BackgroundRecombinant DNA technologies have played a pivotal role in the elucidation of structure... more BackgroundRecombinant DNA technologies have played a pivotal role in the elucidation of structure-function relationships in hemoglobin (Hb) and other globin proteins. Here we describe the development of a plasmid expression system to synthesize recombinant Hbs in Escherichia coli, and we describe a protocol for expressing Hbs with low intrinsic solubilities. Since the α- and β-chain Hbs of different species span
Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2015
Differences between species in the oxygen (O2) affinity (P50) of myoglobin (Mb) may serve to fine... more Differences between species in the oxygen (O2) affinity (P50) of myoglobin (Mb) may serve to fine tune O2 supply to cardiac and skeletal muscle in ectotherms. In support of this view, it has been shown that fish Mb O2 affinities differ between species when measured at the same temperature, but are in fact similar when adjusted for in vivo muscle temperatures, most likely to maintain intracellular O2 delivery in species adapted to different environments. It is unknown whether similar adaptations exist in the O2 affinity of Mb from reptiles, despite this group of ectothermic vertebrates displaying great variation in the tolerance to both temperature and hypoxia. In this study, we have purified Mb from muscle tissues of three reptilian species (turtle, tortoise and alligator) with different lifestyles. We have measured O2 binding characteristics and autoxidation rates of the three Mbs and measured the effects of temperature, lactate and blocking of reactive thiols on the O2 affinity of turtle Mb. Our data show that, at a constant temperature, reptilian Mbs have similar O2 affinities that are lower than those of mammalian Mbs, which may optimize intracellular O2 transport at lower body temperatures. Reptilian Mbs have lower autoxidation rates than both mammalian and fish Mbs, which may be beneficial during oxidative stress. Furthermore, the O2 affinity of turtle Mb is without allosteric control and independent of either lactate or thiol covalent modification. This study reveals some common adaptive patterns in the temperature-dependent regulation of Mb oxygenation in vertebrates.
As in other fish, the cathodic hemoglobin of the eel Anguilla anguilla is considered to play an i... more As in other fish, the cathodic hemoglobin of the eel Anguilla anguilla is considered to play an important role in oxygen transport under hypoxic and acidotic conditions. In the absence of phosphates this hemoglobin shows a reverse Bohr effect and high oxygen affinity, which is strongly modulated over a side pH range by GTP (whose concentration in the red blood cells varies with ambient oxygen availability). GTP obliterates the reverse Bohr effects in the cathodic hemoglobin. The molecular basis for the reverse Bohr effect in fish hemoglobins has remained obscure due to the lack of structural data. We have determined the complete amino acid sequence of the alpha and beta chains of the cathodic hemoglobins of A. anguilla and relate it to the oxygen equilibrium characteristics. Several substitutions in crucial positions are observed compared with other hemoglobins, such as the replacement of the C-terminal His of the beta chain of Phe (that suppresses the alkaline Bohr effect) and of r...
A fundamental question in evolutionary genetics concerns the roles of mutational pleiotropy and e... more A fundamental question in evolutionary genetics concerns the roles of mutational pleiotropy and epistasis in shaping trajectories of protein evolution. This question can be addressed most directly by using site-directed mutagenesis to explore the mutational landscape of protein function in experimentally defined regions of sequence space. Here, we evaluate how pleiotropic trade-offs and epistatic interactions influence the accessibility of alternative mutational pathways during the adaptive evolution of hemoglobin (Hb) function in high-altitude pikas (Mammalia: Lagomorpha). By combining ancestral protein resurrection with a combinatorial protein-engineering approach, we examined the functional effects of sequential mutational steps in all possible pathways that produced an increased Hb-O2 affinity. These experiments revealed that the effects of mutations on Hb-O2 affinity are highly dependent on the temporal order in which they occur: Each of three β-chain substitutions produced a s...
Major challenges for illuminating the genetic basis of phenotypic evolution are to identify causa... more Major challenges for illuminating the genetic basis of phenotypic evolution are to identify causative mutations, to quantify their functional effects, to trace their origins as new or preexisting variants, and to assess the manner in which segregating variation is transduced into species differences. Here, we report an experimental analysis of genetic variation in hemoglobin (Hb) function within and among species of Peromyscus mice that are native to different elevations. A multilocus survey of sequence variation in the duplicated HBA and HBB genes in Peromyscus maniculatus revealed that function-altering amino acid variants are widely shared among geographically disparate populations from different elevations, and numerous amino acid polymorphisms are also shared with closely related species. Variation in Hb-O2 affinity within and among populations of P. maniculatus is attributable to numerous amino acid mutations that have individually small effects. One especially surprising feat...
Comparative biochemistry and physiology. Part A, Molecular & integrative physiology, 2014
The oxygenation enthalpy of the heme groups of hemoglobin (Hb) is inherently exothermic, resultin... more The oxygenation enthalpy of the heme groups of hemoglobin (Hb) is inherently exothermic, resulting in decreased Hb-O2 affinity with rising temperature. However, oxygenation is coupled with endothermic dissociation of allosteric effectors (e.g. protons, chloride ions and organic phosphates) from the protein, which reduces the overall oxygenation enthalpy. The evolution of Hbs with reduced temperature sensitivity ostensibly safeguards O2 unloading in cold extremities of regionally-heterothermic vertebrates permitting energy-saving reductions in heat loss. Ungulate (e.g. bovine) Hbs have long served as a model system in this regard in that they exhibit numerically low oxygenation enthalpies that are thought to correlate with the presence of an additional Cl(-) binding site (compared to human Hb) comprised of three cationic residues at positions 8, 76 and 77 of the β-chains of Hb. However, ungulate Hbs also exhibit distinctive amino acid exchanges at the N-termini of the β-chains that s...
Proceedings of the National Academy of Sciences of the United States of America, Jan 17, 2013
Animals that sustain high levels of aerobic activity under hypoxic conditions (e.g., birds that f... more Animals that sustain high levels of aerobic activity under hypoxic conditions (e.g., birds that fly at high altitude) face the physiological challenge of jointly optimizing blood-O2 affinity for O2 loading in the pulmonary circulation and O2 unloading in the systemic circulation. At high altitude, this challenge is especially acute for small endotherms like hummingbirds that have exceedingly high mass-specific metabolic rates. Here we report an experimental analysis of hemoglobin (Hb) function in South American hummingbirds that revealed a positive correlation between Hb-O2 affinity and native elevation. Protein engineering experiments and ancestral-state reconstructions revealed that this correlation is attributable to derived increases in Hb-O2 affinity in highland lineages, as well as derived reductions in Hb-O2 affinity in lowland lineages. Site-directed mutagenesis experiments demonstrated that repeated evolutionary transitions in biochemical phenotype are mainly attributable t...
In air-breathing vertebrates, the physiologically optimal blood-O2 affinity is jointly determined... more In air-breathing vertebrates, the physiologically optimal blood-O2 affinity is jointly determined by the prevailing partial pressure of atmospheric O2, the efficacy of pulmonary O2 transfer, and internal metabolic demands. Consequently, genetic variation in the oxygenation properties of hemoglobin (Hb) may be subject to spatially varying selection in species with broad elevational distributions. Here we report the results of a combined functional and evolutionary analysis of Hb polymorphism in the rufous-collared sparrow (Zonotrichia capensis), a species that is continuously distributed across a steep elevational gradient on the Pacific slope of the Peruvian Andes. We integrated a population genomic analysis that included all postnatally expressed Hb genes with functional studies of naturally occurring Hb variants, as well as recombinant Hb (rHb) mutants that were engineered through site-directed mutagenesis. We identified three clinally varying amino acid polymorphisms: Two in the ...
BackgroundRecombinant DNA technologies have played a pivotal role in the elucidation of structure... more BackgroundRecombinant DNA technologies have played a pivotal role in the elucidation of structure-function relationships in hemoglobin (Hb) and other globin proteins. Here we describe the development of a plasmid expression system to synthesize recombinant Hbs in Escherichia coli, and we describe a protocol for expressing Hbs with low intrinsic solubilities. Since the α- and β-chain Hbs of different species span
Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2015
Differences between species in the oxygen (O2) affinity (P50) of myoglobin (Mb) may serve to fine... more Differences between species in the oxygen (O2) affinity (P50) of myoglobin (Mb) may serve to fine tune O2 supply to cardiac and skeletal muscle in ectotherms. In support of this view, it has been shown that fish Mb O2 affinities differ between species when measured at the same temperature, but are in fact similar when adjusted for in vivo muscle temperatures, most likely to maintain intracellular O2 delivery in species adapted to different environments. It is unknown whether similar adaptations exist in the O2 affinity of Mb from reptiles, despite this group of ectothermic vertebrates displaying great variation in the tolerance to both temperature and hypoxia. In this study, we have purified Mb from muscle tissues of three reptilian species (turtle, tortoise and alligator) with different lifestyles. We have measured O2 binding characteristics and autoxidation rates of the three Mbs and measured the effects of temperature, lactate and blocking of reactive thiols on the O2 affinity of turtle Mb. Our data show that, at a constant temperature, reptilian Mbs have similar O2 affinities that are lower than those of mammalian Mbs, which may optimize intracellular O2 transport at lower body temperatures. Reptilian Mbs have lower autoxidation rates than both mammalian and fish Mbs, which may be beneficial during oxidative stress. Furthermore, the O2 affinity of turtle Mb is without allosteric control and independent of either lactate or thiol covalent modification. This study reveals some common adaptive patterns in the temperature-dependent regulation of Mb oxygenation in vertebrates.
As in other fish, the cathodic hemoglobin of the eel Anguilla anguilla is considered to play an i... more As in other fish, the cathodic hemoglobin of the eel Anguilla anguilla is considered to play an important role in oxygen transport under hypoxic and acidotic conditions. In the absence of phosphates this hemoglobin shows a reverse Bohr effect and high oxygen affinity, which is strongly modulated over a side pH range by GTP (whose concentration in the red blood cells varies with ambient oxygen availability). GTP obliterates the reverse Bohr effects in the cathodic hemoglobin. The molecular basis for the reverse Bohr effect in fish hemoglobins has remained obscure due to the lack of structural data. We have determined the complete amino acid sequence of the alpha and beta chains of the cathodic hemoglobins of A. anguilla and relate it to the oxygen equilibrium characteristics. Several substitutions in crucial positions are observed compared with other hemoglobins, such as the replacement of the C-terminal His of the beta chain of Phe (that suppresses the alkaline Bohr effect) and of r...
A fundamental question in evolutionary genetics concerns the roles of mutational pleiotropy and e... more A fundamental question in evolutionary genetics concerns the roles of mutational pleiotropy and epistasis in shaping trajectories of protein evolution. This question can be addressed most directly by using site-directed mutagenesis to explore the mutational landscape of protein function in experimentally defined regions of sequence space. Here, we evaluate how pleiotropic trade-offs and epistatic interactions influence the accessibility of alternative mutational pathways during the adaptive evolution of hemoglobin (Hb) function in high-altitude pikas (Mammalia: Lagomorpha). By combining ancestral protein resurrection with a combinatorial protein-engineering approach, we examined the functional effects of sequential mutational steps in all possible pathways that produced an increased Hb-O2 affinity. These experiments revealed that the effects of mutations on Hb-O2 affinity are highly dependent on the temporal order in which they occur: Each of three β-chain substitutions produced a s...
Major challenges for illuminating the genetic basis of phenotypic evolution are to identify causa... more Major challenges for illuminating the genetic basis of phenotypic evolution are to identify causative mutations, to quantify their functional effects, to trace their origins as new or preexisting variants, and to assess the manner in which segregating variation is transduced into species differences. Here, we report an experimental analysis of genetic variation in hemoglobin (Hb) function within and among species of Peromyscus mice that are native to different elevations. A multilocus survey of sequence variation in the duplicated HBA and HBB genes in Peromyscus maniculatus revealed that function-altering amino acid variants are widely shared among geographically disparate populations from different elevations, and numerous amino acid polymorphisms are also shared with closely related species. Variation in Hb-O2 affinity within and among populations of P. maniculatus is attributable to numerous amino acid mutations that have individually small effects. One especially surprising feat...
Comparative biochemistry and physiology. Part A, Molecular & integrative physiology, 2014
The oxygenation enthalpy of the heme groups of hemoglobin (Hb) is inherently exothermic, resultin... more The oxygenation enthalpy of the heme groups of hemoglobin (Hb) is inherently exothermic, resulting in decreased Hb-O2 affinity with rising temperature. However, oxygenation is coupled with endothermic dissociation of allosteric effectors (e.g. protons, chloride ions and organic phosphates) from the protein, which reduces the overall oxygenation enthalpy. The evolution of Hbs with reduced temperature sensitivity ostensibly safeguards O2 unloading in cold extremities of regionally-heterothermic vertebrates permitting energy-saving reductions in heat loss. Ungulate (e.g. bovine) Hbs have long served as a model system in this regard in that they exhibit numerically low oxygenation enthalpies that are thought to correlate with the presence of an additional Cl(-) binding site (compared to human Hb) comprised of three cationic residues at positions 8, 76 and 77 of the β-chains of Hb. However, ungulate Hbs also exhibit distinctive amino acid exchanges at the N-termini of the β-chains that s...
Proceedings of the National Academy of Sciences of the United States of America, Jan 17, 2013
Animals that sustain high levels of aerobic activity under hypoxic conditions (e.g., birds that f... more Animals that sustain high levels of aerobic activity under hypoxic conditions (e.g., birds that fly at high altitude) face the physiological challenge of jointly optimizing blood-O2 affinity for O2 loading in the pulmonary circulation and O2 unloading in the systemic circulation. At high altitude, this challenge is especially acute for small endotherms like hummingbirds that have exceedingly high mass-specific metabolic rates. Here we report an experimental analysis of hemoglobin (Hb) function in South American hummingbirds that revealed a positive correlation between Hb-O2 affinity and native elevation. Protein engineering experiments and ancestral-state reconstructions revealed that this correlation is attributable to derived increases in Hb-O2 affinity in highland lineages, as well as derived reductions in Hb-O2 affinity in lowland lineages. Site-directed mutagenesis experiments demonstrated that repeated evolutionary transitions in biochemical phenotype are mainly attributable t...
In air-breathing vertebrates, the physiologically optimal blood-O2 affinity is jointly determined... more In air-breathing vertebrates, the physiologically optimal blood-O2 affinity is jointly determined by the prevailing partial pressure of atmospheric O2, the efficacy of pulmonary O2 transfer, and internal metabolic demands. Consequently, genetic variation in the oxygenation properties of hemoglobin (Hb) may be subject to spatially varying selection in species with broad elevational distributions. Here we report the results of a combined functional and evolutionary analysis of Hb polymorphism in the rufous-collared sparrow (Zonotrichia capensis), a species that is continuously distributed across a steep elevational gradient on the Pacific slope of the Peruvian Andes. We integrated a population genomic analysis that included all postnatally expressed Hb genes with functional studies of naturally occurring Hb variants, as well as recombinant Hb (rHb) mutants that were engineered through site-directed mutagenesis. We identified three clinally varying amino acid polymorphisms: Two in the ...
Uploads
Papers by Angela Fago