Уравнение на Бернули
- Тази статия е за уравнението от механика на флуидите. За диференциалното уравнение вижте диференциално уравнение на Бернули.
В механиката на флуидите, принципът на Бернули гласи, че за невискозен флуид, увеличението на скоростта на потока е придружено винаги или с намаляване на налягането, или с намаляване на потенциалната енергия на флуида. Принципът на Бернули носи името на Даниел Бернули, швейцарски математик и физик, който го публикува за пръв път в неговата книга Hydrodynamica през 1738 г.[1]
Принципът на Бернули важи както за свиваеми флуиди (въздух), така и за несвиваеми (каквито са повечето течни потоци). Връзката между увеличение на скоростта и намаляване на налягането е вярна само за потоци с ниско махово число, т.е. скорост на потока по-малка от скоростта на звука в дадената среда.
Принципът на Бернули се извежда от Закона за запазване на енергията, който гласи, че във всяка точка от дадена токова линия пълната механична енергия е една и съща, т.е. сборът от всички енергии е константа. Оттам увеличение на скоростта на флуида води до увеличаване на кинетичната енергия, следователно до намаляване на налягането или потенциалната енергия.
Формулировка за несвиваем флуид
[редактиране | редактиране на кода]Уравнението на Бернули, което може да бъде приложено за всеки флуиден елемент по протежението на дадена токова линия, се записва обичайно:
където:
- е скоростта на потока в дадената точка,
- е земното ускорение
- е височината над земната повърхност, която расте обратно на геопотенциала
- е налягането и
- е плътността на флуида.
Това уравнение се обобщава за флуид в потенциала на коя да е консервативна сила:
където е потенциалът на полето. Двете уравнения са еквивалентни за гравитационния потенциал, който се записва Ψ = gz за материални точки близо до земната повърхност (т.е. височината z << RЗемя, където RЗемя е радиусът на Земята).
Това уравнение е валидно в рамките на двете хипотези, под които е изведено:
- Флуидът е несвиваем, т.е. плътността е постоянна по продължение на токовата линия и
- Триенето, предизвикано от вискозните сили е пренебрежимо.
При реалните флуиди триенето не е пренебрежимо, трябва да се вземат предвид и хидравличните загуби, поради което енергията на потока намалява.
Свиваем флуид
[редактиране | редактиране на кода]За свиваем флуид с баротропично уравнение на състоянието, уравнението на Бернули придобива вида:
- [2] (константа по протежение на токовата линия)
където:
- p е налягането,
- ρ – плътността,
- v – скоростта на потока и
- Ψ е потенциалът на консервативната сила.
Често разглежданите флуиди са адиабатични (разглежданите явления протичат достатъчно бързо, че увеличението на ентропията да може да се пренебрегне). Тогава, горното уравнение придобива вида:
- [3] (константа по протежение на токовата линия)
Новите величини в горното уравнение са:
- γ – адиабатичен индекс; отношението cp/cv, където cp r cv са съответно специфични топлинни капацитети при постоянно налягане и постоянен обем,
- g е земното ускорение и
- z е височината на флуидния елемент над земната повърхност.
Източници
[редактиране | редактиране на кода]- ↑ Hydrodynamica. Britannica Online Encyclopedia. Посетен на 25 ноември 2012
- ↑ Clarke C. and Carswell B., Astrophysical Fluid Dynamics
- ↑ Clancy, L.J., Aerodynamics, Section 3.11