14
\$\begingroup\$

Consider three sets A, B and C each containing n integers. From this we can make the set

S_n = {a * b + c | a in A, b in B, c in C}.

Given an n, there are one or more minimal sized S_n which depend on which sets A,B and C have been chosen.

The sets can contain any n distinct integers (positive, zero or negative). There is no need for them to be consecutive integers or for the sets to be equal to each other for example. A = {-1, 0, 5, 10, 27}, B = {2, 5, 6, 10, 14} and C = {-23, 2, 100, 1000,10000} is acceptable (although not a good idea) for example.

Task

The task is to write code to find the smallest set S_n it can for each n from 1 to 20.

For each n from 1 to 20 your code should output the chosen A, B and C along with the resulting size of S_n

Score

Your score will be the sum of the sizes of the S_n you create. That is it will be a sum of twenty numbers.

The lower the score the better.

Examples

If A = B = C = {1, 2, 3, 4} then S_4 = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20} which is of size 19.

This is however in no way optimal. For example, A = B = C = {-1, 0, 1, 2} gives S_4 = {0, 1, 2, 3, 4, 5, 6, -1, -3, -2} which is of size 10.

Timings

As I will need to run your code to verify the output, please make sure it takes no more than 30 minutes and 4GB of RAM to run on a normal desktop.

Notes

Your code must actually compute the output. You are not allowed to hardcode precomputed answers into your code.

\$\endgroup\$
2
  • \$\begingroup\$ Could someone find the sets using more time and computing power, then write code to output them hardcoded? \$\endgroup\$
    – xnor
    Commented Jun 20, 2017 at 6:38
  • \$\begingroup\$ @xnor That looks like cheating to me. Please don't do that. Having said that, I am not sure what a computationally expensive approach would be that would still terminate. There are a lot of integers! \$\endgroup\$
    – user7467
    Commented Jun 20, 2017 at 6:38

7 Answers 7

7
+50
\$\begingroup\$

Rust, score 1412 1411

src/main.rs

extern crate gmp;

use std::collections::BinaryHeap;
use std::collections::hash_map::{HashMap, Entry};
use gmp::mpz::Mpz;

fn visit(
    queue: &mut BinaryHeap<(i32, i32, i32, Mpz, Mpz)>,
    visited: &mut HashMap<(i32, Mpz), i32>,
    score: i32,
    h: i32,
    k: i32,
    d: Mpz,
    c: Mpz,
) {
    match visited.entry((k, d.clone())) {
        Entry::Occupied(mut e) => {
            if *e.get() < score {
                e.insert(score);
                queue.push((score, h, k, d, c));
            }
        }
        Entry::Vacant(e) => {
            e.insert(score);
            queue.push((score, h, k, d, c));
        }
    }
}

fn main() {
    let mut total = 0;
    for n in 1..21 {
        let a_range = n / 2 - n + 1..n / 2 + 1;
        let min_ab = a_range.start * (a_range.end - 1);
        let mut ab = Mpz::zero();
        for a in a_range.clone() {
            for b in a_range.clone() {
                ab.setbit((a * b - min_ab) as usize);
            }
        }

        let heuristic = |k: i32, d: &Mpz| if k == n {
            0
        } else {
            k + 1 - n -
                (0..d.bit_length())
                    .map(|i| (&ab & !(d >> i)).popcount())
                    .min()
                    .unwrap() as i32
        };

        let mut queue = BinaryHeap::new();
        let mut visited = HashMap::new();

        let (k1, d1) = (0, Mpz::zero());
        let h1 = heuristic(k1, &d1);
        visit(&mut queue, &mut visited, h1, h1, k1, d1, Mpz::zero());
        while let Some((score, h, k, d, c)) = queue.pop() {
            if k == n {
                println!("n={} |S|={}", n, -score);
                println!("  A={:?}", a_range.clone().collect::<Vec<_>>());
                println!("  B={:?}", a_range.clone().collect::<Vec<_>>());
                println!(
                    "  C={:?}",
                    (0..c.bit_length())
                        .filter(|&i| c.tstbit(c.bit_length() - 1 - i))
                        .collect::<Vec<_>>()
                );
                total += -score;
                break;
            }

            let kd = (k, d);
            if score < visited[&kd] {
                continue;
            }
            let (k, d) = kd;

            let (k1, d1) = (k, &d >> 1);
            let h1 = heuristic(k1, &d1);
            visit(
                &mut queue,
                &mut visited,
                score - h + h1,
                h1,
                k1,
                d1,
                &c << 1,
            );

            let (k1, d1) = (k + 1, (&d | &ab) >> 1);
            let h1 = heuristic(k1, &d1);
            visit(
                &mut queue,
                &mut visited,
                score - h - (&ab & !&d).popcount() as i32 + h1,
                h1,
                k1,
                d1,
                &c << 1 | Mpz::one(),
            );
        }
    }

    println!("total={}", total);
}

Cargo.toml

[package]
name = "small"
version = "0.1.0"
authors = ["Anders Kaseorg <[email protected]>"]

[dependencies]
rust-gmp = "0.5.0"

Compile and run with cargo run --release.

Output

n=1 |S|=1
  A=[0]
  B=[0]
  C=[0]
n=2 |S|=3
  A=[0, 1]
  B=[0, 1]
  C=[0, 1]
n=3 |S|=5
  A=[-1, 0, 1]
  B=[-1, 0, 1]
  C=[0, 1, 2]
n=4 |S|=10
  A=[-1, 0, 1, 2]
  B=[-1, 0, 1, 2]
  C=[0, 1, 2, 3]
n=5 |S|=13
  A=[-2, -1, 0, 1, 2]
  B=[-2, -1, 0, 1, 2]
  C=[0, 1, 2, 3, 4]
n=6 |S|=21
  A=[-2, -1, 0, 1, 2, 3]
  B=[-2, -1, 0, 1, 2, 3]
  C=[0, 2, 3, 4, 5, 6]
n=7 |S|=25
  A=[-3, -2, -1, 0, 1, 2, 3]
  B=[-3, -2, -1, 0, 1, 2, 3]
  C=[0, 2, 3, 5, 6, 7, 8]
n=8 |S|=35
  A=[-3, -2, -1, 0, 1, 2, 3, 4]
  B=[-3, -2, -1, 0, 1, 2, 3, 4]
  C=[0, 3, 4, 6, 7, 8, 10, 11]
n=9 |S|=39
  A=[-4, -3, -2, -1, 0, 1, 2, 3, 4]
  B=[-4, -3, -2, -1, 0, 1, 2, 3, 4]
  C=[0, 3, 4, 6, 7, 8, 10, 11, 14]
n=10 |S|=53
  A=[-4, -3, -2, -1, 0, 1, 2, 3, 4, 5]
  B=[-4, -3, -2, -1, 0, 1, 2, 3, 4, 5]
  C=[0, 1, 4, 5, 6, 9, 10, 11, 14, 15]
n=11 |S|=58
  A=[-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5]
  B=[-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5]
  C=[0, 1, 4, 5, 6, 9, 10, 11, 14, 15, 19]
n=12 |S|=74
  A=[-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6]
  B=[-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6]
  C=[0, 4, 5, 6, 9, 10, 11, 12, 15, 16, 17, 21]
n=13 |S|=80
  A=[-6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6]
  B=[-6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6]
  C=[0, 4, 5, 6, 9, 10, 11, 12, 15, 16, 17, 21, 22]
n=14 |S|=100
  A=[-6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7]
  B=[-6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7]
  C=[0, 1, 6, 7, 8, 12, 13, 14, 15, 19, 20, 21, 26, 27]
n=15 |S|=106
  A=[-7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7]
  B=[-7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7]
  C=[0, 5, 6, 7, 11, 12, 13, 14, 18, 19, 20, 21, 25, 26, 27]
n=16 |S|=128
  A=[-7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8]
  B=[-7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8]
  C=[0, 6, 7, 8, 13, 14, 15, 16, 20, 21, 22, 23, 28, 29, 30, 36]
n=17 |S|=135
  A=[-8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8]
  B=[-8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8]
  C=[0, 6, 7, 8, 13, 14, 15, 16, 20, 21, 22, 23, 28, 29, 30, 36, 44]
n=18 |S|=161
  A=[-8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
  B=[-8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
  C=[0, 7, 8, 9, 15, 16, 17, 18, 23, 24, 25, 26, 27, 32, 33, 34, 35, 41]
n=19 |S|=167
  A=[-9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
  B=[-9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
  C=[0, 7, 8, 9, 15, 16, 17, 18, 23, 24, 25, 26, 27, 32, 33, 34, 35, 41, 42]
n=20 |S|=197
  A=[-9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
  B=[-9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
  C=[0, 1, 8, 9, 10, 11, 17, 18, 19, 20, 21, 26, 27, 28, 29, 30, 36, 37, 38, 46]
total=1411

On my laptop, this used about 8 minutes and about 1.5 GiB of memory.

How it works

We assume (without any particular justification) that A and B are the obvious range of consecutive integers centered at 0 or ½, then do an A* search for an optimal C given A and B.

\$\endgroup\$
3
  • \$\begingroup\$ If you fix B and C can you do the same A* search on A? I am thinking of a sort of coordinate descent approach. Fix all but one sets, optimize on the last one and repeat. \$\endgroup\$
    – user7467
    Commented Jun 20, 2017 at 11:39
  • \$\begingroup\$ @Arthur I doubt a search on A can run as efficiently as a search on C because the space of partial results doesn’t collapse as nicely, and it was already nontrivial to get the search on C to run within the time limit. \$\endgroup\$ Commented Jun 20, 2017 at 11:52
  • \$\begingroup\$ Interesting. Maybe I set 10 minutes too low. I am just intrigued if A = B and both consecutive integers is really always optimal. Just one counter example would be exciting. \$\endgroup\$
    – user7467
    Commented Jun 20, 2017 at 11:57
2
\$\begingroup\$

Axiom, score 1466

)time on

g(a:List INT,b:List INT,c:List INT):List INT==
   s:List INT:=[]
   for i in 1..#a repeat
     for j in 1..#b repeat
       for h in 1..#c repeat
            s:=cons(a.i*b.j+c.h, s)
   removeDuplicates(s)

inc(a:List INT, b:INT):List INT==
    #a=0=>a
    i:=1; len:=#a
    repeat
       if i>len then
             for j in 1..len repeat a.j:=0
             return a
       if i<len then 
         if a.i<a.(i+1) then
               if a.i<b then  
                          a.i:=a.i+1
                          for j in 1..(i-1) repeat a.j:=0
                          break
               for j in 1..i repeat a.j:=0 
       else 
         if a.i<b then 
                   a.i:=a.i+1
                   for j in 1..(len-1) repeat a.j:=0
                   break
       i:=i+1
    a

f(n:PI):List List INT==
   a:List INT:=[0];  b:List INT:=[0];   c :List INT:=[0]
   aix:List INT:=[]; cmin:List INT:=[]; cp:List INT:=[ ]
   s:List INT :=[ ];   c1:List INT:=[0]; smin:INT
   -- costruisce gli insiemi a,b
   i:=1
   for j in 1..n-1 repeat 
      if member?(i,a) then (a:=cons(-i,a);b:=cons(-i,b);i:=i+1)
      else                 (a:=cons( i,a);b:=cons( i,b))
   if n=1 then return [a,b,c,[0],[1]]
   a:=sort(a)
   c :=copy(a); cmin:=copy(a); cp:=copy(a)
   for i in 1..n repeat c.i:=i-3
   for i in 1..n repeat aix:=cons(0, aix)
   -- ottimizzati per i vari casi... si parte da particolari insiemi c
   -- da cui fare le variazioni
   if n>=8         then c.n:=c.n+2  
   if n=10 or n=13 then c.(n-1):=c.(n-1)+2
   if n=9  or n=16 or n=19 then (c.(n-2):=c.(n-2)+1; c.(n-1):=c.(n-1)+1; c.n:=c.n+1)
   smin:=n*n+10  
   repeat
       for i in 1..n repeat cp.i:=c.i+aix.i
       k:=# g(a,b,cp)
       if k<smin then 
                smin:=k; 
                for i in 1..n repeat cmin.i:=cp.i 
                --output ["assign",c,aix,cmin, k]
       inc(aix, 3)
       --output aix
       i:=0;repeat(i:=i+1;if i>n or aix.i~=0 then break)
       if i>n then break
   [sort(a),sort(b),sort(cmin),g(a,b,cmin),[smin]]


h(n:PI):NNI==
    k:=0
    r:List List INT:=[]
    for i in 1..n repeat
         r:=f(i)
         output [i,r.5.1,r.1,r.3]
         k:=k+r.5.1
    k

The sets would be A=B=[-n/2..n/2] if n%2==0 else A=B=[-n/2..((n/2)+1)]

The set C is the sum of the array as [-2,-1,..(n-2)] to one array arr[] of this kind [0,0,0,0,0] or [0,1,1,1,2] or [0,0,0,0,3] so that array it has property

 arr[i] <= arr[i+1] for i in 1..n-1

If you want to be more precise or you PC is more fast you can try to increase '3' in 'inc(aix, 3)' that increase the number of arrays for the C set variation and so it would increase the result precision.

In the results the string printed is

 [n, |{a*b+c for a in A for b in B for c in C}|,A,C]

where B=A and |S| is the number of element of S

(6) -> h 20
   [1,1,[0],[0]]
   [2,3,[0,1],[- 2,- 1]]
   [3,5,[- 1,0,1],[- 2,- 1,0]]
   [4,10,[- 1,0,1,2],[- 2,- 1,0,1]]
   [5,13,[- 2,- 1,0,1,2],[- 2,- 1,0,1,2]]
   [6,21,[- 2,- 1,0,1,2,3],[- 2,- 1,0,1,2,3]]
   [7,25,[- 3,- 2,- 1,0,1,2,3],[- 2,- 1,0,1,2,3,4]]
   [8,35,[- 3,- 2,- 1,0,1,2,3,4],[- 2,- 1,1,2,3,5,6,9]]
   [9,39,[- 4,- 3,- 2,- 1,0,1,2,3,4],[- 2,1,2,4,5,6,8,9,12]]
   [10,53,[- 4,- 3,- 2,- 1,0,1,2,3,4,5],[- 2,- 1,2,3,4,6,7,8,11,12]]
   [11,59,[- 5,- 4,- 3,- 2,- 1,0,1,2,3,4,5],[- 2,- 1,0,2,3,4,5,7,8,9,12]]
   [12,76,[- 5,- 4,- 3,- 2,- 1,0,1,2,3,4,5,6],[- 2,- 1,0,3,4,5,6,8,9,10,11,14]]
   [13, 82, [- 6,- 5,- 4,- 3,- 2,- 1,0,1,2,3,4,5,6],[- 2,- 1,0,3,4,5,6,8,9,10,11,14,15]]
   [14, 103, [- 6,- 5,- 4,- 3,- 2,- 1,0,1,2,3,4,5,6,7],[- 2,- 1,0,3,4,5,6,7,9,10,11,12,13,16]]
   [15, 110, [- 7,- 6,- 5,- 4,- 3,- 2,- 1,0,1,2,3,4,5,6,7],[- 2,- 1,0,1,4,5,6,7,8,10,11,12,13,14,17]]
   [16, 134, [- 7,- 6,- 5,- 4,- 3,- 2,- 1,0,1,2,3,4,5,6,7,8],[- 2,- 1,0,1,4,5,6,7,8,9,11,12,13,15,16,19]]
   [17, 142, [- 8,- 7,- 6,- 5,- 4,- 3,- 2,- 1,0,1,2,3,4,5,6,7,8],[- 2,- 1,0,1,4,5,6,7,8,9,11,12,13,14,15,16,19]]
   [18, 169, [- 8,- 7,- 6,- 5,- 4,- 3,- 2,- 1,0,1,2,3,4,5,6,7,8,9],[- 2,- 1,0,1,2,3,4,6,7,8,9,10,11,12,15,16,17,20]]
   [19, 178, [- 9,- 8,- 7,- 6,- 5,- 4,- 3,- 2,- 1,0,1,2,3,4,5,6,7,8,9],[- 2,- 1,0,1,2,5,6,7,8,9,10,11,13,14,15,16,18,19,22]]
   [20, 208, [- 9,- 8,- 7,- 6,- 5,- 4,- 3,- 2,- 1,0,1,2,3,4,5,6,7,8,9,10],[- 2,- 1,0,1,2,3,4,5,7,8,9,10,11,12,13,14,17,18,19,22]]

   (6)  1466
                                                    Type: PositiveInteger
      Time: 0.03 (IN) + 910.75 (EV) + 0.02 (OT) + 24.00 (GC) = 934.80 sec
\$\endgroup\$
2
\$\begingroup\$

SQL Server, 1495

declare @N int=20;
--set @N=40;
with
  n as(select 1 n union all select n+1 from n where n<@N),
  s as(select n,n/2-n+1 m from n union all select n,m+1 from s where m<n/2),
  t as(select n,m,row_number()over(partition by n order by m) p from s),
  a as(select n,m a,p from t),
  b as(select n,m b,p from t),
  c as(select n,m c,p from t),
  u as(
    select a.n,count(distinct a*b+c) q
    from a,b,c
    where b.n=a.n and c.n=a.n
    group by a.n
  )
select u.n,a,b,c,q,sum(distinct q) N
from u,a,b,c
where a.n=u.n and b.n=u.n and c.n=u.n and b.p=a.p and c.p=a.p
group by grouping sets((u.n,a,b,c,q),());

The solution can be verified here.

Excuse me for the output is in the tabular form.

\$\endgroup\$
2
\$\begingroup\$

C, score 1448 1431

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

#define P printf
#define R return
#define F for

int cmp(const void*a,const void*b)
{int aa, bb;
 aa=*(int*)a; bb=*(int*)b;
 R aa>bb?1:(aa<bb?-1:0);
}

void show(int* a,unsigned n){unsigned i;P("[ ");F(i=0;i<n;++i) P("%d ", a[i]);P("]");}

// l'insieme "a" deve essere del tipo {0,1} {-1,0,1} {-1,0,1,2} {-2,-1,0,1,2} ecc di numero elementi n
// l'insieme "c" e' un insieme di numero elementi n
// l'insieme a cui "r" punta sarà *r={x*y+z : x in a, y in a, z in c }
// ritorna -1 per errore altrimenti il numero di elementi
// di {x*y+z : x in a, y in a, z in c }

int g(int**r,int*a,int*c,unsigned n)
{static int *arrs,*res;
 static unsigned  alen;
 unsigned i,j,k,m,v,vv,len;

 if(a==0||c==0||n<=0||n>128) R -1;
 len=n*n*n;
 if(alen<n)
    {if(arrs) free(arrs);  // leaks: arrs and res remain until the program end
     if(res ) free(res);
     arrs=0; res=0; alen=0;
     arrs=malloc(sizeof(int)*len);
     if(arrs==0)             R -1;
     res =malloc(sizeof(int)*len);
     if(res==0)
         {free(arrs); arrs=0;R -1;}
     alen=n;
    }
 v=0;
 F(k=0;k<n;++k) arrs[v++]=c[k]; // il caso 0 

 F(m=0;m<n&&a[m]<0;++m);// da una parte i positivi dall'altra i negativi; m punta a 0 
                        // il caso 0 non e' trattato
 F(i=0;i<m;++i)    // positivi per negativi
   F(j=m+1;j<n;++j)
      F(k=0;k<n;++k)
         if(-a[i]<=a[j]) arrs[v++]=a[i]*a[j]+c[k];
 F(i=m+1;i<n;++i)  // positivi per positivi
   F(j=i;j<n;++j)
      F(k=0;k<n;++k)
          arrs[v++]=a[i]*a[j]+c[k];
 qsort(arrs,v,sizeof(int),cmp);
 res[0]=arrs[0];  // elimina i doppioni
 F(vv=1,i=1; i<v; ++i)
       if(arrs[i-1]!=arrs[i]) res[vv++]=arrs[i];
 *r=res;
 R vv;
}


int inc(int* a,int len,int b)
{int i,j;
 if(len<1||b<1)R 1;
 F(i=0;;)
   {if(i>=len)
         {F(j=0;j<len;++j)a[j]=0;
          R 1;
         }
    if(i==len-1||a[i]<a[i+1])
               {if(a[i]<b)
                   {a[i]+=1;
                    F(j=0;j<i;++j)a[j]=0;
                    break;
                   }
               }
    i+=1;
   }
 R 0;
}

// a,b,c,cmin sono array e devono avere size n
// s          e' un array deve avere size n*n*n
//            come risultato la sua lunghezza e' *slen
//
int f(int* a,int* b,int* cmin,int* s,int* slen, int n)
{int i,j,k, *c, *aix, *cp, smin, *rs;

 if(slen)*slen=0;
 if(n<1||a==0||b==0||cmin==0||s==0||slen==0)R -1;

 // costruisce a e b
 j=-n/2;
 if(n%2==0)++j;
 F(i=0;i<n;++i,++j) s[i]=cmin[i]=a[i]=b[i]=j;
 // {-x..x}  oppure {-x..(x+1)}

 *slen=n;
 if(n==1)R 1; // caso di un solo elemento
 c  =malloc(sizeof(int)*(n+1)); // **
 if(c==0)R -1;
 aix=malloc(sizeof(int)*(n+1)); // **
 if(aix==0){free(c);R -1;}
 cp =malloc(sizeof(int)*(n+1)); // **
 if(cp==0){free(aix);free(c);R -1;}

 F(i=0;i<n;++i){cp[i]=aix[i]=0;c[i]=i;}
 if(n>=16)//16
    {c[n-1]=c[n-1]+3;c[n-2]=c[n-2]+3;c[n-3]=c[n-3]+3;}
 F(smin=n*n+10;;)
    {cp[0]=c[0];
     F(i=1;i<n;++i) cp[i]=c[i]+aix[i-1];
     k=g(&rs,a,cp,n);
     if(k<smin){F(smin=k,i=0;i<n;++i) cmin[i]=cp[i];
                //P("Assign: %d,  ", k);
                //show(aix,n);P(",");
                //P("Cmin=");show(cmin,n);P("\n");
               }
     //show(aix,n);P("\n");
     if(inc(aix,n-1,7))break;
    }
 free(cp);free(aix);free(c);
 k=g(&rs,a,cmin,n);
 if(k==-1)R -1;
 F(i=0;i<k;++i)s[i]=rs[i];
 *slen=k;
 R k;
}

unsigned h(unsigned nmax)
{time_t                             ti, tf;
 double  dft;
 int i,j, *a, *b, *cmin, *s, slen, rlen, r;
 unsigned                            n,len;
 if(nmax>128||nmax<1)R -1;
 len =nmax*nmax*nmax+1;
 s   =malloc(sizeof(int)*len);      // **
 a   =malloc(sizeof(int)*(nmax+1)); // **
 b   =malloc(sizeof(int)*(nmax+1)); // **
 cmin=malloc(sizeof(int)*(nmax+1)); // **
 if(s==0||a==0||b==0||cmin==0){free(s);free(a);free(b);free(cmin);R -1;}
 ti=time(0);
 F(n=1,r=0;n<=nmax;++n)
    {rlen=f(a,b,cmin,s,&slen,n);
     if(rlen!=-1)
         {P("%d %d", n, rlen); show(cmin,n);P("\n");}
     else break;
     r+=rlen;
    }
 tf=time(0);
 dft=difftime(tf, ti);
 P("Result=%d  secondi=%.0f  minuti=%.0f\n", r, dft, dft/60.0);
free(s);free(a);free(b);free(cmin);
 R r;
}

int main(){h(20); R 0;}

It would be the same +/- algo of Axiom implementation

results

1 1[ 0 ]
2 3[ 0 1 ]
3 5[ 0 1 2 ]
4 10[ 0 1 2 3 ]
5 13[ 0 1 2 3 4 ]
6 21[ 0 1 2 3 4 5 ]
7 25[ 0 1 2 3 4 5 6 ]
8 35[ 0 1 3 4 5 7 8 11 ]
9 39[ 0 3 4 6 7 8 10 11 14 ]
10 53[ 0 1 4 5 6 8 9 10 13 14 ]
11 59[ 0 1 2 4 5 6 7 9 10 11 14 ]
12 75[ 0 1 2 5 6 7 8 11 12 13 17 18 ]
13 81[ 0 1 2 5 6 7 8 11 12 13 14 17 18 ]
14 101[ 0 1 2 3 6 7 8 9 10 13 14 15 16 20 ]
15 107[ 0 1 2 3 6 7 8 9 10 13 14 15 16 20 21 ]
16 130[ 0 1 2 6 7 8 9 10 13 14 15 16 17 21 22 23 ]
17 137[ 0 1 2 3 7 8 9 10 11 15 16 17 18 19 23 24 25 ]
18 163[ 0 1 2 3 7 8 9 10 11 12 16 17 18 19 20 25 26 27 ]
19 171[ 0 1 2 3 4 8 9 10 11 12 13 17 18 19 20 21 26 27 28 ]
20 202[ 0 1 2 3 7 8 9 10 11 12 13 17 18 19 20 21 22 27 28 29 ]
Result=1431  secondi=618  minuti=10
\$\endgroup\$
1
\$\begingroup\$

Python 2, score 1495

f=lambda n:range(-n/2+1,n/2+1)
f_A=f_B=f_C=f

def comb_set(A, B, C):
	return sorted({a*b+c for a in A for b in B for c in C})

def S(n):
	return comb_set(f_A(n), f_B(n), f_C(n))

Try it online!

A simple baseline of having each set be a length-n interval centered around 0, slightly unbalanced for even n. The TIO has Python code to compute your score.

1   1
2   3
3   5
4   10
5   13
6   21
7   25
8   36
9   41
10  55
11  61
12  78
13  85
14  105
15  113
16  136
17  145
18  171
19  181
20  210

Total: 1495

The size is (n*n+1)/2 for odd n and (n*n+n)/2 for even n.

\$\endgroup\$
3
  • \$\begingroup\$ @Arthur Added. I'd like to say this is just a start, but I have no idea yet how to do better :) Something like the sum-product phenomenon gets in the way. \$\endgroup\$
    – xnor
    Commented Jun 20, 2017 at 7:33
  • 1
    \$\begingroup\$ I plugged the sequence of results into OEIS. It's there, and with an entirely different definition. \$\endgroup\$
    – user62131
    Commented Jun 20, 2017 at 8:14
  • \$\begingroup\$ Looks like it was just a start after all. \$\endgroup\$
    – user7467
    Commented Jun 20, 2017 at 14:10
1
\$\begingroup\$

C++, score 1411

Conjecturing A and B are consecutive integers centered near 0, simply use simulated annealing to find C.

Source:

#include <algorithm>
#include <iostream>
#include <random>
#include <bitset>
#include <cmath>

using namespace std;

using bools = bitset<270>;
using irand = uniform_int_distribution<int>;
ranlux48 gen;
uniform_real_distribution<double> frand(0, 1);

int evaluate(const bools& a, const vector<int>& v)
{
    bools t = a;
    for (int i : v) t |= a << i;
    return t.count();
}

vector<int> best;
int best_score, prev_score;

void transition(double Temp, int Q, const bools& a, vector<int>& now)
{
    int rep, pos, tmp;
    do rep = irand(1, Q)(gen); while (find(now.begin(), now.end(), rep) != now.end());
    pos = irand(0, now.size() - 1)(gen);
    tmp = now[pos];
    now[pos] = rep;
    int now_score = evaluate(a, now);
    if (now_score <= prev_score || frand(gen) < exp((double)(prev_score - now_score))) {
        prev_score = now_score;
        if (now_score < best_score) best_score = now_score, best = now;
    }
    else now[pos] = tmp;
}

int main()
{
    int score = 0;
    for (int N = 1; N <= 20; N++) {
        gen.seed(0);
        int first = -N / 2, last = first + N, Q = N * 3;
        bools st;

        for (int i = first; i < last; i++)
            for (int j = first; j < last; j++)
                st[i * j + last * last] = true;

        vector<int> lst;
        for (int i = 1; i < N; i++) lst.push_back(i);

        best = lst;
        prev_score = best_score = evaluate(st, lst);

        if (N != 1)
            for (double Temp = 70.; Temp > 0; Temp -= 3e-5) transition(Temp, Q, st, lst);
        sort(best.begin(), best.end());
        cout << "N = " << N << "; |S| = " << best_score << endl;
        cout << " A = B = {";
        for (int i = first; i < last; i++) cout << i << (i != last - 1 ? ", " : "}\n");
        cout << " S = {0";
        for (int i : best) cout << ", " << i;
        cout << "}\n";

        score += best_score;
    }
    cout << "Score: " << score << endl;
}

Results:

N = 1; |S| = 1
 A = B = {0}
 S = {0}
N = 2; |S| = 3
 A = B = {-1, 0}
 S = {0, 1}
N = 3; |S| = 5
 A = B = {-1, 0, 1}
 S = {0, 1, 2}
N = 4; |S| = 10
 A = B = {-2, -1, 0, 1}
 S = {0, 1, 2, 3}
N = 5; |S| = 13
 A = B = {-2, -1, 0, 1, 2}
 S = {0, 1, 2, 3, 4}
N = 6; |S| = 21
 A = B = {-3, -2, -1, 0, 1, 2}
 S = {0, 1, 2, 3, 4, 5}
N = 7; |S| = 25
 A = B = {-3, -2, -1, 0, 1, 2, 3}
 S = {0, 1, 2, 3, 4, 5, 6}
N = 8; |S| = 35
 A = B = {-4, -3, -2, -1, 0, 1, 2, 3}
 S = {0, 3, 4, 6, 7, 10, 11, 14}
N = 9; |S| = 39
 A = B = {-4, -3, -2, -1, 0, 1, 2, 3, 4}
 S = {0, 3, 4, 6, 7, 8, 10, 11, 14}
N = 10; |S| = 53
 A = B = {-5, -4, -3, -2, -1, 0, 1, 2, 3, 4}
 S = {0, 1, 4, 5, 6, 9, 10, 11, 14, 15}
N = 11; |S| = 58
 A = B = {-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5}
 S = {0, 1, 4, 5, 6, 9, 10, 11, 14, 15, 19}
N = 12; |S| = 74
 A = B = {-6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5}
 S = {0, 4, 5, 6, 9, 10, 11, 12, 15, 16, 17, 21}
N = 13; |S| = 80
 A = B = {-6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6}
 S = {0, 6, 10, 11, 12, 15, 16, 17, 18, 21, 22, 23, 27}
N = 14; |S| = 100
 A = B = {-7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6}
 S = {0, 5, 6, 7, 11, 12, 13, 14, 18, 19, 20, 21, 25, 26}
N = 15; |S| = 106
 A = B = {-7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7}
 S = {0, 5, 6, 7, 11, 12, 13, 14, 18, 19, 20, 21, 25, 26, 32}
N = 16; |S| = 128
 A = B = {-8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7}
 S = {0, 6, 7, 8, 13, 14, 15, 16, 21, 22, 23, 24, 29, 30, 31, 37}
N = 17; |S| = 135
 A = B = {-8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8}
 S = {0, 6, 7, 8, 13, 14, 15, 16, 21, 22, 23, 24, 29, 30, 31, 37, 45}
N = 18; |S| = 161
 A = B = {-9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8}
 S = {0, 7, 8, 9, 14, 15, 16, 17, 18, 22, 23, 24, 25, 26, 31, 32, 33, 40}
N = 19; |S| = 167
 A = B = {-9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
 S = {0, 7, 8, 9, 15, 16, 17, 18, 23, 24, 25, 26, 27, 32, 33, 34, 35, 41, 42}
N = 20; |S| = 197
 A = B = {-10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
 S = {0, 8, 9, 10, 16, 17, 18, 19, 20, 25, 26, 27, 28, 29, 35, 36, 37, 38, 45, 46}
Score: 1411

With -O2 on my computer, it takes 50 secs to compute all the results.

\$\endgroup\$
0
\$\begingroup\$

Mathematica, score 1495

z = 0;
For[n = 1, n <= 20, n++,
r = Range[n] - Ceiling[n/2];
Print["S_n size=", x = (s = Length@#;
  Length@
   Union@Flatten@
     Table[#[[i]]*#[[j]] + #[[k]], {i, s}, {j, s}, {k, s}]) &[r], 
"  ", "A=B=C=", r]; z = z + x]
Print["SCORE=", z]

S_n size=1 A=B=C={0}
S_n size=3 A=B=C={0,1}
S_n size=5 A=B=C={-1,0,1}
S_n size=10 A=B=C={-1,0,1,2}
S_n size=13 A=B=C={-2,-1,0,1,2}
S_n size=21 A=B=C={-2,-1,0,1,2,3}
S_n size=25 A=B=C={-3,-2,-1,0,1,2,3}
S_n size=36 A=B=C={-3,-2,-1,0,1,2,3,4}
S_n size=41 A=B=C={-4,-3,-2,-1,0,1,2,3,4}
S_n size=55 A=B=C={-4,-3,-2,-1,0,1,2,3,4,5}
S_n size=61 A=B=C={-5,-4,-3,-2,-1,0,1,2,3,4,5}
S_n size=78 A=B=C={-5,-4,-3,-2,-1,0,1,2,3,4,5,6}
S_n size=85 A=B=C={-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6}
S_n size=105 A=B=C={-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7}
S_n size=113 A=B=C={-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7}
S_n size=136 A=B=C={-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8}
S_n size=145 A=B=C={-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8}
S_n size=171 A=B=C={-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9}
S_n size=181 A=B=C={-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9}
S_n size=210 A=B=C={-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10}
SCORE=1495

\$\endgroup\$

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.