Teorema de Brahmagupta
En geometria euclidiana, el teorema de Brahmagupta (anomenat així en honor del matemàtic indi Brahmagupta)[1] dona una condició necessària sobre la perpendicularitat de les diagonals d'un quadrilàter cíclic (inscriptible en un cercle).[2]
|
Demostració
[modifica]Donat un quadrilàter inscriptible ABCD les diagonals del qual són perpendiculars, es vol demostrar que AF = FD. Per això, es demostrarà que AF i FD són tots dos iguals a FM.
L'angle FAM i CBM són iguals (a causa del teorema dels angles inscrits que s'intersequen el mateix arc de cercle). A més, els angles CBM i CME són angles complementaris a l'angle BCM. Finalment, AFM és un triangle isòsceles, i en conseqüència, els seus costats AF i FM són iguals.
De manera anàloga, es demostra que FD = FM. Els angles FDM, BCM, BME i DMF són tots iguals, llavors DFM és un triangle isòsceles, d'on FD = FM. D'aquí, es dedueix que AF = FD, cosa que demostra el teorema.
Vegeu també
[modifica]Referències
[modifica]Enllaços externs
[modifica]- Weisstein, Eric W., «Teorema de Brahmagupta» a MathWorld (en anglès).
- Lloc interactiu Cut the knot Teorema de Brahmagupta (anglès)