New Jersey: Prentice-Hall, pp. 1–248
- ^ Duval, C.; Burdet, G.; Künzle, H. P.; Perrin, M. (1985). "Bargmann structures and Newton-Cartan theory". Physical Review D. 31 (8): 1841–1853. Bibcode:1985PhRvD..31.1841D. doi:10.1103/PhysRevD.31.1841. PMID 9955910.
- ^ Goldberger, Walter D. (2009). "AdS/CFT duality for non-relativistic field theory". Journal of High Energy Physics. 2009 (3): 069. arXiv:0806.2867. Bibcode:2009JHEP...03..069G. doi:10.1088/1126-6708/2009/03/069. S2CID 118553009.
Bibliography
edit- Cartan, Élie (1923), "Sur les variétés à connexion affine et la théorie de la relativité généralisée (Première partie)" (PDF), Annales Scientifiques de l'École Normale Supérieure, 40: 325, doi:10.24033/asens.751
- Cartan, Élie (1924), "Sur les variétés à connexion affine, et la théorie de la relativité généralisée (Première partie) (Suite)" (PDF), Annales Scientifiques de l'École Normale Supérieure, 41: 1, doi:10.24033/asens.753
- Cartan, Élie (1955), Œuvres complètes, vol. III/1, Gauthier-Villars, pp. 659, 799
- Renn, Jürgen; Schemmel, Matthias, eds. (2007), The Genesis of General Relativity, vol. 4, Springer, pp. 1107–1129 (English translation of Ann. Sci. Éc. Norm. Supér. #40 paper)
- Chapter 1 of Ehlers, Jürgen (1973), "Survey of general relativity theory", in Israel, Werner (ed.), Relativity, Astrophysics and Cosmology, D. Reidel, pp. 1–125, ISBN 90-277-0369-8
This article needs additional or more specific categories. (October 2024) |