Did someone say … cookies? X and its partners use cookies to provide you with a better, safer and faster service and to support our business. Some cookies are perly. Show more about your choices.
先日、有志で集まって「BigQuery Analytics」という書籍の読書会をやった。その名の通り Google BigQuery について書かれた洋書。 BigQuery を最近仕事で使い始めたのだが、BigQuery が開発された背景とかアーキテクチャーとかあまり調べもせずに使い始めたので今更ながらその辺のインプットを増やして以降と思った次第。 それで、読書会の第1回目は書籍の中でも Overview に相当するところを中心に読み合わせていった。それだけでもなかなかに面白かったので少しブログにでも書いてみようかなと思う。 BigQuery の話そのものも面白いが、個人的には Google のインフラが書籍『Google を支える技術』で解説されたものが "Big Data Stack 1.0" だとして、BigQuery は Big Data Stack 2.0 の上に構築されており
Twitterで「早く今流行のMPPの大まかな使い方の違い書けよ!」というプレッシャーが半端ないのでてきとうに書きます.この記事は俺の経験と勉強会などでユーザから聞いた話をもとに書いているので,すべてが俺の経験ではありません(特にBigQuery).各社のSAの人とかに聞けば,もっと良いアプローチとか詳細を教えてくれるかもしれません. オンプレミスの商用MPPは使ったことないのでノーコメントです. MPP on HadoopでPrestoがメインなのは今一番使っているからで,Impalaなど他のMPP on Hadoop的なものも似たような感じかなと思っています. もちろん実装の違いなどがあるので,その辺は適宜自分で補間してください. 前提 アプリケーションを開発していて,そのための解析基盤を一から作る. 簡単なまとめ データを貯める所が作れるのであれば,そこに直接クエリを投げられるPre
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く