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ABSTRACT
Access control is central to interfacing with personal data, how-

ever most systems today are too coarse and disconnected from the

privacy context of the data. Granular access control rarely goes

beyond limiting sample rates or enforcing time limits. In this pa-

per, we present a system for tuning a data consumer’s access to

personal data based on real-time privacy metrics. We first explore

the potential definitions of privacy in this context with a focus

on information theoretic metrics for defining privacy in sensitive

time series data. We then implement and evaluate our system for

embedding risk thresholds into bearer token-based access control

systems to attenuate access to data of different granularities based

on these metrics. Our results show that our system provides privacy

gains wihout a significant utility cost, and can run efficiently and

scale well on cheap hardware with high-frequncy sensor data.
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1 INTRODUCTION
When it comes to personal data, traditional access control mecha-

nisms between a producer and a consumer of data exhibit critical
problems. With social media APIs, phone sensors, and even files on

a PC, access is most often a binary “all or nothing”. While in some

cases access can be attenuated to read or write, and can expire after

a certain time period, this level of granularity is too coarse, and

does not consider the content of the data in any way.

APIs that do allow more fine-grained controls often require an

understanding of the context and possible inferences [5], to then

allow a user take context-specific actions such as spoofing GPS

coordinates or occluding faces in images. While this is useful, it is

difficult to scale and generalize to arbitrary data types without user

interaction or complexity for understanding semantics.

Furthermore, users are often unaware of just what information

they really are exposing [1], and cannot be expected to keep track of

inferences that may be caused by anomalies or patterns in their data,

especially not in real time. Dynamically adjusting access control
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Figure 1: A high-level overview of Databox components

restrictions based on online privacy and risk metrics remains an

open problem.

These shortcomings culminate in access control mechanisms

with only very superficial privacy awareness. The goal of this work

is to introduce a scalable, privacy-aware access control system that

solves these problems.

We seek to do this by applying established, information-theoretic

privacy metrics as criteria in access control systems over time series

data. Thesemetrics must be context-independent, operate in real time
on cheap hardware located at the source of data. These constraints
are imposed by the context in which we deploy this system and

evaluate its performance and extent of privacy preservation.

While our method is applicable to any system where a consumer

pulls personal data from a producer under the restrictions of an

access control system, we implement and evaluate it in the context

of the Databox platform [7] — a home-based networked device

that provides a controlled, sandboxed environment for processing

personal data. Here, third-party drivers query external data sources

and write data to system-managed stores. These are then queried

by apps that perform analytics and, if necessary, only emit results

back to third parties.

Figure 1 shows the components pertinent to this system. Here,

solid arrows denote the paths that data can flow. As a single app

can read from and write to many stores, these paths can manifest

themselves as complex networks of cross-source analytics and de-

rived stores. Our access control systems act at the red arrows. The

arbiter mints signed bearer tokens with privacy thresholds embed-

ded within them, and passes these on to apps and drivers. When

interfacing with stores, these tokens are independently verified by
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said stores. Finally, any data leaving the box to be consumed by a

third party is similarly subjected to the same thresholds.

The core approach to how our system is deployed in this context

is therefore twofold. As stores act as a border between producers

and consumers, we first continuously update and maintain a pri-
vacy context for each data stream within each store using common

privacy metrics. Then in tracking these metrics, we adjust the flows

(in the simplest case by suppressing them or repeating old values)

based on thresholds embedded within the tokens used to query a

stream.

In this paper, we describe an implementation of this using in-

formation theoretic privacy metrics on time series data. We then

evaluate our system’s privacy-utility trade-off, as well as its per-

formance in real-time, low-latency use cases, such as in embedded

and home IoT devices. We show that our system provides privacy

gains without a significant utility cost, and can run efficiently and

scale well on cheap hardware with high-frequency sensor data.

2 BACKGROUND
2.1 Privacy Metrics
Privacy in the context of personal data is a well explored topic. It

is not the goal of this work to develop new metrics, but rather to

apply and evaluate existing metrics to the systems we develop.

Often privacy and anonymity are used interchangeably, but there

are some very distinct differences between the two. The demand for

privacy exists despite anonymity, and is indeed more pronounced

when individuals are not anonymous.

Dalenius first coined the term quasi-identifier in 1986 [9] and

since then, a number of seminal publications have dealt with the

process of identifying individuals by making inferences from data

that may not contain any explicit identifiers (such as a UID).

Famous examples include the ability to uniquely identify 87% of

the population of the United States by combining gender, birth date,

and post code information [20], as well as the deanonymization

of the Netflix Prize Dataset by combining it with public IMDB

data [19].

While deanonymization relies on the linkage of data to explicit

identifiers, more privacy-centric methods focus on making it more

difficult to connect sensitive attributes to individuals.

Recent, comprehensive survey papers describe an extensive

range of metrics for a vast array of different purposes [10] and

organise these into taxonomies [22].

While many of these provide average risk measurements over a

given dataset, some have been repurposed to provide “one-symbol

information”, or the marginal mutual information from the append-

ing of an additional record [2, 3].

The following is a description of a number of metrics suitable to

our method. We divide these by output measure into two categories

based on Wagner and Eckhoff’s taxonomy [22].

2.1.1 Similarity/Diversity. K-anonymity [21] is an exceedingly
prevalent privacy measure. To quote the original paper, “A release

provides k-anonymity protection if the information for each person

contained in the release cannot be distinguished from at least k-1

individuals whose information also appears in the release”. Explicit

identifiers are completely suppressed and quasi-identifiers gener-

alised. Similarly, rows in time series data can form equivalence

classes after microaggregation based on a quasi-identifier column,

where the smallest cluster has k rows.

L-diversity [18] is an extension of k-anonymity that addition-

ally requires that sensitive attributes are well-represented in each

equivalence class (for various definitions of “well represented”).

It is therefore less susceptible to homogeneity attacks and back-

ground knowledge attacks. L-diverse data is by definition at least

l-anonymous.

T-closeness [16] goes yet another step beyond and takes ac-

count of the distance between the distribution of sensitive attributes

in any single equivalence class, to the distribution of sensitive at-

tributes across the whole dataset. The distance measure is arbitrary,

though the original paper uses Earth Mover’s Distance. T-closeness

for the whole dataset is the maximum of t-closeness for each equiv-

alence class. This addresses potential attacks on l-diversity such as

skewness attacks.

2.1.2 Information Gain/Loss. While pure entropy is an average

value over a distribution, we want a marginal measure for every

symbol. This is where information surprisal becomes useful. Sur-

prisal is also known as self-information, however as this term is

sometimes used interchangeably with entropy, we will refer to

it as surprisal throughout this paper. As a measure, it has been

used in the past to, for example, measure information gain from

the attributes of public social media profiles [8]. When sampling

a variable, surprisal is a measure (in information-entropic bits) of

uncertainty associated with sampling this variable — the negative

logarithm of the probability of a sample.

Finally, many inferences can be made just from identifying pat-

terns in time series data. A simple example is inferring location

from temperature data, while a more advanced example is identify-

ing what you watch on TV from smart meter data [11]. The Pearson

correlation coefficient has been used in the past to compare smart

meter data before and after anonymization [14] as opposed to other

common distance measures such as KL-divergence [13].

Similarly, we can can cross-correlate data with itself shifted by

varying time lags: autocorrelation. This allows us to detect sea-

sonality and patterns in time series data, and on doing so, suppress,

shift, or perturb the output.

2.2 Access Control
Our method can be adapted to any access control system that has a

notion of per-consumer permissions, and as such, access control

mechanisms are outside the scope of this paper. For our purpose,

we implement a macaroon-based [4] bearer token system.

The arbiter in figure 1 mints tokens with embedded privacy

thresholds (asmacaroon caveats) that correspond to the permissions

a bearer has. It maintains a record of these permissions that a user

can modify at any time and take effect when an old token expires

or is revoked.

The arbiter then cryptographically signs these tokens and passes

them to data consumers potentially controlled by third parties (in

this case drivers or apps). When a consumer makes a request to

a store, it attaches the relevant token to the request. Permissions

are embedded in these tokens, so the store/producer is aware of
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Figure 2: An overview of of our implementation

the privacy context and permissions, and can verify these tokens

through their signatures using a secret key shared by the arbiter

and the store beforehand.

Thus, access control decisions based on privacy can be made on

a request to request basis.

3 IMPLEMENTATION
This section details our implementation and describes figure 2

which provides a visual overview of it.

We begin by transforming time series data d (t ) continuously to

N different granularities. This can be for any definition of “granular-

ity”, however in our implementation, we calculate the mean of every

2
n
samples for n = 0, · · · ,N and interpolate by nearest neighbour.

Alternatives include plain downsampling, summing/aggregation,

or other forms of averaging. We calculate means as these have the

greatest utility to our evaluation use case.

We denote these granularity transformation functions as дn (x ),
the outputs of which map to the original time series in the following

manner: dn (t ) = дn (d (t )).
For every new sample in the transformed data, dn (t ), we update

one or more corresponding privacy scores based on the privacy

metrics described earlier. For our evaluation, we use surprisal so

the unit of these scores is bits or shannons. We describe how we

implement this and other privacy metrics in more detail in the next

sections. We denote this privacy measure as the function p (x ).
The final component in this system is a multiplexer that selects

the transformed data stream with the highest granularity but with

a privacy score that is still below a threshold k . The moment a data

stream’s score exceeds k , the multiplexer drops to a lower granular-

ity, until it reaches the level of granularity that is the equivalent of a

fixed grandmean across the entire stream. This is the point at which

Figure 3: Surprisal over active energy consumed each
minute with eight bins (gray) and an infinite window size

n = N . With our previously defined notation, our final output is

o(t ) = dm (t ) wherem = min{n | n ∈ Z∧n ∈ [0,N ]∧p (dn (t )) < k }.
In other words, the highest resolution transformed stream with a

privacy score below a given threshold.
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Figure 4: Autocorrelation over power consumption for dif-
ferent fixed lags

dn (t ) = дn (d (t )) (1)

s (t ) = argmax

n∈Z
n∈[0,N ]

p (dn (t ))<k

dn (t ) (2)

In equation 2, s (t ) is a shorthand to represent a function that

returns the index of the data stream selected at time t used in

figure 2. For a sample d (t ) at time t , the overall output can be

formulated as a dynamic optimization problem. Here, selected data

stream index n is our decision variable.

min

n
dn (t )

s.t. n ∈ Z

n ∈ [0,N ]

p (dn (t )) < k

(3)

The threshold k is embedded in the tokens attached to requests

made by data consumers. By modifying k for a consumer, we can

modify the extent in permissions with respect to the metric used,

and thus achieve privacy-aware access control.

It is important to note that dropping to a lower level of gran-

ularity is done transparently without the consumer’s knowledge.

We also test a variant of this system where the consumer directly

requests a specific level of granularity, and their request is rejected

if it is above what they have permission to access. The consumer

must then make a new request to a lower granularity, which not

only adds significant latency, but the act of denying access itself

reveals some information on the nature of changes in the data,

for instance if a stream that a consumer originally had access to

suddenly became restricted.

As a proof of concept, we run the metrics described in the previ-

ous section over UCI’s Individual Household Electric Power Con-

sumption Data Set [17]. We focus on just two columns from this

dataset: the timestamp column, and the global (minute averaged)

active power, which we convert to watt hour. In order to more

closely conform to realistic scenarios, we treat the range of this

data as an unknown that is continuously updated as the maximum

and minimum seen values are exceeded.

As data processed is continuous, it must be quantized first for

certain metrics in order to become discrete. This is not the case for

2

3
1 4

Figure 5: Stages of data transformation

input data that is for example a byte of sensor data in the range

[0, 255], or strings from a set of limited size like country names.

With continuous variables however, the probability of any one

sample is near-zero and so we must divide the data into bins of a

set interval in order for the metrics to make sense.

Furthermore, as we perform these measurements online, it is

practically infeasible to repeat these for the entire dataset on ev-

ery new addition. In our final implementation, we therefore only

consider the data before a temporal cutoff point using simple,

fixed-length, rectangular windows. We note however that win-

dows with different configurations and weightings may potentially

yield cleaner results.

In figure 3, it is clear that as samples are added to empty bins,

surprisal spikes. As more are added to one bin (such as around

Wednesday at midnight), surprisal slowly decreases, which makes

sense intuitively. Suprisal is lowest for power consumption values

below 10 watt hour, as this is the most replete bin.

To measure seasonality, we track autocorrelation across a set

of lags over time. This is different than simply building a correlo-

gram over a fixed length sequence, as we continuously calculate

cross-correlation in an online manner. Figure 4 visualises the most

significant lags. For 12 hours, autocorrelation is mostly higher than

for 24 hours, which would also hinted by maxima in a correlogram.

This tells us that patterns are most likely to arise at 12 hour periods,

and we can automatically take steps to suppress this by for instance

only emitting 12 hour averages. We can also normalise this data

and embed cross-lag, or per-lag autocorrelation thresholds into our

access control system. This could for example block access to data

with exceedingly high 12 hour autocorrelation, but allow access to

the same data only once it has been downsampled to obfuscate this

pattern. As such, this is a simple, yet powerful metric to use in our

system.

3.1 Databox Integration
Our system functions between data producers and consumers. In

Databox, this means between driver and app, between app and app,

and between app and the outside world. Every driver and app must

output data via stores, therefore the store is at first glance the most

obvious place to implement our system.

There is however another alternative that is more versatile from

a development perspective, which is to implement our system as

a “privacy filter” app, that reads private data from one store, and

writes transformed data to a derived store. This approach has the

advantage of being modular as only a single type of store is needed,

while any number of type-specific filtering apps can exist (e.g. an

app that blurs faces in images). The increase in network traffic and

added overhead would hurt latency however.
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We therefore implement our solution as an app, but future work

may include hardcoding the most general types of time series aggre-

gation into stores, and the monitors for the most common privacy

metrics. Anything less common can be delegated to an intermediate

app. Figure 5 shows this eventual pipeline — raw data enters at

1 , is written into a store after being filtered/transformed at 2 ,

and a second-order app 3 performs any additional more specific

transformations before the data 4 is output in its final form.

4 EVALUATION
Our system evaluation is in two parts: first, we evaluate the trade-

off between privacy benefits and utility using our system, then we

measure the marginal latency and performance when deploying

this system in a realistic scenario on limited hardware.

4.1 Privacy/Utility Evaluation
Our system provides privacy along the axis of the privacy metric

used based on the thresholds used. For example, tokens that only

allow access to data with a surprisal value of less than four bits

will implicitly favour less granular data. An emergent effect of this

property is that higher frequency inferences can be suppressed in

aggregate time-series datasets.

To test this, we take the same approach as previous work in the

same domain [15] and make use of the Reference Energy Disag-

gregation Data Set (REDD). This dataset contains detailed power

usage data from a number of houses including mains readings as

well as on a per-device basis.

Our goal is to show that after subjecting aggregate mains data to

our privacy-aware access control system, we can infer washer/dryer

state while concealing microwave state. A realistic use case may be

a smart meter app that suggests the best times to do your laundry

based on your flatmates’ habits, but does not need to know anything

about your eating habits. Our system allows for this gain in privacy

without compromising utility.

We use the state (on or off) of the washer/dryers and microwaves

as ground truth and a Gaussian Naive Bayes classifier to predict

whether or not these devices are turned on given mains data. The

data has occurrences of both devices being turned on both sepa-

rately and together. For each device, we plot Receiver Operating

Characteristic (ROC) curves where we modify the privacy metric

threshold, which is in this case an upper bound on bits of entropy.

In reality, an app might not have access to household-specific

data to train such classifiers. We show however that even in this

case (figure 6) utility remains virtually the same across thresholds

while the undesired inference degrades.

4.2 Performance Evaluation
While the previous section showed that significant privacy gains

can be made without degrading utility, previous work has achieved

more impressive privacy/utility trade-offs [15]. Where our work

differs is that it is also efficient enough to run online for real-time

streaming data on cheap hardware.

In this section we show this by implementing our system over

Databox, running it on typical hardware (an Intel NUC6i3SYH),

and measuring the added latency in the pipeline. We examine the

difference in time to availability (TTA) — the time between when

a sensor emits a sample and when it becomes available in its final

form to an app at the end of the pipeline. We can of course repeat

the measurements on all derived data ad infinitum, but this has

limited practical benefits.

We measure this latency for 20k samples under three conditions:

• Datastream: Vanilla Databox times as a baseline. Access con-

trol is binary and at the datastream level.

• Surprisal: Inclusion of our system in the pipeline using sur-

prisal as a privacy metric with a fixed threshold and infinite

window size.

• Windowed Surprisal: The same as the previous experiment,

but with a falloff of one minute.

Figure 7 shows the density of these latencies. The means, with

blue dotted lines drawn through, are at 535.1633 ms, 576.9499 ms,

and 556.7980 ms respectively. The difference between with and

without surprisal calculation is negligible and well within the toler-

ance for real-time applications. The added latency is small enough

that privacy filtering at this fidelity is possible without impacting

user experience.

The small difference of 41.7866 ms is only because the calculation

gradually gets slower as the number of samples increase. This can

be mitigated by limiting the number of past samples processed (in

this case the window is one minute or 6k samples long). As soon as

the window is saturated, the upwards trend in latency flattens and

remains constant. This way, the difference in latency was further

reduced by almost half to 21.6347 ms.

5 CONCLUSION
This paper presented a system for efficiently augmenting token-

based access control with privacy-awareness without significantly

impacting performance or utility. We described our implementation

and demonstrated its practicality through experimental evaluations

in terms or privacy gains and performance on cheap hardware.

5.1 Future Work
In this work we focused on time series sensor data and evaluated a

single privacy metric. The clearest next step is expanding this work

to explore application on structured data as well as other promising

metrics such as similarity/diversity measures and autocorrelation

for measuring seasonality. The latter can be compared with more

nuanced methods such as Kullback-Leibler divergence [12] (relative

entropy), cluster classification and regression analysis. Capacity [6]

can similarly be explored as a measure of loss of anonymity.

Independent of the privacy metrics adapted to our system, our

multiplexer component (figure 2) can be expanded to smoothly

interpolate between granularity streams by assigning weights to

each stream that sum to one.

Similarly, different user-definable policies for how our system

reacts to passing thresholds can be explored. Instead of modifying

granularity, possibilities include entirely blocking access, repeating

old samples, adding noise, or generating fake “safe” data through

runtime supervised learning (such aswith an LSTMneural network).

Each of these can be evaluated against each other in terms of privacy

gains and performance.
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Figure 6: Receiver Operating Characteristic (ROC) curves for washer-dryer (utility; left) and microwave (attack; right)

Figure 7: Distributions of time to availability under different
conditions

Our work shows that there is a lot of potential in the space

of information-theoretic, context-independent, real-time privacy

awareness for access control on the edge.

REFERENCES
[1] Almuhimedi, H., Schaub, F., Sadeh, N., Adjerid, I., Acqisti, A., Gluck, J.,

Cranor, L. F., and Agarwal, Y. Your location has been shared 5,398 times!: A

field study on mobile app privacy nudging. In Proceedings of the 33rd annual ACM
conference on human factors in computing systems (2015), ACM, pp. 787–796.

[2] Bezzi, M. Expressing privacy metrics as one-symbol information. In Proceedings
of the 2010 EDBT/ICDT Workshops (2010), ACM, p. 29.

[3] Bezzi, M. An information theoretic approach for privacy metrics. Trans. Data
Privacy 3, 3 (2010), 199–215.

[4] Birgisson, A., Politz, J. G., Úlfar Erlingsson, Taly, A., Vrable, M., and

Lentczner, M. Macaroons: Cookies with contextual caveats for decentralized

authorization in the cloud. In Network and Distributed System Security Symposium
(2014).

[5] Chakraborty, S., Shen, C., Raghavan, K. R., Shoukry, Y., Millar, M., and

Srivastava, M. ipshield: a framework for enforcing context-aware privacy. In

11th USENIX Symposium on Networked Systems Design and Implementation (NSDI
14) (2014), pp. 143–156.

[6] Chatzikokolakis, K., Palamidessi, C., and Panangaden, P. Anonymity proto-

cols as noisy channels. Information and Computation 206, 2-4 (2008), 378–401.
[7] Chaudhry, A., Crowcroft, J., Howard, H., Madhavapeddy, A., Mortier, R.,

Haddadi, H., and McAuley, D. Personal data: Thinking inside the box. In

Proceedings of The Fifth Decennial Aarhus Conference on Critical Alternatives
(2015), AA ’15, Aarhus University Press, pp. 29–32.

[8] Chen, T., Chaabane, A., Tournoux, P. U., Kaafar, M.-A., and Boreli, R. How

much is too much? leveraging ads audience estimation to evaluate public pro-

file uniqueness. In International Symposium on Privacy Enhancing Technologies
Symposium (2013), Springer, pp. 225–244.

[9] Dalenius, T. Finding a needle in a haystack or identifying anonymous census

records. Journal of official statistics 2, 3 (1986), 329.
[10] Fung, B., Wang, K., Chen, R., and Yu, P. S. Privacy-preserving data publishing:

A survey of recent developments. ACM Computing Surveys (CSUR) 42, 4 (2010),
14.

[11] Greveler, U., Glösekötterz, P., Justusy, B., and Loehr, D. Multimedia content

identification through smart meter power usage profiles. In Proceedings of the
International Conference on Information and Knowledge Engineering (IKE) (2012),
The Steering Committee of The World Congress in Computer Science, Computer

Engineering and Applied Computing (WorldComp), p. 1.

[12] Joyce, J. M. Kullback-leibler divergence. In International Encyclopedia of Statistical
Science. Springer, 2011, pp. 720–722.

[13] Kalogridis, G., Efthymiou, C., Denic, S. Z., Lewis, T. A., and Cepeda, R. Privacy

for smart meters: Towards undetectable appliance load signatures. In Smart Grid
Communications (SmartGridComm), 2010 First IEEE International Conference on
(2010), IEEE, pp. 232–237.

[14] Kim, Y., Ngai, E. C.-H., and Srivastava, M. B. Cooperative state estimation for

preserving privacy of user behaviors in smart grid. In Smart Grid Communications
(SmartGridComm), 2011 IEEE International Conference on (2011), IEEE, pp. 178–

183.

[15] Kolter, J. Z., and Johnson, M. J. Redd: A public data set for energy disaggrega-

tion research.

[16] Li, N., Li, T., and Venkatasubramanian, S. t-closeness: Privacy beyond k-

anonymity and l-diversity. In Data Engineering, 2007. ICDE 2007. IEEE 23rd
International Conference on (2007), IEEE, pp. 106–115.

[17] Lichman, M. UCI machine learning repository, 2013.

[18] Machanavajjhala, A., Gehrke, J., Kifer, D., and Venkitasubramaniam, M.

l-diversity: Privacy beyond k-anonymity. In Data Engineering, 2006. ICDE’06.
Proceedings of the 22nd International Conference on (2006), IEEE, pp. 24–24.

[19] Narayanan, A., and Shmatikov, V. Robust de-anonymization of large sparse

datasets. In Security and Privacy, 2008. SP 2008. IEEE Symposium on (2008), IEEE,

pp. 111–125.

[20] Sweeney, L. Simple demographics often identify people uniquely. Health (San
Francisco) 671 (2000), 1–34.

[21] Sweeney, L. k-anonymity: A model for protecting privacy. International Journal
of Uncertainty, Fuzziness and Knowledge-Based Systems 10, 05 (2002), 557–570.

[22] Wagner, I., and Eckhoff, D. Technical privacy metrics: a systematic survey.

arXiv preprint arXiv:1512.00327 (2015).


	Abstract
	1 Introduction
	2 Background
	2.1 Privacy Metrics
	2.2 Access Control

	3 Implementation
	3.1 Databox Integration

	4 Evaluation
	4.1 Privacy/Utility Evaluation
	4.2 Performance Evaluation

	5 Conclusion
	5.1 Future Work

	References

