The present communication deals with the development of the titanium dioxide (TiO2) thin films me... more The present communication deals with the development of the titanium dioxide (TiO2) thin films memristor using simple and cost effective hydrothermal route for neuromorphic application. The developed devices show pinched hysteresis loop in current-voltage (I-V) plane, which is the fingerprint characteristic of a memristor. Furthermore, current in the device continuously increases and decreases similar to synaptic weights of the biological neurons. The rectifying property similar to biological synapse is observed in the device which can be converted into the non-rectifying property by the suitable surfactant. The proper surfactant is responsible for the control of data flow in the memristor-based electronic synapse.
In the present investigation, we have fabricated copper oxide (CuO) thin film memristor by employ... more In the present investigation, we have fabricated copper oxide (CuO) thin film memristor by employing a hydrothermal method for neuromorphic application. The X-ray diffraction pattern confirms the films are polycrystalline in nature with the monoclinic crystal structure. The developed devices show analog memory and synaptic property similar to biological neuron. The size dependent synaptic behavior is investigated for as-prepared and annealed CuO memristor. The results suggested that the magnitude of synaptic weights and resistive switching voltages are dependent on the thickness of the active layer. Synaptic weights are improved in the case of the as-prepared device whereas they are inferior for annealed CuO memristor. The rectifying property similar to a biological neuron is observed only for the as-prepared device, which suggested that as-prepared devices have better computational and learning capabilities than annealed CuO memristor. Moreover, the retention loss of the CuO memristor is in good agreement with the forgetting curve of human memory. The results suggested that hydrothermally grown CuO thin film memristor is a potential candidate for the neuromorphic device development.
In the present investigation, we have fabricated copper oxide (CuO) thin film memristor by employ... more In the present investigation, we have fabricated copper oxide (CuO) thin film memristor by employing a hydrothermal method for neuromorphic application. The X-ray diffraction pattern confirms the films are polycrystalline in nature with the monoclinic crystal structure. The developed devices show analog memory and synaptic property similar to biological neuron. The size dependent synaptic behavior is investigated for as-prepared and annealed CuO memristor. The results suggested that the magnitude of synaptic weights and resistive switching voltages are dependent on the thickness of the active layer. Synaptic weights are improved in the case of the as-prepared device whereas they are inferior for annealed CuO memristor. The rectifying property similar to a biological neuron is observed only for the as-prepared device, which suggested that as-prepared devices have better computational and learning capabilities than annealed CuO memristor. Moreover, the retention loss of the CuO memristor is good agreement with the forgetting curve of human memory. The results suggested that hydrothermally grown CuO thin film memristor is a potential candidate for the neuromorphic device development.
The present communication deals with the development of the titanium dioxide (TiO 2) thin films m... more The present communication deals with the development of the titanium dioxide (TiO 2) thin films memristor using simple and cost effective hydrothermal route for neuromorphic application. The developed devices show pinched hysteresis loop in current-voltage (I-V) plane, which is the fingerprint characteristic of a memristor. Furthermore, current in the device continuously increases and decreases similar to synaptic weights of the biological neurons. The rectifying property similar to biological synapse is observed in the device which can be converted into the non-rectifying property by the suitable surfactant. The proper surfactant is responsible for the control of data flow in the memristor-based electronic synapse.
The present communication deals with the development of the titanium dioxide (TiO2) thin films me... more The present communication deals with the development of the titanium dioxide (TiO2) thin films memristor using simple and cost effective hydrothermal route for neuromorphic application. The developed devices show pinched hysteresis loop in current-voltage (I-V) plane, which is the fingerprint characteristic of a memristor. Furthermore, current in the device continuously increases and decreases similar to synaptic weights of the biological neurons. The rectifying property similar to biological synapse is observed in the device which can be converted into the non-rectifying property by the suitable surfactant. The proper surfactant is responsible for the control of data flow in the memristor-based electronic synapse.
In the present investigation, we have fabricated copper oxide (CuO) thin film memristor by employ... more In the present investigation, we have fabricated copper oxide (CuO) thin film memristor by employing a hydrothermal method for neuromorphic application. The X-ray diffraction pattern confirms the films are polycrystalline in nature with the monoclinic crystal structure. The developed devices show analog memory and synaptic property similar to biological neuron. The size dependent synaptic behavior is investigated for as-prepared and annealed CuO memristor. The results suggested that the magnitude of synaptic weights and resistive switching voltages are dependent on the thickness of the active layer. Synaptic weights are improved in the case of the as-prepared device whereas they are inferior for annealed CuO memristor. The rectifying property similar to a biological neuron is observed only for the as-prepared device, which suggested that as-prepared devices have better computational and learning capabilities than annealed CuO memristor. Moreover, the retention loss of the CuO memristor is in good agreement with the forgetting curve of human memory. The results suggested that hydrothermally grown CuO thin film memristor is a potential candidate for the neuromorphic device development.
In the present investigation, we have fabricated copper oxide (CuO) thin film memristor by employ... more In the present investigation, we have fabricated copper oxide (CuO) thin film memristor by employing a hydrothermal method for neuromorphic application. The X-ray diffraction pattern confirms the films are polycrystalline in nature with the monoclinic crystal structure. The developed devices show analog memory and synaptic property similar to biological neuron. The size dependent synaptic behavior is investigated for as-prepared and annealed CuO memristor. The results suggested that the magnitude of synaptic weights and resistive switching voltages are dependent on the thickness of the active layer. Synaptic weights are improved in the case of the as-prepared device whereas they are inferior for annealed CuO memristor. The rectifying property similar to a biological neuron is observed only for the as-prepared device, which suggested that as-prepared devices have better computational and learning capabilities than annealed CuO memristor. Moreover, the retention loss of the CuO memristor is good agreement with the forgetting curve of human memory. The results suggested that hydrothermally grown CuO thin film memristor is a potential candidate for the neuromorphic device development.
The present communication deals with the development of the titanium dioxide (TiO 2) thin films m... more The present communication deals with the development of the titanium dioxide (TiO 2) thin films memristor using simple and cost effective hydrothermal route for neuromorphic application. The developed devices show pinched hysteresis loop in current-voltage (I-V) plane, which is the fingerprint characteristic of a memristor. Furthermore, current in the device continuously increases and decreases similar to synaptic weights of the biological neurons. The rectifying property similar to biological synapse is observed in the device which can be converted into the non-rectifying property by the suitable surfactant. The proper surfactant is responsible for the control of data flow in the memristor-based electronic synapse.
Uploads
Papers by pravin pawar