Papers by Rachael Richardson
Scientific Reports
Optical stimulation is a paradigm-shifting approach to modulating neural activity that has the po... more Optical stimulation is a paradigm-shifting approach to modulating neural activity that has the potential to overcome the issue of current spread that occurs with electrical stimulation by providing focused stimuli. But optical stimulation either requires high power infrared light or genetic modification of neurons to make them responsive to lower power visible light. This work examines optical activation of auditory neurons following optogenetic modification via AAV injection in two species (mouse and guinea pig). An Anc80 viral vector was used to express the channelrhodopsin variant ChR2-H134R fused to a fluorescent reporter gene under the control of the human synapsin-1 promoter. The AAV was administered directly to the cochlea (n = 33) or posterior semi-circular canal of C57BL/6 mice (n = 4) or to guinea pig cochleae (n = 6). Light (488 nm), electrical stimuli or the combination of these (hybrid stimulation) was delivered to the cochlea via a laser-coupled optical fibre and co-lo...
MethodsX
drug tracing method to study neurotrophin-3 retention and distribution in the cochlea after nano-... more drug tracing method to study neurotrophin-3 retention and distribution in the cochlea after nano-based local delivery. MethodsX: 101078.
Compared to electrical stimulation, optogenetic stimulation has the potential to improve the spat... more Compared to electrical stimulation, optogenetic stimulation has the potential to improve the spatial precision of neural activation in neuroprostheses, but it requires intense light and has relatively poor temporal kinetics. We tested the effect of hybrid stimulation, which is the combination of subthreshold optical and electrical stimuli, on spectral and temporal fidelity in the cochlea by recording multiunit activity in the inferior colliculus of channelrhodopsin (H134R variant) transgenic mice. Pulsed light or biphasic electrical pulses were delivered to cochlear spiral ganglion neurons of acutely deafened mice, either as individual stimuli or as hybrid stimuli for which the timing of the electrical pulse had a varied delay relative to the start of the optical pulse. Facilitation occurred when subthreshold electrical stimuli were applied at the end of, or up to 3.75 ms after subthreshold optical pulses. The spread of activation resulting from hybrid stimulation was significantly ...
Healthcare Technology Letters
Journal of Neural Engineering
OBJECTIVE The performance of neuroprostheses, including cochlear and retinal implants, is current... more OBJECTIVE The performance of neuroprostheses, including cochlear and retinal implants, is currently constrained by the spatial resolution of electrical stimulation. Optogenetics has improved the spatial control of neurons in vivo but lacks the fast-temporal dynamics required for auditory and retinal signalling. The objective of this study is to demonstrate that combining optical and electrical stimulation in vitro could address some of the limitations associated with each of the stimulus modes when used independently. APPROACH The response of murine auditory neurons expressing ChR2-H134 to combined optical and electrical stimulation was characterised using whole cell patch clamp electrophysiology. MAIN RESULTS Optogenetic costimulation produces a three-fold increase in peak firing rate compared to optical stimulation alone and allows spikes to be evoked by combined subthreshold optical and electrical inputs. Subthreshold optical depolarisation also facilitated spiking in auditory neurons for periods of up to 30 ms without evidence of wide-scale Na+ inactivation. Significance These findings may contribute to the development of spatially and temporally selective optogenetic-based neuroprosthetics and complement recent developments in "fast opsins".
Journal of Leukocyte Biology
SOCS-1 was originally identified as an inhibitor of interleukin-6 signal transduction and is a me... more SOCS-1 was originally identified as an inhibitor of interleukin-6 signal transduction and is a member of a family of proteins (SOCS-1 to SOCS-7 and CIS) that contain an SH2 domain and a conserved carboxyl-terminal SOCS box motif. Mutation studies have established that critical contributions from both the amino-terminal and SH2 domains are essential for SOCS-1 and SOCS-3 to inhibit cytokine signaling. Inhibition of cytokinedependent activation of STAT3 occurred in cells expressing either SOCS-1 or SOCS-3, but unlike SOCS-1, SOCS-3 did not directly interact with or inhibit the activity of JAK kinases. Although the conserved SOCS box motif appeared to be dispensable for SOCS-1 and SOCS-3 action when overexpressed, this domain interacts with elongin proteins and may be important in regulating protein turnover. In gene knockout studies, SOCS-1-/mice were born but failed to thrive and died within 3 weeks of age with fatty degeneration of the liver and hemopoietic infiltration of several organs. The thymus in SOCS-1-/mice was small, the animals were lymphopenic, and deficiencies in B lymphocytes were evident within hemopoietic organs. We propose that the absence of SOCS-1 in these mice prevents lymphocytes and liver cells from appropriately controlling signals from cytokines with cytotoxic side effects.
Expert opinion on biological therapy, Feb 1, 2017
Electrical stimulation has long been the most effective strategy for evoking neural activity from... more Electrical stimulation has long been the most effective strategy for evoking neural activity from bionic devices and has been used with great success in the cochlear implant to allow deaf people to hear speech and sound. Despite its success, the spread of electrical current stimulates a broad region of neural tissue meaning that contemporary devices have limited precision. Optical stimulation as an alternative has attracted much recent interest for its capacity to provide highly focused stimuli, and therefore, potentially improved sensory perception. Given its specificity of activation, optical stimulation may also provide a useful tool in the study of fundamental neuroanatomy and neurophysiological processes. Areas covered: This review examines the advances in optical stimulation - infrared, nanoparticle-enhanced, and optogenetic-based - and its application in the inner ear for the restoration of auditory function following hearing loss. Expert opinion: Initial outcomes suggest tha...
Proceedings of the National Academy of Sciences, 2015
Proceedings of the National Academy of Sciences, 1999
The suppressors of cytokine signaling (SOCS) family of proteins act as intracellular inhibitors o... more The suppressors of cytokine signaling (SOCS) family of proteins act as intracellular inhibitors of several cytokine signal transduction pathways. Their expression is induced by cytokine activation of the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway and they act as a negative feedback loop by subsequently inhibiting the JAK/STAT pathway either by direct interaction with activated JAKs or with the receptors. These interactions are mediated at least in part by the SH2 domain of SOCS proteins but these proteins also contain a highly conserved C-terminal homology domain termed the SOCS box. Here we show that the SOCS box mediates interactions with elongins B and C, which in turn may couple SOCS proteins and their substrates to the proteasomal protein degradation pathway. Analogous to the family of F-box-containing proteins, it appears that the SOCS proteins may act as adaptor molecules that target activated cell signaling proteins to the protein degrad...
Proceedings of the National Academy of Sciences, 1998
The four members of the recently identified suppressor of cytokines signaling family (SOCS-1, SOC... more The four members of the recently identified suppressor of cytokines signaling family (SOCS-1, SOCS-2, SOCS-3, and CIS, where CIS is cytokine-inducible SH2-containing protein) appear, by various means, to negatively regulate cytokine signal transduction. Structurally, the SOCS proteins are composed of an N-terminal region of variable length and amino acid composition, a central SH2 domain, and a previously unrecognized C-terminal motif that we have called the SOCS box. By using the SOCS box amino acid sequence consensus, we have searched DNA databases and have identified a further 16 proteins that contain this motif. These proteins fall into five classes based on the protein motifs found N-terminal of the SOCS box. In addition to four new SOCS proteins (SOCS-4 to SOCS-7) containing an SH2 domain and a SOCS box, we describe three new families of proteins that contain either WD-40 repeats (WSB-1 and -2), SPRY domains (SSB-1 to -3) or ankyrin repeats (ASB-1 to -3) N-terminal of the SOCS...
Journal of Neural Engineering, 2011
Journal of Neural Engineering, 2004
The impedance of stimulating electrodes used in cochlear implants and other neural prostheses oft... more The impedance of stimulating electrodes used in cochlear implants and other neural prostheses often increases post-implantation, and is thought to be due to fibrous tissue encapsulation of the electrode array. Increased impedance results in higher power requirements to stimulate target neurons at set charge densities. We developed an in vitro model to investigate the electrode-tissue interface in a highly controlled environment. This model was tested using three cell types, with and without charge-balanced biphasic electrical stimulation. Under standard tissue culture conditions, a monolayer of cells was grown over the electrode surface. Electrode impedance increased in proportion to the extent of cell coverage of the electrode. Cell type was a significant factor in the amount of impedance increase, with kidney epithelial cells (MDCK) creating the greatest impedance, followed by dissociated rat skin fibroblasts and then macrophages (J774). The application of electrical stimulation to cell-covered electrodes caused impedance fluctuations similar to that seen in vivo, with a lowering of impedance immediately following stimulation, and a recovery to pre-stimulation levels during inactive periods. Examination of these electrodes suggests that the stimulation-induced impedance changes were due to the amount of cell cover over the electrodes. This in vitro technique accurately models the changes in impedance observed with neural prostheses in vivo, and shows the close relationship between impedance and tissue coverage adjacent to the electrode surface. We believe that this in vitro approach holds great promise to further our knowledge of the mechanisms contributing to electrode impedance.
Journal of Regenerative Medicine, 2015
Regeneration of cochlear hair cells with Atoh1 gene therapy after noise-induced hearing loss. Jou... more Regeneration of cochlear hair cells with Atoh1 gene therapy after noise-induced hearing loss. Journal of Regenerative Medicine 4:1. Notice: Changes introduced as a result of publishing processes such as copy-editing and formatting may not be reflected in this document.
Background: Degeneration of hair cells in the mammalian cochlea results in irreversible hearing l... more Background: Degeneration of hair cells in the mammalian cochlea results in irreversible hearing loss with no current treatment options to regain lost hair cell function. The Atoh1 gene is necessary for hair cell development and recent research has shown that Atoh1 gene therapy promotes new hair cell formation and hearing restoration in adult rodent deafness models.
Journal of Neural Engineering, 2011
Animal and clinical observations of a reduction in electrode impedance following electrical stimu... more Animal and clinical observations of a reduction in electrode impedance following electrical stimulation encouraged the development of an in vitro model of the electrode-tissue interface. This model was used previously to show an increase in impedance with cell and protein cover over electrodes. In this paper, the model was used to assess the changes in electrode impedance and cell cover following application of a charge-balanced biphasic current pulse train. Following stimulation, a large and rapid drop in total impedance (Z t ) and access resistance (R a ) occurred. The magnitude of this impedance change was dependent on the current amplitude used, with a linear relationship determined between R a and the resulting cell cover over the electrodes. The changes in impedance due to stimulation were shown to be transitory, with impedance returning to prestimulation levels several hours after cessation of stimulation. A loss of cells over the electrode surface was observed immediately after stimulation suggesting that the level of stimulation applied was creating localised changes to cell adhesion. Similar changes in electrode impedance were observed for in vivo and in vitro work, thus helping to verify the in vitro model, although the underlying mechanisms may differ. A change in the porosity of the cellular layer was proposed to explain the alterations in electrode impedance in vitro. These in vitro studies provide insight into the possible mechanisms occurring at the electrode-tissue interface in association with electrical stimulation.
Expert opinion on biological therapy, 2015
The sensory epithelium of the cochlea is a complex structure containing hair cells, supporting ce... more The sensory epithelium of the cochlea is a complex structure containing hair cells, supporting cells and auditory nerve endings, all of which degenerate after hearing loss in mammals. Biological approaches are being considered to preserve and restore the sensory epithelium after hearing loss. Of particular note is the ectopic expression of the Atoh1 gene, which has been shown to convert residual supporting cells into hair cells with restoration of function in some cases. In this review, hair cell development, spontaneous regeneration and hair cell regeneration mediated by Atoh1 gene therapy in the cochlea are discussed. Gene therapy can be safely delivered locally to the inner ear and can be targeted to the sensory epithelium of the cochlea. Expression of the Atoh1 gene in supporting cells results in their transformation into cells with the appearance and function of immature hair cells but with the resulting loss of the original supporting cell. While the feasibility of Atoh1 gene ...
Journal of leukocyte biology, 1999
SOCS-1 was originally identified as an inhibitor of interleukin-6 signal transduction and is a me... more SOCS-1 was originally identified as an inhibitor of interleukin-6 signal transduction and is a member of a family of proteins (SOCS-1 to SOCS-7 and CIS) that contain an SH2 domain and a conserved carboxyl-terminal SOCS box motif. Mutation studies have established that critical contributions from both the amino-terminal and SH2 domains are essential for SOCS-1 and SOCS-3 to inhibit cytokine signaling. Inhibition of cytokine-dependent activation of STAT3 occurred in cells expressing either SOCS-1 or SOCS-3, but unlike SOCS-1, SOCS-3 did not directly interact with or inhibit the activity of JAK kinases. Although the conserved SOCS box motif appeared to be dispensable for SOCS-1 and SOCS-3 action when overexpressed, this domain interacts with elongin proteins and may be important in regulating protein turnover. In gene knockout studies, SOCS-1(-/-) mice were born but failed to thrive and died within 3 weeks of age with fatty degeneration of the liver and hemopoietic infiltration of seve...
Uploads
Papers by Rachael Richardson