Detecting the time evolution of the community structure of networks is crucial to identify major ... more Detecting the time evolution of the community structure of networks is crucial to identify major changes in the internal organization of many complex systems, which may undergo important endogenous or exogenous events. This analysis can be done in two ways: considering each snapshot as an independent community detection problem or taking into account the whole evolution of the network. In the first case, one can apply static methods on the temporal snapshots, which correspond to configurations of the system in short time windows, and match afterwards the communities across layers. Alternatively, one can develop dedicated dynamic procedures, so that multiple snapshots are simultaneously taken into account while detecting communities, which allows us to keep memory of the flow. To check how well a method of any kind could capture the evolution of communities, suitable benchmarks are needed. Here we propose a model for generating simple dynamic benchmark graphs, based on stochastic block models. In them, the time evolution consists of a periodic oscillation of the system's structure between configurations with built-in community structure. We also propose the extension of quality comparison indices to the dynamic scenario.
The community structure of complex networks reveals both their organization and hidden relationsh... more The community structure of complex networks reveals both their organization and hidden relationships among their constituents. Most community detection methods currently available are not deterministic, and their results typically depend on the specific random seeds, initial conditions and tie-break rules adopted for their execution. Consensus clustering is used in data analysis to generate stable results out of a set of partitions delivered by stochastic methods. Here we show that consensus clustering can be combined with any existing method in a self-consistent way, enhancing considerably both the stability and the accuracy of the resulting partitions. This framework is also particularly suitable to monitor the evolution of community structure in temporal networks. An application of consensus clustering to a large citation network of physics papers demonstrates its capability to keep track of the birth, death and diversification of topics.
Election data represent a precious source of information to study human behavior at a large scale... more Election data represent a precious source of information to study human behavior at a large scale. In proportional elections with open lists, the number of votes received by a candidate, rescaled by the average performance of all competitors in the same party list, has the same distribution regardless of the country and the year of the election. Here we provide the first thorough assessment of this claim. We analyzed election datasets of 15 countries with proportional systems. We confirm that a class of nations with similar election rules fulfill the universality claim. Discrepancies from this trend in other countries with open-lists elections are always associated with peculiar differences in the election rules, which matter more than differences between countries and historical periods. Our analysis shows that the role of parties in the electoral performance of candidates is crucial: alternative scalings not taking into account party affiliations lead to poor results.
We study scale-free networks constructed via a cooperative Achlioptas growth process. Links betwe... more We study scale-free networks constructed via a cooperative Achlioptas growth process. Links between nodes are introduced in order to produce a scale-free graph with given exponent λ for the degree distribution, but the choice of each new link depends on the mass of the clusters that this link will merge. Networks constructed via this biased procedure show a percolation transition which strongly differs from the one observed in standard percolation, where links are introduced just randomly. The different growth process leads to a phase transition with a non-vanishing percolation threshold already for λ > λc ∼ 2.2. More interestingly, the transition is continuous when λ ≤ 3 but becomes discontinuous when λ > 3. This may have important consequences both for the structure of networks and for the dynamics of processes taking place on them.
Recently, it has been claimed that some complex networks are self-similar under a convenient reno... more Recently, it has been claimed that some complex networks are self-similar under a convenient renormalization procedure. We present a general method to study renormalization flows in graphs. We find that the behavior of some variables under renormalization, such as the maximum number of connections of a node, obeys simple scaling laws, characterized by critical exponents. This is true for any class of graphs, from random to scale-free networks, from lattices to hierarchical graphs. Therefore, renormalization flows for graphs are similar as in the renormalization of spin systems. An analysis of classic renormalization for percolation and the Ising model on the lattice confirms this analogy. Critical exponents and scaling functions can be used to classify graphs in universality classes, and to uncover similarities between graphs that are inaccessible to a standard analysis.
Many complex networks display a mesoscopic structure with groups of nodes sharing many links with... more Many complex networks display a mesoscopic structure with groups of nodes sharing many links with the other nodes in their group and comparatively few with nodes of different groups. This feature is known as community structure and encodes precious information about the organization and the function of the nodes. Many algorithms have been proposed but it is not yet clear how they should be tested. Recently we have proposed a general class of undirected and unweighted benchmark graphs, with heterogenous distributions of node degree and community size. An increasing attention has been recently devoted to develop algorithms able to consider the direction and the weight of the links, which require suitable benchmark graphs for testing. In this paper we extend the basic ideas behind our previous benchmark to generate directed and weighted networks with built-in community structure. We also consider the possibility that nodes belong to more communities, a feature occurring in real systems, like social networks. As a practical application, we show how modularity optimization performs on our new benchmark.
Many systems in nature, society and technology can be described as networks, where the vertices a... more Many systems in nature, society and technology can be described as networks, where the vertices are the system's elements and edges between vertices indicate the interactions between the corresponding elements. Edges may be weighted if the interaction strength is measurable. However, the full network information is often redundant because tools and techniques from network analysis do not work or become very inefficient if the network is too dense and some weights may just reflect measurement errors, and shall be discarded. Moreover, since weight distributions in many complex weighted networks are broad, most of the weight is concentrated among a small fraction of all edges. It is then crucial to properly detect relevant edges. Simple thresholding would leave only the largest weights, disrupting the multiscale structure of the system, which is at the basis of the structure of complex networks, and ought to be kept. In this paper we propose a weight filtering technique based on a global null model (GloSS filter), keeping both the weight distribution and the full topological structure of the network. The method correctly quantifies the statistical significance of weights assigned independently to the edges from a given distribution. Applications to real networks reveal that the GloSS filter is indeed able to identify relevant connections between vertices.
Many networks in nature, society and technology are characterized by a mesoscopic level of organi... more Many networks in nature, society and technology are characterized by a mesoscopic level of organization, with groups of nodes forming tightly connected units, called communities or modules, that are only weakly linked to each other. Uncovering this community structure is one of the most important problems in the field of complex networks. Networks often show a hierarchical organization, with communities embedded within other communities; moreover, nodes can be shared between different communities. Here we present the first algorithm that finds both overlapping communities and the hierarchical structure. The method is based on the local optimization of a fitness function. Community structure is revealed by peaks in the fitness histogram. The resolution can be tuned by a parameter enabling to investigate different hierarchical levels of organization. Tests on real and artificial networks give excellent results.
Community definitions usually focus on edges, inside and between the communities. However, the hi... more Community definitions usually focus on edges, inside and between the communities. However, the high density of edges within a community determines correlations between nodes going beyond nearest-neighbours, and which are indicated by the presence of motifs. We show how motifs can be used to define general classes of nodes, including communities, by extending the mathematical expression of Newman-Girvan modularity. We construct then a general framework and apply it to some synthetic and real networks.
ABSTRACT Percolation is perhaps the simplest example of a process exhibiting a phase transition a... more ABSTRACT Percolation is perhaps the simplest example of a process exhibiting a phase transition and one of the most studied phenomena in statistical physics. The percolation transition is continuous if sites/bonds are occupied independently with the same probability. However, alternative rules for the occupation of sites/bonds might affect the order of the transition. A recent set of rules proposed by Achlioptas et al. [Science 323, 1453 (2009)], characterized by competitive link addition, was claimed to lead to a discontinuous connectedness transition, named "explosive percolation". In this work we survey a numerical study of the explosive percolation transition on various types of graphs, from lattices to scale-free networks, and show the consistency of these results with recent analytical work showing that the transition is actually continuous.
Detecting the time evolution of the community structure of networks is crucial to identify major ... more Detecting the time evolution of the community structure of networks is crucial to identify major changes in the internal organization of many complex systems, which may undergo important endogenous or exogenous events. This analysis can be done in two ways: considering each snapshot as an independent community detection problem or taking into account the whole evolution of the network. In the first case, one can apply static methods on the temporal snapshots, which correspond to configurations of the system in short time windows, and match afterwards the communities across layers. Alternatively, one can develop dedicated dynamic procedures, so that multiple snapshots are simultaneously taken into account while detecting communities, which allows us to keep memory of the flow. To check how well a method of any kind could capture the evolution of communities, suitable benchmarks are needed. Here we propose a model for generating simple dynamic benchmark graphs, based on stochastic block models. In them, the time evolution consists of a periodic oscillation of the system's structure between configurations with built-in community structure. We also propose the extension of quality comparison indices to the dynamic scenario.
The community structure of complex networks reveals both their organization and hidden relationsh... more The community structure of complex networks reveals both their organization and hidden relationships among their constituents. Most community detection methods currently available are not deterministic, and their results typically depend on the specific random seeds, initial conditions and tie-break rules adopted for their execution. Consensus clustering is used in data analysis to generate stable results out of a set of partitions delivered by stochastic methods. Here we show that consensus clustering can be combined with any existing method in a self-consistent way, enhancing considerably both the stability and the accuracy of the resulting partitions. This framework is also particularly suitable to monitor the evolution of community structure in temporal networks. An application of consensus clustering to a large citation network of physics papers demonstrates its capability to keep track of the birth, death and diversification of topics.
Election data represent a precious source of information to study human behavior at a large scale... more Election data represent a precious source of information to study human behavior at a large scale. In proportional elections with open lists, the number of votes received by a candidate, rescaled by the average performance of all competitors in the same party list, has the same distribution regardless of the country and the year of the election. Here we provide the first thorough assessment of this claim. We analyzed election datasets of 15 countries with proportional systems. We confirm that a class of nations with similar election rules fulfill the universality claim. Discrepancies from this trend in other countries with open-lists elections are always associated with peculiar differences in the election rules, which matter more than differences between countries and historical periods. Our analysis shows that the role of parties in the electoral performance of candidates is crucial: alternative scalings not taking into account party affiliations lead to poor results.
We study scale-free networks constructed via a cooperative Achlioptas growth process. Links betwe... more We study scale-free networks constructed via a cooperative Achlioptas growth process. Links between nodes are introduced in order to produce a scale-free graph with given exponent λ for the degree distribution, but the choice of each new link depends on the mass of the clusters that this link will merge. Networks constructed via this biased procedure show a percolation transition which strongly differs from the one observed in standard percolation, where links are introduced just randomly. The different growth process leads to a phase transition with a non-vanishing percolation threshold already for λ > λc ∼ 2.2. More interestingly, the transition is continuous when λ ≤ 3 but becomes discontinuous when λ > 3. This may have important consequences both for the structure of networks and for the dynamics of processes taking place on them.
Recently, it has been claimed that some complex networks are self-similar under a convenient reno... more Recently, it has been claimed that some complex networks are self-similar under a convenient renormalization procedure. We present a general method to study renormalization flows in graphs. We find that the behavior of some variables under renormalization, such as the maximum number of connections of a node, obeys simple scaling laws, characterized by critical exponents. This is true for any class of graphs, from random to scale-free networks, from lattices to hierarchical graphs. Therefore, renormalization flows for graphs are similar as in the renormalization of spin systems. An analysis of classic renormalization for percolation and the Ising model on the lattice confirms this analogy. Critical exponents and scaling functions can be used to classify graphs in universality classes, and to uncover similarities between graphs that are inaccessible to a standard analysis.
Many complex networks display a mesoscopic structure with groups of nodes sharing many links with... more Many complex networks display a mesoscopic structure with groups of nodes sharing many links with the other nodes in their group and comparatively few with nodes of different groups. This feature is known as community structure and encodes precious information about the organization and the function of the nodes. Many algorithms have been proposed but it is not yet clear how they should be tested. Recently we have proposed a general class of undirected and unweighted benchmark graphs, with heterogenous distributions of node degree and community size. An increasing attention has been recently devoted to develop algorithms able to consider the direction and the weight of the links, which require suitable benchmark graphs for testing. In this paper we extend the basic ideas behind our previous benchmark to generate directed and weighted networks with built-in community structure. We also consider the possibility that nodes belong to more communities, a feature occurring in real systems, like social networks. As a practical application, we show how modularity optimization performs on our new benchmark.
Many systems in nature, society and technology can be described as networks, where the vertices a... more Many systems in nature, society and technology can be described as networks, where the vertices are the system's elements and edges between vertices indicate the interactions between the corresponding elements. Edges may be weighted if the interaction strength is measurable. However, the full network information is often redundant because tools and techniques from network analysis do not work or become very inefficient if the network is too dense and some weights may just reflect measurement errors, and shall be discarded. Moreover, since weight distributions in many complex weighted networks are broad, most of the weight is concentrated among a small fraction of all edges. It is then crucial to properly detect relevant edges. Simple thresholding would leave only the largest weights, disrupting the multiscale structure of the system, which is at the basis of the structure of complex networks, and ought to be kept. In this paper we propose a weight filtering technique based on a global null model (GloSS filter), keeping both the weight distribution and the full topological structure of the network. The method correctly quantifies the statistical significance of weights assigned independently to the edges from a given distribution. Applications to real networks reveal that the GloSS filter is indeed able to identify relevant connections between vertices.
Many networks in nature, society and technology are characterized by a mesoscopic level of organi... more Many networks in nature, society and technology are characterized by a mesoscopic level of organization, with groups of nodes forming tightly connected units, called communities or modules, that are only weakly linked to each other. Uncovering this community structure is one of the most important problems in the field of complex networks. Networks often show a hierarchical organization, with communities embedded within other communities; moreover, nodes can be shared between different communities. Here we present the first algorithm that finds both overlapping communities and the hierarchical structure. The method is based on the local optimization of a fitness function. Community structure is revealed by peaks in the fitness histogram. The resolution can be tuned by a parameter enabling to investigate different hierarchical levels of organization. Tests on real and artificial networks give excellent results.
Community definitions usually focus on edges, inside and between the communities. However, the hi... more Community definitions usually focus on edges, inside and between the communities. However, the high density of edges within a community determines correlations between nodes going beyond nearest-neighbours, and which are indicated by the presence of motifs. We show how motifs can be used to define general classes of nodes, including communities, by extending the mathematical expression of Newman-Girvan modularity. We construct then a general framework and apply it to some synthetic and real networks.
ABSTRACT Percolation is perhaps the simplest example of a process exhibiting a phase transition a... more ABSTRACT Percolation is perhaps the simplest example of a process exhibiting a phase transition and one of the most studied phenomena in statistical physics. The percolation transition is continuous if sites/bonds are occupied independently with the same probability. However, alternative rules for the occupation of sites/bonds might affect the order of the transition. A recent set of rules proposed by Achlioptas et al. [Science 323, 1453 (2009)], characterized by competitive link addition, was claimed to lead to a discontinuous connectedness transition, named "explosive percolation". In this work we survey a numerical study of the explosive percolation transition on various types of graphs, from lattices to scale-free networks, and show the consistency of these results with recent analytical work showing that the transition is actually continuous.
Uploads
Papers by S. Fortunato