
Tighter bounds for online bipartite matching

Uriel Feige ∗

September 18, 2018

Abstract

We study the online bipartite matching problem, introduced by Karp,
Vazirani and Vazirani [1990]. For bipartite graphs with matchings of size
n, it is known that the Ranking randomized algorithm matches at least
(1− 1

e
)n edges in expectation. It is also known that no online algorithm

matches more than (1− 1
e
)n+O(1) edges in expectation, when the input

is chosen from a certain distribution that we refer to as Dn. This upper
bound also applies to fractional matchings. We review the known proofs
for this last statement. In passing we observe that the O(1) additive term
(in the upper bound for fractional matching) is 1

2
− 1

2e
+O(1

n
), and that

this term is tight: the online algorithm known as Balance indeed produces
a fractional matching of this size. We provide a new proof that exactly
characterizes the expected cardinality of the (integral) matching produced
by Ranking when the input graph comes from the support of Dn. This
expectation turns out to be (1 − 1

e
)n + 1 − 2

e
+ O(1

n!
), and serves as an

upper bound on the performance ratio of any online (integral) matching
algorithm.

1 Introduction

Given a bipartite graph G(U, V ;E), where U and V are the sets of vertices and
E ∈ U × V is the set of edges, a matching M ⊂ E is a set of edges such that
every vertex is incident with at most one edge of M . Given a matching M , a
vertex is referred to as either matched or exposed, depending on whether it is
incident with an edge of M . A maximum matching in a graph is a matching
of maximum cardinality, and a maximal matching is a matching that is not a
proper subset of any other matching. Maximal matchings can easily be found
by greedy algorithms, and maximum matchings can also be found by various
polynomial time algorithms, using techniques such as alternating paths or linear
programming (see [9] and references therein). In every graph, the cardinality
of every maximal matching is at least half of that of the maximum matching,
because every matched edge can exclude at most two edges from the maximum
matching.

∗Department of Computer Science and Applied Mathematics, The Weizmann Institute.
uriel.feige@weizmann.ac.il

1

For simplicity of notation, for every n we shall only consider the following
class of bipartite graphs, that we shall refer to as Gn. For every G(U, V ;E) ∈ Gn
it holds that |U | = |V | = n and that E contains a matching of size n (and
hence G has a perfect matching). The vertices of U will be denoted by ui (for
1 ≤ i ≤ n) and the vertices of V will be denoted by vi (for 1 ≤ i ≤ n). All
results that we will state for Gn hold without change for all bipartite graphs,
provided that n denotes the size of the maximum matching in the graph.

Karp, Vazirani and Vazirani [7] introduced an online version of the maximum
bipartite matching problem. This setting can be viewed as a game between two
players: a maximizing player who wishes the resulting matching to be as large
as possible, and a minimizing player who wishes the matching to be as small as
possible. First, the minimizing player chooses G(U, V ;E) in private (without the
maximizing player seeing E), subject to G ∈ Gn. Thereafter, the structure of G
is revealed to the maximizing player in n steps, where at step j (for 1 ≤ j ≤ n)
the set N(uj) ⊂ V of vertices adjacent to uj is revealed. At every step j, upon
seeing N(uj) (and based on all edges previously seen and all previous matching
decisions made), the maximizing player needs to irrevocably either match uj to
a currently exposed vertex in N(uj), or leave uj exposed.

There is much recent interest in the online bipartite matching problem and
variations and generalizations of it, as such models have applications for allo-
cation problems in certain economic settings, in which buyers (vertices of U)
arrive online and are interested in purchasing various items (vertices of V). For
more details, see for example the survey by Metha [11].

An algorithm for the maximizing player in the online bipartite matching
setting will be called greedy if the only vertices of U that it leaves unmatched
are those vertices u ∈ U that upon their arrival did not have an exposed neighbor
(and hence could not be matched). It is not difficult to see that every non-greedy
algorithm A can be replaced by a greedy algorithm A′ that for every graph G
matches at least as many vertices as A does. Hence we shall assume that the
algorithm for the maximizing player is greedy, and this assumption is made
without loss of generality, as far as the results in this manuscript are concerned.

Every greedy algorithm (for the maximizing player) produces a maximal
matching, and hence matches at least half the vertices. For every deterministic
algorithm, the minimizing player can select a bipartite graph G (that admits
a perfect matching) that guarantees that the algorithm matches only half the

vertices. (Sketch: The first |U |2 arriving vertices have all of V as their neighbors,

and the remaining |U |2 are neighbors only of the |V |2 vertices that the algorithm

matched with the first |U |2 vertices.)
To improve the size of the matching beyond n

2 , Karp, Vazirani and Vazi-
rani [7] considered randomized algorithms for the maximizing player. Specifi-
cally, they proposed an algorithm called Ranking that works as follows. It first
selects uniformly at random a permutation π over the vertices V . Thereafter,
upon arrival of a vertex u, it is matched to its earliest (according to π) exposed
neighbor if there is one (and left unmatched otherwise). As the maximizing al-
gorithm is randomized (due to the random choice of π), the number of vertices

2

matched is a random variable, and we consider its expectation.
Let A be a randomized algorithm (such as Ranking) for the maximizing

player. As such, for every bipartite graph G it produces a distribution over
matchings. For a bipartite graph G ∈ Gn, we use the following notation:

• ρn(A,G) is the expected cardinality of matching produced by A when the
input graph is G.

• ρn(A,−) is the minimum over allG ∈ Gn of ρn(A,G). Namely, ρn(A,−) =
minG∈Gn [ρn(A,G)].

• ρn is the maximum over all A (randomized online matching algorithms
for the maximizing player) of ρn(A,−). Namely, ρn = maxA[ρn(A,−)].
(Showing that the maximum is attained is a technicality that we ignore
here.)

• ρ = infn
ρn
n . Namely, ρ is the largest constant (independent of n) such that

ρ · n ≤ ρn for all n. (One might find a definition such as ρ = limn→∞
ρn
n

more natural, but it turns out that both definitions of ρ give the same
value, which will be seen to be 1− 1

e .)

Karp, Vazirani and Vazirani [7] showed that ρn(Ranking,−) ≥ (1 − 1
e)n −

o(n), where e is the base of the natural logarithm (and (1 − 1
e) ' 0.632). Un-

fortunately, that paper had only a conference version and not a journal version,
and the proof presented in the conference version appears to have gaps. Later
work (e.g., [12, 4, 2]), motivated by extensions of the online matching problem
to other problems such as the adwords problem, presented alternative proofs,
and also established that the o(n) term is not required. There have also been
expositions of simpler versions of these proofs. See [1, 10, 3], for example. Sum-
marizing this earlier work, we have:

Theorem 1 For every bipartite graph G ∈ Gn, the expected cardinality of the
matching produced by Ranking is at least (1 − 1

e)n. Hence ρn(Ranking,−) ≥
(1− 1

e)n, and ρ ≥ 1− 1
e ' 0.632.

Karp, Vazirani and Vazirani [7] also presented a distribution over Gn, and
showed that for every online algorithm, the expected size of the matching pro-
duced (expectation taken over random choice of graph from this distribution)
is at most (1 − 1/e)n + o(n). This distribution, that we shall refer to as Dn,
is defined as follows. Select uniformly at random a permutation τ over V . For
every j, the neighbors of vertex uj are {vτ(j), . . . , vτ(n)}. The unique perfect
matching M is the set of edges (uj , vτ(j)) for 1 ≤ j ≤ n.

To present the known results regarding Dn more accurately, let as extend
previous notation.

• ρn(A,Dn) is the expected cardinality of matching produced by A when
the input graph G is selected according to distribution Dn. (Hence expec-
tation is taken both over randomness of A and over selection from Dn.)

3

By definition, for every algorithm A, ρn(A,Dn) is an upper bound on
ρn(A,−).

• ρn(−, Dn) is the maximum over all A (randomized online algorithms for
the maximizing player) of ρn(A,Dn). Namely, ρn(−, Dn) = maxA[ρn(A,Dn)].
By definition, for every n, ρn(−, Dn) is an upper bound on ρn.

It is not hard to see (and was shown also in Lemma 13 of [7]) that for every
two greedy online algorithms A and A′ it holds that ρn(A,Dn) = ρn(A′, Dn).
As greedy algorithms are optimal among online algorithms, and Ranking is a
greedy algorithm, we have the following proposition.

Proposition 2 For Dn defined as above,

ρn(Ranking,Dn) = ρn(−, Dn) ≥ ρn

The result of [7] can be stated as showing that ρn(−, Dn) ≤ (1 − 1
e)n +

o(n). Later analysis (see for example [12], or the lecture notes of Kleinberg [8]
or Karlin [6]) replaced the o(n) term by O(1). Moreover, this upper bound
holds not only for online randomized integral algorithms (that match edges as a
whole), but also for online fractional algorithms (that match fractions of edges).
Let us provide more details.

A fractional matching for a bipartite graph G(U, V ;E) is a nonnegative
weight function w for the edges such that for every vertex u ∈ U we have∑
v∈N(u) w(u, v) ≤ 1, and likewise, for every vertex v ∈ V we have

∑
u∈N(v) w(u, v) ≤

1. The size of a fractional matching is
∑
e∈E w(e). It is well known (see [9], for

example) that in bipartite graphs, the size of the maximum fractional matching
equals the cardinality of the maximum (integral) matching.

In the online bipartite fractional matching problem, as vertices of U arrive,
the maximizing player can add arbitrary positive weights to their incident edges,
provided that the result remains a fractional matching. We extend the ρ nota-
tion used for the integral case also to the fractional case, by adding a subscript
f . Hence for example, ρf,n(A,G) is the size of the fractional matching produced
by an online algorithm A when G ∈ Gn is the input graph.

It is not hard to see that in the fractional setting, randomization does not
help the maximizing player, in the sense that any randomized online algorithm
A for fractional matching can replaced by a deterministic algorithm A′ that
on every input graph produces a fractional matching of at least the same size.
(Upon arrival of vertex u, the fractional weight that A′ adds to edge (u, v) equals
the expected weight that A adds to this edge, where expectation is taken over
randomness of A.) Consequently, ρf,n ≥ ρn, and every upper bound on ρf,n is
also an upper bound on ρn.

The following theorem summarizes the known upper bounds on ρf,n, which
are also the strongest known upper bounds on ρn.

Theorem 3 For Dn as defined above, ρf,n(−, Dn) ≤ (1− 1
e)n+O(1). Conse-

quently, ρn(−, Dn) ≤ (1− 1
e)n+O(1).

4

The combination of Theorems 1 and 3 implies the following corollary:

Corollary 4 Using notation as above, ρ = 1− 1
e and ρf = 1− 1

e . The Ranking
algorithm (which produces an integral matching) is asymptotically optimal (for
the maximizing player) for online bipartite matching both in the integral and
in the fractional case. The distribution Dn is asymptotically optimal for the
minimizing player, both in the integral and in the fractional case.

In this manuscript, we shall be interested not only in the asymptotic ratios ρ
and ρf , but also in the exact ratios ρn and ρf,n. Every (integral) matching is also
a fractional matching, hence one may view Ranking also as an online algorithm
for fractional matching. As such, Ranking is easily seen not to be optimal
for some n. For example, when n = 4, tedious but straighforward analysis
shows that a different known algorithm referred to as Balance (see Section 2)
satisfies ρf,4(Balance,−) > ρf,4(Ranking,−) (details omitted). However, for
the integral case, it was conjectured in [7] that both Ranking and Dn are optimal
for every n. Namely, the conjecture is:

Conjecture 5 ρn = ρn(Ranking,Dn) for every n.

The above conjecture, though still open, adds motivation (beyond Proposi-
tion 2) to determine the exact value of ρn(Ranking,Dn). This is done in the
following theorem.

Theorem 6 Let the function a(n) be such that ρn(Ranking,Dn) = a(n)
n! for all

n. Then a(n) = (n+ 1)!−d(n+ 1)−d(n), where d(n) is the number of derange-
ments (permutations with no fixed points) on the numbers [1, n]. Consequently,
ρn(−, Dn) = (1 − 1

e)n + 1 − 2
e + O(1

n!) ' (1 − 1
e)n + 0.264, and this is also an

upper bound on ρn.

The rest of this paper is organized as follows. In Section 2 we review a proof
of Theorem 3. In doing so, we determine the value of the O(1) term stated in
the theorem, and also show that the upper bound is tight. Hence we end up
proving the following theorem:

Theorem 7 For every n, Balance is the fractional online algorithm with best
approximation ratio, Dn is the distribution over graphs for which the approxi-
mation ratio is worst possible, and

ρf,n = ρf,n(Balance,Dn) = (1− 1

e
)n+

1

2
− 1

2e
+O(

1

n
) ' (1− 1

e
)n+ 0.316

In Section 3 we prove Theorem 6. The combination of Theorems 6 and 7 im-
plies that ρn < ρf,n for sufficiently large n. It also implies that ρf,n(Balance,Dn) >
ρf,n(Ranking,Dn) for sufficiently large n. Hence Proposition 2 does not extend
to online fractional matching.

In an appendix (Section A) we review a proof (due to [3]) of Theorem 1,
and derive from it an upper bound of (1− 1

e)n+ 1
e on ρn(Ranking,Dn). This

last upper bound is weaker than the upper bounds of Theorems 6 and 7, but
its proof is different, and hence might turn out useful in attempts to resolve
Conjecture 5.

5

1.1 Preliminaries – MonotoneG

When analyzing ρn(Ranking,Dn) we shall use the following observation so as
to simplify notation. Because Ranking is oblivious to names of vertices, the
expected size of the matching produced by Ranking on every graph in the sup-
port of Dn is the same. Hence we shall consider one representative graph
from Dn, that we refer to as the monotone graph MonotoneG, in which γ
(in the definition of Dn) is the identity permutation. The monotone graph
G(U, V ;E) satisfies E = {(ui, vj) | j ≥ i}, and its unique perfect matching
is M = {(ui, vi) | 1 ≤ i ≤ n}. Statements involving ρn(Ranking,Dn) will
be replaced by ρn(Ranking,MonotoneG), as both expressions have the same
value.

Likewise, the algorithm Balance is oblivious to names of vertices, and state-
ments involving ρf,n(Balance,Dn) will be replaced by ρf,n(Balance,MonotoneG).

2 Online fractional matchings

Let us present a specific online fractional matching algorithm that is often re-
ferred to as Balance, which is the natural fractional analog of an algorithm by
the same name introduced in [5]. Balance maintains a load `(v) for every ver-
tex v ∈ V , equal to the sum of weights of edges incident with v. Hence at
all times, 0 ≤ `(v) ≤ 1. Upon arrival of a vertex u with a set of neighbors
N(u), Balance distributes a weight of min[1, |N(u)| −

∑
v∈N(u) `(v)] among the

edges incident with u, maintaining the resulting loads as balanced as possi-
ble. Namely, one computes a threshold t such that

∑
v∈N(u)|`(v)<t(t − `(v)) =

min[1, |N(u)| −
∑
v∈N(u) `(v)], and then adds fractional value t − `(v) to each

edge (u, v) for those vertices v ∈ N(u) that have load below t.
We first present a proof of Theorem 3 based on previous work. The theorem

is restated below, with the additive O(1) term instantiated. Previous work
either did not specify the O(1) additive term (e.g., in [6]), or derived an O(1)
term that is not tight (e.g., in [8]).

Theorem 8 For every n it holds that

ρf,n(−, Dn) = (1− 1

e
)n+

1

2
− 1

2e
+O(

1

n
) ' (1− 1

e
)n+ 0.316

Moreover, ρf,n(−, Dn) = ρf,n(Balance,Dn).

Proof. For all graphs in the support of Dn, the size of the fractional matching
produced by Balance is the same (by symmetry). Hence for simplicity of no-
tation, consider the fractional matching produced by Balance when the input
graph is the monotone graph MonotoneG (see Section 1.1). It is not hard to see
that when vertex ui arrives, Balance raises the load of each vertex in {vi, . . . , vn}
by 1

n−i+1 . This can go on until the largest k satisfying
∑k
i=1

1
n−i+1 ≤ 1. There-

after, when vertex uk+1 arrives, Balance can raise the load of its n−k neighbors

6

from
∑k
i=1

1
n−i+1 to 1. Hence altogether the size of the fractional matching is

precisely k + (n− k)(1−
∑k
i=1

1
n−i+1), for k as above.

The value of k can be determined as follows. It is known that the harmonic
number Hn =

∑n
i=1

1
i satisfies Hn = lnn+γ+ 1

2n+O(1
n2), where γ ' 0.577 is the

Euler-Mascheroni constant. k is the largest integer such that Hn −Hn−k ≤ 1.
Defining α , n−k

n , we have that

Hn−Hn−k = lnn+γ+
1

2n
+O(

1

n2
)−lnαn−γ− 1

2αn
+O(

1

n2
) = ln

1

α
−

1
α − 1

2n
+O(

1

n2
)

Choosing α = 1
e (and temporarily ignoring the fact that in this case k = (1− 1

e)n
is not an integer), we get that Hn − Hn−k = 1 − e−1

2n + O(1
n2). The size of a

matching is then

(1− 1

e
)n+

n

e
(
e− 1

2n
+O(

1

n2
)) = (1− 1

e
)n+

1

2
+

1

2e
+O(

1

n
)

as desired.
The fact that k = (1− 1

e)n above was not an integer requires that we round
k down to the nearest integer. The effect of this rounding is bounded by the
effect of changing the number of neighbors available to uk and to uk+1 by one
(compared to the computation without the rounding). Given that the number
of neighbors is roughly n

e , the overall effect on the size of the fractional matching
is at most O(1

n).
We conclude that ρf,n(Balance,Dn) = (1− 1

e)n+ 1
2+ 1

2e+O(1
n), implying that

ρf,n(−, Dn) ≥ (1− 1
e)n+ 1

2 + 1
2e +O(1

n). In remains to show that ρf,n(−, Dn) ≤
(1 − 1

e)n + 1
2 + 1

2e + O(1
n). This follows because Balance is the best possible

online algorithm (for fractional bipartite matching) against Dn. Let us provide
more details.

Given an input graph from the support of Dn, we shall say that a vertex
v ∈ V is active in round i if it is a neighbor of ui. Initially all vertices are
active, and after every round, one more vertex (chosen at random among the
active vertices) becomes inactive, and remains inactive forever. Let a(i) denote
the number of active vertices at the beginning of round i, and note that a(i) =
n− i+ 1. Consider an arbitrary online algorithm. Let L(i) denote the average
load of the active vertices at the beginning of round i. Then in round i, the
average load first increases by at most 1

a(i) (as long as it does not exceed 1) by

raising weights of edges, and thereafter, making one vertex inactive keeps the
average load unchanged in expectation (over choice of input from Dn). Hence
in expectation, in every round, the average load does not exceed the value of
the average load obtained by Balance. This means that in every round, in
expectation, the amount of unused load of the vertex that became inactive is
smallest when the online maximizing algorithm is Balance. Summing over all
rounds and using the linearity of expectation, Balance suffers the smallest sum
of unused load, meaning that it maximizes the final expected sum (over all V)
of loads. The sum of loads equals the size of the fractional matching. �

We now prove Theorem 7.

7

Proof.[Theorem 7] Given Theorem 8, it suffices to show that ρf,n(Balance,−) =
ρf,n(Balance,Dn), namely, that Dn is the worst possible distribution over input
graphs for the algorithm Balance. Moreover, given that Balance is oblivious to
the names of vertices, it suffices to show that MonotoneG is the worst possible
graph for Balance.

LetG(U, V ;E) ∈ Gn be a graph for which ρf,n(Balance,G) = ρf,n(Balance,−).
As Balance is oblivious to the names of vertices, we may assume that {(ui, vi)|1 ≤
i ≤ n} is a perfect matching in G.

We use the notation N(w) to denote the set of neighbors of a vertex w in the
graph G. When running Balance on G, we use the notation m(i, j) to denote
the weight that the fractional matching places on edge (ui, vj) (and m(i, j) = 0
if (ui, vj) 6∈ E), and mi(j) to denote

∑
1≤`≤im(u`, vj). Clearly, mi(j) is non-

decreasing in i. The size of the final fractional matching is m =
∑n
j=1mn(j).

When referring to a graph G′, we shall use the notation N ′ and m′ instead of
N and m.

An edge (ui, vj) with j < i is referred to as a backward edge.

Proposition 9 Without loss of generality, we may assume that G has no back-
ward edges. Hence mi(j) = mj(j) for all i > j.

Proof. Suppose otherwise, and let i be largest so that ui has backward edges.
Modify G by removing all backward edges incident with ui, thus obtaining a
graph G′. Compare the performance of Balance against the two graphs, G and
G′. On vertices u1, . . . , ui−1, both graphs produce the same fractional matching.
The extent to which ui is matched is at least as large in G as it is in G′ (because
also backward edges may participate in the fractional matching). Moreover, for
every vertex vj for i < j ≤ n, it holds that m′i(j) ≥ mi(j). It follows that for
every vertex u` for ` > i, its marginal contribution to the fractional matching
in G is at least as large as its marginal contribution in G′. Hence the fractional
matching produced by Balance for G′ is not larger than that produced for G.
Repeating the above argument, all backward edges can be eliminated from G
without increasing the size of the fractional matching. �

Lemma 10 Without loss of generality we may assume that:

1. mi(i) ≤ mj(j) (or equivalently, mn(i) ≤ mn(j)) for all i < j.

2. mi(i) ≥ mi(j) for all i and j.

Proof. We first present some useful observations. For 1 ≤ i < n, consider
the set N(ui) of neighbours of ui in G (and recall that vi ∈ N(ui), and that
there are no backward edges). Then without loss of generality we may assume
that mi(i) ≥ mi(j) for all vj ∈ N(ui). This is because if there is some vertex
vj ∈ N(ui) with mi(j) > mi(i), then it must hold (by the properties of Balance)
that m(i, j) = 0. Hence the run of Balance would not change if the edge (ui, vj)
is removed from G (and then vj 6∈ N(ui)).

8

Moreover, we may assume that mi(i) = mi(j) for all vj ∈ N(ui). Suppose
otherwise. Then for vj ∈ N(ui) with smallest mi(j), modify G to a graph G′

as follows. For all ` < i, make u` a neighbor of vi iff it was a neighbor of vj ,
and make u` a neighbor of vj iff it was a neighbor of vi. The final size of the
fractional matching in G′ (which is

∑n
j=1m

′
n(j)) cannot be larger than in G.

This is because m′i(i) < mi(i), m
′
i(j) > mi(j) and for ` 6= j satisfying ` > i it

holds that m′i(`) = mi(`). Moreover, as mi(i) < mi(j) ≤ 1, ui is fully matched
in G and hence also in G′, so the total size of fractional matching after step i
is the same in both graphs. Thereafter, the marginal increase of the fractional
matching at each step cannot be larger in G′ than it is in G.

By the same arguments as above we may assume that mi+1(i+1) = mi+i(j)
for all vj ∈ N(ui+1).

Suppose now that item 1 fails to hold. Then for some 1 ≤ i ≤ n− 1 it holds
that mi(i) > mi+1(i+ 1). Vertices ui and ui+1 cannot have a common neighbor
because if they do (say, v`) it holds that mi+1(i+1) = mi+1(`) ≥ mi(`) = mi(ii).
Hence we may exchange the order of ui and ui+1 (and likewise vi and vi+1)
without affecting the size of the fractional matching produced by Balance.

Repeating the above argument whenever needed we prove item 1 of the
lemma.

For j < i item 2 holds because mi(j) = mj(j) ≤ mi(i) (the last inequality
follows from item 1). For j > i item 2 holds because at the first point in time
` ≤ i in which m`(j) = mi(j) it must be that m`(j) = m`(`), and item 1 implies
that m`(`) ≤ mi(i). �

It is useful to note that Lemma 10 implies that there is some round number
t such that for all ` ≥ t vertex v` is fully matched (namely, mn(`) = 1), and for
every ` < t vertex v` is not fully matched (namely, mn(`) < 1). As to vertices
in u, for ` < t vertex u` is fully matched, for ` > t vertex u` contributes nothing
to the fractional matching, and ut is either partly matched or fully matched.
Recalling that m denotes the size of the final fractional matching, we thus have
(for t as above):

m = t− 1 +
∑
j≥t

m(t, j) (1)

At every step i, the contribution of vertex vi towards the fractional matching
is finalized at that step, namely, mn(i) = mi(i). Lemma 10 implies that for the
worst graph G, this vertex vi is the one with largest mi value at this given step.
Hence mi(i) = maxj≥i[mi(j)] and we have:

m =

n∑
i=1

mn(i) =

n∑
i=1

mi(i) =

n∑
i=1

max
j≥i

[mi(j)].

At this point it is intuitively clear why MonotoneG is the graph in Gn on
which Balance produces the smallest fractional matching. This is because with
MonotoneG, at each step i the fractional matching gets credited a value mi(i)

9

that is the average of the values mi(j) for j ≥ i, whereas for G its gets credited
the maximum of these values. Below we make this argument rigorous.

Consider an alternative averaging process replacing algorithm Balance. It
uses the same fractional matching as in Balance and the same m(i, j) values, but
maintains values m′i(i) that may differ from mi(i). At round 1, instead of being
credited the maximum m1(1) = maxj≥1[m1(j)], the process is credited only the
average m′i(1) = 1

n

∑n
j=1mi(j). The remaining maxj≥1[m1(j)]− 1

n

∑n
j=1m1(j)

is referred to as the slackness s(1). More generally, at every round i > 1,
instead of being credited by maxj≥i[mi(j)] at step i, the averaging process gets
credit from two sources. One part of the credit is the average 1

n−i+1

∑n
j=imi(j),

where s(i) = maxj≥i[mi(j)] − 1
n−i+1

∑n
j=imi(j) is the slackness generated at

round i. In addition, the process gets credit also for the slackness accumulated
in previous rounds ` < i, in such a way that each slackness variable s(`) gets
distributed evenly among the n− ` rounds that follow it. Hence we set

m′i(i) =
1

n− i+ 1

n∑
j=i

mi(j) +

i−1∑
`=1

s(`)

n− `
. (2)

The averaging process continues until the first round t′ at which m′t′(t
′) ≥ 1, at

which point m′j(j) is set to 1 for all j ≥ t′, and the process ends. The size of the

fractional matching associated with the averaging process is m′ =
∑n
i=1m

′
i(i).

Computing m′ using the contributions of the vertices from U , for t′ as above,
we get that:

m′ = t′ − 1 +
∑
j≥t′

m(t′, j) (3)

Proposition 11 For the graph G, the size of the fractional matching produced
by the averaging process is no larger than that produced by Balance. Namely,
m′ ≤ m.

Proof. Compare Equations (1) and (3). If t′ = t then m′ = m, and if t′ < t
then m′ < m. Hence it suffices to show that the assumption t′ ≥ t implies that
t′ = t. This follows because mt(j) = 1 for all j ≤ t (as noted above), and so:

m′t(t) =
1

n− t+ 1

n∑
j=t

mt(j) +

t−1∑
`=1

s(`)

n− `
= 1 +

t−1∑
`=1

s(`)

n− `
≥ 1

where the last inequality holds because all slackness variables s(`) are non-
negative. �

Proposition 12 For MonotoneG, running the averaging process and running
Balance are exactly the same process, giving m′(MonotoneG) = m(MonotoneG).

10

Proof. This is because when running Balance on MonotoneG, at every round
i we have that mi(i) = mi(j) for all j > i. Hence there is no difference between
the average and the maximum of the mi(j) for j ≥ i. �

Proposition 13 The size of the fractional matching produced by the averaging
process for graph G is not smaller than the size it produces for MonotoneG.
Namely, m′(G) ≥ m′(MonotoneG).

Proof. Running the averaging process on graph G, we claim that for every
round i < t′ we have that:

m′i(i) =
∑
k≤i

1

n− k + 1
(4)

The equality can be proved by induction. For i = 1 both sides of the equality
are 1

n . For the inductive step, recalling Equation 2 one can infer that

m′i+1(i+ 1) =
1

n− i
((n− i+ 1)m′i(i)−m′i(i) + 1)

where the +1 term is because i < t′. Likewise, the right hand side develops in
the same way:

∑
k≤i+1

1

n− k + 1
=

1

n− i

(n− i+ 1)
∑
k≤i

1

n− k + 1
−

∑
k≤i

1

n− k + 1
+ 1


The left hand side of Equation (4) concerns graph G. Observe that m′i(i)

for MonotoneG exactly equals the right hand side of Equation (4). It follows
that the averaging process ends at the same step t′ both on the graph G and
on MonotoneG, and up to step t′ the accumulated fractional matching m′ is
identical. For rounds j ≥ t′ we have that m′j(j) = 1 for G and it cannot be
larger than 1 for MonotoneG, proving the proposition. �

Combining the three propositions above we get that:

m(G) ≥ m′(G) ≥ m′(MonotoneG) = m(MonotoneG)

This completes the proof of Theorem 7. �

3 Online integral matching

The first part of Theorem 6 is restated in the following theorem (recall the
definition of the monotone graph MonotoneG in Section 1.1).

11

Theorem 14 Let the function a(n) be such that ρn(Ranking,MonotoneG) =
a(n)
n! for all n. Then a(n) = (n+ 1)!−d(n+ 1)−d(n), where d(n) is the number

of derangements (permutations with no fixed points) on the numbers [1, n].

Proof. When the input is MonotoneG, then for every permutation π used by
Ranking, the matching M ′ produced satisfies the following two properties:

• All vertices in some prefix of U are matched, and then no vertices in the
resulting suffix are matched. This is because all neighbors of uj+1 are also
neighbors of uj , so if uj+1 is matched then so is uj .

• The order in which vertices of V are matched is consistent with the order
π (for those vertices that are matched – some vertices of V may remain
unmatched). In other words, if two vertices vi and vj are matched and
π(i) < π(j), then the vertex u ∈ U matched with vi arrived earlier (has
smaller index) than the vertex u′ ∈ U matched with vj .

Some arguments in the proof that follows make use of the above properties,
without explicitly referring to them.

Fix n and MonotoneG as input. Let Πn denote the set of all permutations
over V . Hence |Πn| = n!. Ranking picks one permutation π ∈ Πn uniformly at
random. Recall our notation that π(i) is the rank of vi under π. We shall use
πi to denote the item of rank i in π (namely, πi = π−1(i)). For i ≤ n, let a(n, i)
denote the number of permutations π ∈ Πn under which πi is matched.

Proposition 15 For a(n) as defined in Theorem 14 and a(n, i) as defined
above, it holds that a(n) =

∑n
i=1 a(n, i).

Proof. For a permutation π ∈ Πn, let x(π) denote the size of the greedy
matching produced when Ranking uses π and the input graph in MonotoneG.
Then by definition:

a(n) =
∑
π∈Πn

x(π).

By changing the order of summation:

∑
π∈Πn

x(π) =

n∑
i=1

a(n, i).

Combining the above equalities proves the proposition. �

Proposition 15 motivates the study of the function a(n, i).

Lemma 16 The function a(n, i) satisfies the following:

1. a(n, 1) = n! for every n ≥ 1.

2. a(n, i) = a(n, i+ 1) + a(n− 1, i) for every 1 ≤ i < n.

12

Proof. The first statement in the lemma holds because in every permutation π,
the item π1 is matched with u1. Hence it remains to prove the second statement.

Fixing n > 1 and i < n, consider the following bijection Bi : Πn −→ Πn,
where given a permutation π ∈ Πn, Bi(π) flips the order between locations i and
i + 1. Namely, Bi(π)i = πi+1 and Bi(π)i+1 = πi (we use Bi(π)i as shorthand
notation for (Bi(π))i). We compare the events that πi is matched by the greedy
matching when Ranking uses π with the event that Bi(π)i+1 is matched by the
greedy matching when Ranking uses Bi(π).

There are four possible events:

1. Both πi and Bi(π)i+1 are matched.

2. Neither πi nor Bi(π)i+1 are matched.

3. πi is matched but Bi(π)i+1 is not matched.

4. πi is not matched but Bi(π)i+1 is matched.

Though any of the first three events may happen, the fourth event cannot
possibly happen. This is because the item in location i + 1 in Bi(π) is moved
forward to location i in π, so if the greedy algorithm matches it (say to uj) in
Bi(π), then the greedy algorithm must match it (either to the same uj or to the
earlier uj−1) in π.

It follows that a(n, i)−a(n, i+1) exactly equals the number of permutations
in which the third event happens. Hence we characterize the conditions under
which the third event happens. Let uj be the vertex matched with πi in π.
Up to the arrival of uj , the behavior of Ranking on Bi(π) and π is identical.
Thereafter, for uj not to be matched to Bi(π)i+1 = πi, it must be matched to
the earlier Bi(π)i. Thereafter, for uj+1 not to be matched to Bi(π)i+1, it must
be that Bi(π)i+1 is not a neighbor of uj+1. But Bi(π)i+1 = πi is a neighbor
of uj (it was matched to uj under π), and hence it must be that πi = vj .
Summarizing, the third event happens if and only if the permutation Bi(π)
comes from the following class Π̂, where permutations π̂ ∈ Π̂ are those that
have the property that π̂i is matched, and π̂i+1 = vj , for the same j for which

uj is the vertex matched with π̂i. Consequently, a(n, i) = a(n, i+ 1) + |Π̂|.
To complete the proof of the lemma, it remains to show that |Π̂| = a(n−1, i).

Let Π′ ⊂ |Πn−1| be the set of these permutations π′ ∈ Πn−1 under which
Ranking (when |U | = |V | = n− 1) matches the item π′i.

Claim 17 For Π̂ and Π′ as defined above it holds that |Π̂| = |Π′|.

Proof. We first show a mapping from Π̂ to Π′. Given π̂ ∈ Π̂, let vj = π̂i+1. To
obtain permutation π′ ∈ Πn−1 from π̂, remove vj from π̂, identify location k in
π̂ with location k − 1 in π′ (for i + 2 ≤ k ≤ n), and identify item v` of π̂ with
item v`−1 of π′ (for j + 1 ≤ ` ≤ n). We show now that π′ ∈ Π′ (namely, π′i is
matched, when the input graph is MonotoneG with |U | = |V | = n− 1).

The vertices u1, . . . , uj−1 are matched to exactly the same locations in π′

and in π̂, because the only vertices whose indices were decremented had index

13

` ≥ j+1, and are neighbors of u1, . . . , uj−1 both before and after the decrement.
Let vk = π̂i and note that k > j, because vk is matched to uj and it is not
vj = π̂i+1. Hence π′i = vk−1 and it too is a neighbor of uj , because j ≤ k − 1.
Hence π′i will be matched to uj .

Conversely, we have the following mapping from Π′ to Π̂. Given π′ ∈ Π′, let
uj be the vertex matched π′i. To obtain permutation π̂ ∈ Π̂ from π′, identify
location k in π̂ with location k − 1 in π′ (for i+ 2 ≤ k ≤ n), identify item v` of
π̂ with item v`−1 of π′ (for j + 1 ≤ ` ≤ n), and set π̂i+1 = vj . We show now

that π̂ ∈ Π̂.
As in the first mapping, the vertices u1, . . . , uj−1 are matched to exactly the

same locations in π′ and in π. Let vk = π′i and note that k ≥ j, because vk was
matched to uj . Hence π̂i = vk+1 is neighbor of uj , and will be matched to uj .
On the other hand, π̂i+1 = vj will not be matched because it is not a neighbor

of any of [uj+1, un]. Hence π̂ ∈ Π̂.
Given the two mappings described above (one is the inverse of the other) we

have a bijection between Π′ and Π̂, proving the claim. �

The claim above implies that |Π̂| = |Π′| = a(n− 1, i), and consequently that
a(n, i) = a(n, i+ 1) + a(n− 1, i), proving the lemma. �

In passing, we note the following corollary.

Corollary 18 For a(n, i) and a(n) as defined above, a(n) = (n + 1)! − a(n +
1, n+ 1).

Proof. Using item 1 of Lemma 16 we have that a(n+1, 1) = (n+1)!. Applying
item 2 of Lemma 16 iteratively for all 1 ≤ i ≤ n we have that a(n + 1, 1) −
a(n + 1, n+ 1) =

∑n
i=1 a(n, i). Proposition 15 shows that

∑n
i=1 a(n, i) = a(n).

Combining these three equalities we obtain a(n) = (n+ 1)!− a(n+ 1, n+ 1), as
desired. �

Corollary 18 can also be proved directly, without reference to Lemma 16.
See Appendix B for details.

To obtain expressions for the values a(n, i), let us introduce additional no-
tation. A fixpoint (or fixed point) in a permutation π is an item that does not
change its location under π (namely, π(i) = i). For n ≥ 1 and 1 ≤ i ≤ n define
d(n, i) be the number of permutations over [n] in which the only fixpoints (if any)
are among the first i items. For example, d(3, 1) = 3 due to the permutations
132 (only 1 is a fixed point) 231 (no fixpoints) and 312 (no fixpoints).

Lemma 19 The function d(n, i) satisfies the following:

1. d(n, n) = n! for every n ≥ 1.

2. d(n, i+ 1) = d(n, i) + d(n− 1, i) for every 1 ≤ i < n.

14

Proof. d(n, n) denotes the number of permutations on [n] with no restrictions,
and hence d(n, n) = n!, which is the first statement of the lemma.

Consider now the second statement of the lemma. Let Πn,i denote the
set of permutations in which the only fixpoints (if any) are among the first
i items. Then the second statement asserts that |Πn,i+1| = |Πn,i| + |Πn−1,i|.
The set Πn,i+1 can be partitioned in two. In one part i + 1 is not a fixpoint.
This part is precisely Πn,i. In the second part, i + 1 is a fixpoint. To specify
a permutation in this part we need to specify the location of the remaining
n − 1 items, where the only fixpoints allowed are among the first i items. The
number of permutations satisfying these constraints is Πn−1,i, by definition.
Hence indeed |Πn,i+1| = |Πn,i|+ |Πn−1,i|, proving the lemma. �

Corollary 20 For every n ≥ 1 and 1 ≤ i ≤ n it holds that a(n, i) = d(n, n +
1− i).

Proof. The proof is by induction on n, and for every value of n, by induction
on i.

For the base case n = 1, necessarily i = 1 (and hence also n + 1 − i = 1)
and indeed we have a(1, 1) = 1 = d(1, 1). Fixing n > 1, the base case for i is
i = 1 (and n+ 1− 1 = n) and indeed we have that a(n, 1) = n! = d(n, n). For
the inductive step, consider a(n, i) with n > 1 and 1 < i ≤ n, and assume the
inductive hypothesis for n′ < n and the inductive hypothesis for n and i′ < i.
Then we have:

a(n, i) = a(n, i−1)−a(n−1, i−1) = d(n, n−i+2)−d(n−1, n−i+1) = d(n, n−i+1)

The first equality is by Lemma 16, the second equality is by the inductive
hypothesis, and the third equality is by Lemma 19. �

We can now complete the proof of Theorem 14. By Corollary 18 we have that
a(n) = (n+ 1)!−a(n+ 1, n+ 1). By Corollary 20 we have that a(n+ 1, n+ 1) =
d(n+ 1, 1). By definition, d(n+ 1, 1) is the number of permutations on [n+ 1]
in which only item 1 is allowed to be a fixpoint. This number is precisely
d(n + 1) + d(n) (where d(j) are the derangement numbers), where the term
d(n+ 1) counts those permutations in which there is no fixpoint, and the term
d(n) counts those permutations in which item 1 is the only fixpoint. �

The second part of Theorem 6 is restated in the following Corollary.

Corollary 21 For every n,

ρn(Ranking,MonotoneG) = (1 +
1

e
)n+ (1− 2

e
) + ν(n)

where |ν(n)| < 1
n! .

15

Proof. Theorem 14 shows that a(n) = (n+1)!−d(n+1)−d(n), where d(n) are
the derangement numbers. It is known that d(n) = n!

e rounded to the nearest

integer. Hence |d(n) − n!
e | <

1
2 and |d(n + 1) + d(n) − (n+1)!

e − n!
e | < 1. Hence

|a(n) − (1 − 1
e)(n + 1)! − n!

e | < 1. Dividing by n! and replacing (1 − 1
e)(n + 1)

by (1− 1
e)n+ 1− 1

e the corollary is proved. �

3.1 Some related sequences

To illustrate the values of some of the parameters involved in the proof of The-
orem 14, consider a triangular table T where row n has n columns. The en-
tries (for 1 ≤ i ≤ n) are d(n, i), as defined prior to Lemma 19. Recall that
d(n, i) = a(n, n+ 1− i), hence the table also provides the a(n, i) values. We ini-
tialize the diagonal of the table by d(n, n) = n!. Thereafter we fill the remaining
cells of table row by row, by using the relation d(n, i) = d(n, i+ 1)− d(n− 1, i),
implied by Lemma 19. Finally, compute a(n) =

∑n
i=1 a(n, i) =

∑n
i=1 d(n, i)

by summing up each row. The table below shows the computation of a(n) for
n ≤ 6.

n d(n,1)=a(n,n) d(n,2) d(n,3) d(n,4) d(n,5) d(n,6) a(n)
1 1 1
2 1 2 3
3 3 4 6 13
4 11 14 18 24 67
5 53 64 78 96 120 411
6 309 362 426 504 600 720 2921

The table T is identical in its definition to Sequence A116853, named Dif-
ference triangle of factorial numbers read by upward diagonals, in The Online
Encyclopedia of Integer Sequences [13]. The row sums (and hence a(n)) in this
table give Sequence A180191 (with an offset of 1 in the value of n), named
Number of permutations of [n] having at least one succession. The first col-
umn (which equals a(n, n)) is the sequence A000255. These relations between
a(n) and the various sequences in [13] helped guide the statement and proof of
Theorem 14.

The derangement numbers d(n) (which form the sequence A000166) can be
easily computed by the recurrence d(n) = n · d(n − 1) + (−1)n (due to Euler).
The table below shows the computation of a(n) = (n+ 1)!− d(n+ 1)− d(n) for
n ≤ 7.

16

n n! d(n) a(n)
1 1 0 1
2 2 1 3
3 6 2 13
4 24 9 67
5 120 44 411
6 720 265 2921
7 5040 1854 23633
8 40320 14833

Acknowledgements

The work of the author is supported in part by the Israel Science Foundation
(grant No. 1388/16). I thank several people whose input helped shape this
work. Alon Eden and Michal Feldman directed me to the proof presented in [3],
which is the one presented here (in the appendix) for Theorem 1. Thomas
Kesselheim and Aranyak Mehta directed me to additional relevant references.
The statement and proof of Theorem 14 were based on noting some numerical
coincidences between the values of a(n) for small n and sequences in The Online
Encyclopedia of Integer Sequences [13]. Dror Feige wrote a computer program
that computes a(n), which made these numerical coincidences evident. Alois
Heinz offered useful advice as to how to figure out proofs for various identities
claimed in [13].

References

[1] Benjamin E. Birnbaum, Claire Mathieu: On-line bipartite matching made
simple. SIGACT News 39(1): 80–87 (2008).

[2] Nikhil R. Devanur, Kamal Jain, Robert D. Kleinberg: Randomized Primal-
Dual analysis of RANKING for Online BiPartite Matching. SODA 2013:
101–107.

[3] Alon Eden, Michal Feldman, Amos Fiat, Kineret Segal: An Economic-
Based Analysis of RANKING for Online Bipartite Matching. Manuscripy,
2018. http://cs.tau.ac.il/∼mfeldman/papers/EFFS18.pdf

[4] Gagan Goel, Aranyak Mehta: Online budgeted matching in random input
models with applications to Adwords. SODA 2008: 982–991.

[5] Bala Kalyanasundaram, Kirk Pruhs: An optimal deterministic algorithm
for online b-matching. Theor. Comput. Sci. 233(1-2): 319–325 (2000).

[6] Anna Karlin. Online bipartite matching, lecture notes in
course on Randomized Algorithms and Probabilistic Analy-
sis, scribes Alex Polozav and Daryl Hansen, Spring 2013.
https://courses.cs.washington.edu/courses/cse525/13sp/scribe/lec6.pdf

17

[7] Richard M. Karp, Umesh V. Vazirani, Vijay V. Vazirani: An Optimal
Algorithm for On-line Bipartite Matching. STOC 1990: 352–358.

[8] Robert D. Kleinberg. Online bipartite matching algorithms,
lecture note in course on Analysis of Algorithms, Fall 2012.
http://www.cs.cornell.edu/courses/cs6820/2012fa/

[9] L. Lovasz, M. D. Plummer. Matching Theory. Elsevier 1986.

[10] Claire Mathieu. A CS’s Professor Blog: A primal-
dual analysis of the Ranking algorithm. June 25, 2011.
http://teachingintrotocs.blogspot.co.il/2011/06/primal-dual-analysis-
of-ranking.html

[11] Aranyak Mehta. Online matching and ad allocation. Foundations and
Trends in Theoretical Computer Science, 8(4):265–368, 2013.

[12] Aranyak Mehta, Amin Saberi, Umesh V. Vazirani, Vijay V. Vazirani: Ad-
Words and generalized online matching. J. ACM 54(5): 22 (2007).

[13] N. J. A. Sloane, editor, The On-Line Encyclopedia of Integer Sequences,
published electronically at https://oeis.org.

A A performance guarantee for Ranking

For completeness, we review here a proof of Theorem 1. The proof that we
present uses essentially the same mathematical expressions as the proof pre-
sented in [2]. A simple presentation of the proof of [2] appeared in a blog post
of Claire Mathieu [10] (with further slight simplifications made possible by a
comment provided there by Pushkar Tripathi). We shall give an arguably even
simpler presentation, due to Eden, Feldman, Fiat and Segal [3]. The proofs
in [2, 10] make use of linear programming duality. The proof below is based on
an economic interpretation, and a proof technique that splits welfare into the
sum of utility and revenue. These last two terms turn out to be scaled versions
of the dual variables used in [2, 10], but the proof does not need to make use of
LP duality.
Proof.[Theorem 1] Fix an arbitrary perfect matching M in G. Given a vertex
v ∈ V , we use M(v) to denote the vertex in U matched with v under M .

Recall that Ranking chooses a random permutation π over V . Equivalently,
we may assume that every vertex vi ∈ V chooses independently uniformly at
random a real valued weight wi ∈ [0, 1], and then the vertices of V are sorted in
order of increasing weight (lowest weight first). This gives a random permutation
π. The same permutation π is also obtained if each weight wi is replaced
by a “price” pi = ewi−1 and vertices are sorted by prices (because ex−1 is a
monotonically increasing function in x). Observe that pi ∈ [1

e , 1], though it
is not uniformly distributed in that range. The expected price that Ranking

18

assigns to an item is:

E[pi] =

∫ 1

0

ewi−1dwi =
1

e
(e− 1) = 1− 1

e
(5)

It is convenient to think of the vertices of U as buyers and the vertices of
V as items. Suppose that given G(U, V ;E), each vertex (buyer) u ∈ U desires
only items v ∈ V that are neighbors of u (namely, u desires v iff (u, v) ∈ E), is
willing to pay 1 for any such item, and wishes to buy exactly one item. The seller
holding the items is offering to sell each item vi for a price of pi. Then given G,
the matching produced by executing the Ranking algorithm is the same as the
one that would be produced in a setting in which each buyer uj , upon arrival,
buys its cheapest exposed desired item, if there is any. If pi is the price of the
purchased item vi, then the revenue that the seller extracts from the sale of vi
to uj is r(vi) = pi, whereas the utility that the buyer extracts is y(ui) = 1− pi.
Consequently, the revenue plus utility extracted from a sale is 1, and the total
revenue extracted from all sales plus the total utility sum up to exactly the
cardinality of the matching.

To lower bound the expected cardinality of the matching, we consider each
edge (M(vi), vi) ∈M separately, and consider the expectation E[r(vi)+y(M(vi))],
where expectation is taken over the choice of π. Using the linearity of the ex-
pectation, we will have that ρn(Ranking,G) =

∑
vi∈V E[r(vi) + y(M(vi))].

Lemma 22 For every vi ∈ V it holds that E[r(vi) + y(M(vi))] ≥ 1− 1
e . More-

over, this holds even if expectation is taken only over the choice of random
weight wi (and hence of random price pi) of item vi, without need to consider
other aspects of the random permutation π.

Proof. Fix an arbitrary graph G(U, V ;E) ∈ Gn, an arbitrary perfect matching
M , and arbitrary prices pj ∈ [1

e , 1] for all items vj 6= vi. The price pi for item vi is
set at random. Let M ′ denote the greedy matching produced by this realization
of the Ranking algorithm (where each buyer upon its arrival is matched to the
exposed vertex of lowest price among its neighbors, if there is any). Suppose as
a thought experiment that item vi is removed from V , and consider the greedy
matching M ′−i that would have been produced in this setting. Let p denote the
price of the item in V matched to M(vi) under M ′−i, and set p = 1 if M(vi) is
left unmatched under M ′−i. Now we make two easy claims.

1. If pi < p, then vi is matched in M ′. This follows because at the time
that M(vi) arrived, either vi was already matched (as desired), or it was
available for matching with M(vi) and preferable (in terms of price) over
all other items that M(vi) desires (as all have price at least p > pi).

2. The utility of M(vi) in M ′ satisfies y(M(vi)) ≥ 1−p. This follows because
under M ′−i the utility of M(vi) is 1 − p, and under the greedy algorithm
considered, the introduction of an additional item (the item vi when con-
sidering M ′) cannot decrease the utility of any agent. (At every step of

19

the arrival process, the set of exposed vertices under M ′ contains the set
of exposed vertices under M ′−i, and one more vertex.)

Using the above two claims and taking z to be the value satisfying p = ez−1,
we have:

E[y(M(vi))+r(vi)] ≥ 1−p+Pr[pi < p]pi = 1−ez−1+

∫ z

wi=0

ewi−1dwi = 1−e
z

e
+
ez − 1

e
= 1−1

e

This completes the proof of Lemma 22. �

Using the linearity of the expectation, we have that

ρn(Ranking,G) =
∑
vi∈V

E[r(vi) + y(M(vi))] ≥ (1− 1

e
)n

This completes the proof of Theorem 1. �

One can adapt the proof presented above to the special case in which the
input graph is MonotoneG (or more generally, comes from the distribution Dn).
In this case one can upper bound the slackness involved in the proof of Theo-
rem 1, and infer the following theorem.

Theorem 23 For every n it holds that ρn(Ranking,MonotoneG) ≤ (1− 1
e)n+

1
e .

Proof. Recall the two properties mentioned in the beginning of the proof of
Theorem 14. Recall also that the analysis of Ranking in the proof of Theorem 1
(within Lemma 22) involved the matching M ′ and other matchings M ′−i, and
two claims. Let us analyse the slackness involved in these claims when the
input is the monotone graph. The claims are restated with M(vi) replaced by
ui, because for the monotone graph M(vi) = ui.

The first claim stated that if pi < p, then vi is matched in M ′. When the
input is the monotone graph, then a converse also holds: if pi > p, then vi is
not matched in M ′. This follows because up to the time that ui arrives and is
matched, only vertices of V priced at most p are matched, and thereafter, no
other vertex in U desires vi. The event that pi = p has probability 0. Hence
there is no slackness involved in the first claim – it is an if and only if statement.

The second claim stated that the utility of ui in M ′ is y(ui) ≥ 1 − p. This
inequality is not tight. Rather, the utility of ui in M ′−i is 1 − p, and y(ui)
is not smaller. Let us quantify the slackness involved in this inequality by
introducing slackness variables s(u). For a vertex u ∈ U we shall use the
notation y(u) to denote the utility of u under Ranking, and y−v(u) for the
utility of u when vertex v ∈ V is removed. The slackness s(ui) of vertex ui is
defined as s(ui) = y(ui)− y−vi(ui).

20

Lemma 24 For the monotone graph and an arbitrary vertex uj ∈ U , the ex-
pected utility of uj (expectation taken over choices of wi for all 1 ≤ i ≤ n by
the Ranking algorithm) is identical in the following two settings: when vj is
removed, and when vn is removed. Namely, E[y−vj (uj)] = E[y−vn(uj)].

Proof. Both vj and vn are neighbors of all vertices uk arriving up to uj (for
1 ≤ k ≤ j). Hence whichever of the two vertices, vj or vn, is removed, the dis-
tributions of the outcomes of Ranking on the first j arriving vertices (including
uj) are the same. �

As a consequence of Lemma 24 we deduce that for the monotone graph,
the expected slackness of every vertex u ∈ U satisfies E[s(u)] = E[y(u)] −
E[y−vn(u)].

Lemma 25 For the monotone graph and arbitrary setting of prices for the
items (as chosen at random by Ranking),

∑
u∈U s(u) ≤ 1 − pn. Consequently,∑

u∈U E[s(u)] ≤ 1
e , where expectation is taken over choice of weights wi for

vertices in V .

Proof. Fix the prices pi (hence π). Let u1, . . . , uk be the vertices of U matched
under Ranking, and let m(u1), . . . ,m(uk) be the vertices in V to which they
are matched. Observe that the prices p(m(ui)) (where 1 ≤ i ≤ k) of these
vertices form a monotonically increasing sequence. Necessarily, vn is one of the
matched vertices, because it is a neighbor of all vertices in U . Let j be such
that vn = m(uj).

Consider now what happens when vn is removed. The vertices u1, . . . , uj−1

are matched to m(u1), . . . ,m(uj − 1) as before. As to the vertices uj , . . . , uk−1,
they can be matched to m(uj+1), . . . ,m(uk), hence the algorithm will match
them to vertices of no higher price. Specifically, for every i in the range j ≤
i ≤ k − 1, vertex ui will be matched either to m(ui+1) or to an earlier vertex,
though not earlier than m(ui). The vertex uk may either be matched or be
left unmatched. For simplicity of notation, we say that uk is matched to either
m(uk+1) or to an earlier vertex, where m(uk+1) is an auxiliary vertex of price 1
than indicates that uk is left unmatched.

Note that:

∑
u∈U

y(u) =

k∑
i=1

y(ui) = k −
k∑
i=1

p(m(ui))

and that:

∑
u∈U

y−vn(u) =

k∑
i=1

y−vn(ui) ≥ k −
j−1∑
i=1

p(m(ui))−
k+1∑
i=j+1

p(m(ui))

Hence we have that:

21

∑
u∈U

s(u) =
∑
u∈U

y(u)−
∑
u∈U

y−vn(u) ≤ p(m(uk+1))− p(vn)

Finally, noting that p(m(uk+1)) ≤ 1 and that E[p(vn)] = 1 − 1
e (see Equa-

tion (5)), the lemma is proved. �

As in the proof of Theorem 1 we have:

E[y(ui) + r(vi)] = 1− p+ s(ui) + Pr[pi < p]pi = 1− 1

e
+ s(ui)

Using the linearity of the expectation and Lemma 25 we have that:

ρn(Ranking,MonotoneG) =
∑
vi∈V

E[r(vi)+y(ui)] = (1−1

e
)n+

∑
u∈U

E[s(u)] ≤ (1−1

e
)n+

1

e

This completes the proof of Theorem 23. �

B An alternative proof of a combinatorial iden-
tity

We present a proof of Corollary 18 that does not make use of Lemma 16.
Proof.[Corollary 18] Let Π�(n+1) denote those permutations π′ ∈ Πn+1 such
that if Ranking uses π′ when the input is MonotoneG (with |U | = |V | = n+ 1),
then π′n+1 (the last item in π′) is not matched. By definition of a(n, i) the
expression (n+1)!−a(n+1, n+1) can be interpreted as |Π�(n+1)|. We describe a
bijection B between (Πn, [n+1]) and Πn+1. The bijection will have the property
that given a pair (π ∈ Πn, i ∈ [n+ 1]) the resulting permutation B(π, i) ∈ Πn+1

belongs to Π�(n+1) if and only if ui is matched, thus proving the Corollary.
We now describe the bijection for a given π ∈ Πn and i ∈ [n+ 1]:

• B(π, n+1): place vn+1 at location n+1. This gives one permutation that
we call π→(n+1).

• B(π, i) for 1 ≤ i ≤ n: place vn+1 at location i and place vi at location
n+ 1. This gives n additional permutations, named π↔i (the notation ↔
indicates that vn+1 is swapped with vi).

There are three cases to consider:

• i = n+ 1. In π→(n+1) the item vn+1 at location n+ 1 is matched, because
it is a neighbor of all vertices in U .

22

• ui ∈ U is matched in π. Then all vertices up to ui are also matched in
π↔i, and to items at locations no later than n. This is because the only
differences between π and π↔i involve vertices vi and vn+1, and both of
them are neighbors of all arriving vertices up to and including ui. None
of the vertices ui+1, . . . , un+1 is a neighbor of vi, hence in π↔i the item
vi ∈ V at location n+ 1 is not matched.

• ui ∈ U is not matched in π. In this case ui will not be matched to any
of the first n items of π↔i (again, because the only differences between
π and π↔i involve vertices vi and vn+1, and both of them are neighbors
of all arriving vertices up to and including ui). Consequently, ui will be
matched to vi that is at location n+ 1 in π↔i.

�

23

