c
.0
)
(o]
O
C
()
=
-
o
(O
(O)
(a4
O
2

W3t

Scalable Vector Graphics (SVG) Tiny 1.2 Specification
W3C Recommendation 22 December 2008

This version:
http://www.w3.0rg/TR/2008/REC-SVGTiny12-20081222/
Latest version:
http://www.w3.org/TR/SVGTiny12/
Previous version:
http://www.w3.0rg/TR/2008/PR-SVGTiny12-20081117/
Editors:
Ola Andersson (lkivo) <ola.andersson@ikivo.com>
Robin Berjon (Expway) <robin.berjon@expway.fr>
Erik Dahlstrom (Opera Software) <ed@opera.com>
Andrew Emmons (BitFlash) <andrew.emmons@bitflash.com>
Jon Ferraiolo (Adobe Systems until May 2006) <jon.ferraiolo@adobe.com>
Anthony Grasso (Canon, Inc.) <anthony.grasso@cisra.canon.com.au>
Vincent Hardy (Sun Microsystems, Inc.) <vincent.hardy@sun.com>
Scott Hayman (Research In Motion Limited)
Dean Jackson (W3C) <dean@w3.org>
Chris Lilley (W3C) <chris@w3.org>
Cameron McCormack (Invited Expert) <cam@mcc.id.au>
Andreas Neumann (ETH Zurich)
Craig Northway (Canon, Inc.) <craign@cisra.canon.com.au>
Antoine Quint (Invited Expert) <ag@fuchsia-design.com>
Nandini Ramani (Sun Microsystems)
Doug Schepers (W3C) <schepers@w3.org>
Andrew Shellshear (Canon, Inc.)
Authors:
See author list.

Please refer to the errata for this document, which may include some normative corrections.

This document is also available in these non-normative formats: a single-page version, a zip archive of HTML
(without external dependencies), and a PDF. See also translations, noting that the English version of this specifica-
tion is the only normative version.

Copyright © 2008 W3C" (MIT, ERCIM, Keio), All Rights Reserved. W3C liability, trademark and document use rules
apply.

www.princexml.com
Prince - Personal Edition
This document was created with Prince, a great way of getting web content onto paper.

http://www.w3.org/
http://www.w3.org/
http://www.w3.org/TR/2008/REC-SVGTiny12-20081222/
http://www.w3.org/TR/SVGTiny12/
http://www.w3.org/TR/2008/PR-SVGTiny12-20081117/
mailto:ola.andersson@ikivo.com
mailto:robin.berjon@expway.fr
mailto:andrew.emmons@bitflash.com
mailto:jon.ferraiolo@adobe.com
mailto:anthony.grasso@cisra.canon.com.au
mailto:vincent.hardy@sun.com
http://www.w3.org/People/Dean/
mailto:dean@w3.org
http://www.w3.org/People/chris/
mailto:chris@w3.org
http://mcc.id.au/
mailto:cam@mcc.id.au
mailto:craign@cisra.canon.com.au
mailto:aq@fuchsia-design.com
http://www.w3.org/People/Schepers/
mailto:schepers@w3.org
http://www.w3.org/2008/12/REC-SVGTiny12-20081222-errata.html
/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/REC-SVGTiny12-20081222.zip
http://www.w3.org/2003/03/Translations/byTechnology?technology=SVGTiny12
http://www.w3.org/Consortium/Legal/ipr-notice#Copyright
http://www.w3.org/
http://www.csail.mit.edu/
http://www.ercim.org/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents

SVG Tiny 1.2 Specification

Abstract

This specification defines the features and syntax for Scalable Vector Graphics (SVG) Tiny, Version 1.2, a language for
describing two-dimensional vector graphics in XML, combined with raster graphics and multimedia. Its goal is to
provide the ability to create a whole range of graphical content, from static images to animations to interactive Web
applications. SVG 1.2 Tiny is a profile of SVG intended for implementation on a range of devices, from cellphones
and PDAs to laptop and desktop computers, and thus includes a subset of the features included in SVG 1.1 Full,
along with new features to extend the capabilities of SVG. Further extensions are planned in the form of modules
which will be compatible with SVG 1.2 Tiny, and which when combined with this specification, will match and ex-
ceed the capabilities of SVG 1.1 Full.

Status of this document

This section describes the status of this document at the time of its publication. Other documents may supersede this doc-
ument. A list of current W3C publications and the latest revision of this technical report can be found in the W3C technical
reports index at http://www.w3.0rg/TR/.

This is the 22 December 2008 Recommendation of SVG Tiny 1.2.

This document has been reviewed by W3C Members, by software developers, and by other W3C groups and in-
terested parties, and is endorsed by the Director as a W3C Recommendation. It is a stable document and may be
used as reference material or cited from another document. W3C's role in making the Recommendation is to draw
attention to the specification and to promote its widespread deployment. This enhances the functionality and inter-
operability of the Web.

The SVG Working Group working closely with the developer community, has produced an implementation re-
port to prove the implementability of this specification. Previous drafts for this specification resulted in a number of
comments which have been addressed by the SVG Working Group, with a Disposition of Comments available on
the W3C SVG site. A list of changes made since the Proposed Recommendation Working Draft is available in Ap-
pendix T.

As described in the abstract, this specification represents the core for a set of modular extensions, but is named
SVG Tiny for historical reasons, as a profile for mobile devices. Future versions of this specification will maintain
backwards compatibility with previous versions of the language, in a continuing line of technology, but will bear
the name "SVG Core" to represent this relationship.

Please send questions or comments regarding the SVG 1.2 Tiny specification to www-svg@w3.org, the public
email list for issues related to SVG. This list is archived and acceptance of this archiving policy is requested automat-
ically upon first post. To subscribe to this list send an email to www-svg-request@w3.org with the word "subscribe”
in the subject line.

This document has been produced by the SVG Working Group as part of the W3C Graphics Activity, following
the procedures set out for the W3C Process. The authors of this document are listed at the end in the Author List
section.

This document was produced by a group operating under the 5 February 2004 W3C Patent Policy. W3C main-
tains a public list of any patent disclosures made in connection with the deliverables of the group; that page also in-
cludes instructions for disclosing a patent. An individual who has actual knowledge of a patent which the individual
believes contains Essential Claim(s) must disclose the information in accordance with section 6 of the W3C Patent
Policy.

Authors

The authors of the SVG Tiny 1.2 specification are the people who participated in the SVG Working Group as mem-
bers or alternates.

- Ola Andersson, lkivo + Craig Brown, Canon Information Systems
+ Phil Armstrong, Corel Corporation Research Australia

+ Henric Axelsson, Ericsson AB + Mike Bultrowicz, Savage Software

« Selim Balcisoy, Nokia + Tolga Capin, Nokia

+ Robin Berjon, Expway « Milt Capsimalis, Autodesk Inc.

+ Benoit Bézaire, Itedo (formerly Corel Corporation) « Mathias Larsson Carlander, Ericsson AB

« John Bowler, Microsoft Corporation « Jakob Cederquist, Ikivo

« Gordon Bowman, Corel Corporation « Suresh Chitturi, Nokia

+ Charilaos Christopoulos, Ericsson AB

http://www.w3.org/TR/SVG/
http://www.w3.org/TR/SVG/
http://www.w3.org/TR/
http://www.w3.org/TR/
http://www.w3.org/Graphics/SVG/
http://www.w3.org/Graphics/SVG/1.2/Tiny/ImpReport.html
http://www.w3.org/Graphics/SVG/1.2/Tiny/ImpReport.html
http://www.w3.org/Graphics/SVG/
http://www.w3.org/Graphics/SVG/1.2/Tiny/dc.html
mailto:www-svg@w3.org
http://lists.w3.org/Archives/Public/www-svg/
mailto:www-svg-request@w3.org
http://www.w3.org/Graphics/SVG/
http://www.w3.org/Graphics/Activity
http://www.w3.org/Consortium/Process/
http://www.w3.org/Consortium/Patent-Policy-20040205/
http://www.w3.org/2004/01/pp-impl/19480/status
http://www.w3.org/Consortium/Patent-Policy-20040205/#def-essential
http://www.w3.org/Consortium/Patent-Policy-20040205/#sec-Disclosure
http://www.w3.org/Consortium/Patent-Policy-20040205/#sec-Disclosure

SVG Tiny 1.2 Specification

Richard Cohn, Adobe Systems Inc.

Lee Cole, Quark

Cyril Concolato, Groupe des Ecoles des
Télécommunications (GET)

Don Cone, America Online Inc.

Erik Dahlstrom, Opera Software (Working Group
Chair)

Alex Danilo, Canon Information Systems Research
Australia

Thomas DeWeese, Eastman Kodak

David Dodds, Lexica

Andrew Donoho, IBM

David Duce, Oxford Brookes University
Jean-Claude Dufourd, Streamezzo (formerly GET)
Andrew Emmons, BitFlash (Working Group Chair)
Jerry Evans, Sun Microsystems

Jon Ferraiolo, Adobe Systems Inc.

BER SZ (FUJISAWA Jun), Canon

Darryl Fuller, Schema Software

Scott Furman, Netscape Communications
Corporation

Brent Getlin, Macromedia

Diego Gibellino, Telecom ltalia

Christophe Gillette, Motorola (formerly BitFlash)
Peter Graffagnino, Apple

Rick Graham, BitFlash

Anthony Grasso, Canon Information Systems
Research Australia

Niklas Hagelroth, Ikivo

Vincent Hardy, Sun Microsystems Inc.

ULl &t (HAYAMA Takanari), KDDI Research
Labs

Scott Hayman, Research In Motion Limited
Stephane Heintz, OpenText (formerly BitFlash)
Lofton Henderson, OASIS

Jan Christian Herlitz, Excosoft

Ivan Herman, W3C

Alan Hester, Xerox Corporation

Olaf Hoffmann, Invited Expert

Bob Hopgood, RAL (CCLRC)

Bin Hu, Motorola

Michael Ingrassia, Nokia

A)1l HEBE (ISHIKAWA Masayasu), W3C

Dean Jackson, W3C (W3C Team Contact)
Christophe Jolif, ILOG S.A.

Lee Klosterman, Hewlett-Packard

/N#K B4 (KOBAYASHI Arei), KDDI Research Labs
Thierry Kormann, ILOG S.A.

Yuri Khramov, Schema Software

Kelvin Lawrence, IBM

Hakon Lie, Opera

Chris Lilley, W3C (Working Group Chair)

Vincent Mahe, France Telecom

Philip Mansfield, Schema Software

Lee Martineau, Quickoffice

Charles McCathieNevile, Opera Software

Kevin McCluskey, Netscape Communications
Corporation

Cameron McCormack, Invited Expert

7k A F& (MINAKUCHI Mitsuru), Sharp Corporation
Luc Minnebo, Agfa-Gevaert N.V.

Jean-Claude Moissinac, Groupe des Ecoles des
Télécommunications (GET)

Tuan Nguyen, Microsoft Corporation

Craig Northway, Canon Information Systems
Research Australia

/NBF & — BB (ONO Shuichiro), Sharp Corporation
Lars Piepel, Vodafone

Antoine Quint, Fuchsia Design (formerly ILOG)
urfeaf= ¥ (Nandini Ramani), Sun Microsystems
Bruno David Simées Rodrigues, Vodafone

AR 3% (SAGARA Takeshi), KDDI Research Labs
Troy Sandal, Visio Corporation

Peter Santangeli, Macromedia

Doug Schepers, W3C (formerly Vectoreal) (W3C
Team Contact)

Sebastian Schnitzenbaumer, SAP AG

Haroon Sheikh, Corel Corporation

Andrew Shellshear, Canon Inc.

Brad Sipes, lkivo

Andrew Sledd, Ikivo

MNétp CopoTokuH (Peter Sorotokin), Adobe
Systems Inc.

Gavriel State, Corel Corporation

Robert Stevahn, Hewlett-Packard

Timothy Thompson, Eastman Kodak

L+ H %S (UEDA Hirotaka), Sharp Corporation
Rick Yardumian, Canon Development Americas
Charles Ying, Openwave Systems Inc.

Shenxue Zhou, Quark

Atanas Zlatinski, Samsung Electronics

Acknowledgments

The SVG Working Group would like to acknowledge the many people outside of the SVG Working Group who help
with the process of developing the SVG specification. These people are too numerous to list individually, but are
greatly appreciated. They include but are not limited to the early implementers of the SVG languages (including
viewers, authoring tools, and server-side transcoders), developers of SVG content, people who have contributed on
the www-svg@ws3.org and svg-developers@yahoogroups.com email lists, other Working Groups at the W3C, and
the W3C Team. SVG is truly a cooperative effort between the SVG Working Group, the rest of the W3C, and the

SVG Tiny 1.2 Specification

public, and benefits greatly from the pioneering work of early implementers and content developers, and from pub-
lic feedback.

SVG Tiny 1.2 Specification Expanded Table of Contents

Table of contents

TINtrOdUCHION. .. ittt iiiiiiiettetenenenesseeeoseeenassscssssennsssosssssnnnsssosssssnnnssscons 1
1T ADOUL SV G, Lttt e e e e e e 1

LI 214 C T 112/ 100 2P 1
1.2.1 Profiling the SVG specificationouiiii ittt ettt et e et ie e e eiaanas 2

1.3 Defining an SVG TiNY 1.2 AOCUMIBNT ...ttt ettt e ettt et et e e e a e eeanananns 2

1.4 SVG MIME type, file name extension and Macintosh file typec..oeiiiiiiiiiiii it 3

1.5 Compeatibility with other standards efforts. ... i e 3

1B DB INIIONS. . . ettt e e e e e e e 3

1.7 How to reference this specificationttt e et e ettt e e 9

1.8 HOW 10 USe this SPeCifiCationottt e e e e ettt ettt e, 9

2 4 T =Y 1 10
2.1 EXplaining the Name: SVGottt e e e e e e e 10
2.0 Salable . . e 10

0 0ot o 10

8 IS 1 T o] ok 10

8 1 | 11

B BT N\ =T 0 =] o - [T AP 11

B T Yol 7)1 =1 o) = 11

B (23] Yo o €= 1 0 B} VL G o) o el =T o 3 11
2.2.1 Graphical OB ECtS . o .ottt e e 11

A (= U = 11

2.2 3 R ONTS. ettt e 11

0 o 13 - o o 11

2.3 Options for USiNg SVG iN Web Pages. ... v vttt ettt ettt ettt et et et aaeanas 1
BRendering Modeliiiiiiiiiieeeeeeeeeeeeeerossnss 13
70 I 1 oY [o T 3 P 13
3.2 The Painters MOlo e e e e e e e e e e e 13
P 3 =T o o 1= ¢ g T o o =T PR 13
3.4 Types of graphics €l@MENTSttt e e et e e et e 13
3.4.1 Rendering shapes and teXT.o vttt ettt e et 13

3.4.2 ReNdEriNg raster IMAgES . oottt ettt ettt et ettt et e ettt e e ettt e et e e et a e 14

343 RENAEIING VIO . .ttt ettt e e e ettt e et e e e 14

TR0 o) =T o o - T 1 V2P 14
3.6 Parent COMPOSITING .« ettt ettt ettt et ettt ettt e e et e e e 14

4 BasiCData TYPeS. e cceeeeeeeeeeeeoresrssnnss 15
S5 DOCUMENT STIUCIUIE .. iiiiiiiiiiieeeeeeeeeeeeeeeeeeasaassssssssssssssssssssssssssssssssssssssanns 19
5.1 Defining an SVG document fragment: the 'svg' element. ... e 19
TR R 0= o P 19

51 2 The SVG BlEmMENt . . e 21

5.2 Grouping: the 'g' element e 25
L0 B O = 25

5.2 2 e g BlEMENT . et e 25

5.3 The defs @lEMENT ... e 26
5.4 The 'discard’ @lemMENtt 27
5.5 The 'title' and 'desc’ €lemMENTSottt e e e e e 28
5.5.1 Applicable 'title' and 'desco e e 29

SVG Tiny 1.2 Specification Expanded Table of Contents

5.5.2 Multiple 'title' and 'desc’ elements. ot e e e 30
5.5.3 User interface behavior for 'title' and 'desc’ ..ottt e 30

5B The USE ElEMENT ..ottt e e e e e et e e 31
5.7 The IMage @lEmMENT ..ttt e e e e et et et e e e e 36
5.8 CoNAItioNal PrOCESSING. . o vttt ittt et ettt e e ettt ettt e e 39
5.8.1 Conditional ProCesSiNg OVEIVIEW.t u ittt ettt ettt et e et e et ee e e enanas 39
58,2 The SWItCN ElEMENT. . .ottt e e e et e ettt et e e, 40
5.8.3 The 'requiredFeatures’ attribULe. i e i e e ettt ettt 41
5.8.4 The 'requiredExtensions' attribute.t i i e e e 42
5.8.5 The 'systemLanguage’ attribute.o e e e 42
5.8.6 The 'requiredFormats’ attribute i e e et e e 43
5.8.7 The 'requiredFonts’ attribute.o e e e e e 43

oIl o LT g =T I =YY 10 e 44
5.9.1 The 'externalResourcesRequired' attribute.ot e 44
5.9.2 Progressive reNAEING . ..ottt et e ettt e e e e 44
5.9.3 The pPrefetCh’ @lEmMENT. e e e e e et e e e 48

5. 10 COMMON At OULES . . . ettt ettt ettt ettt et et e 51
5.10.1 Attributes common to all elementsttt e 51
5.10.2 Attributes for character-content elements.v ittt in i i 54
123337 Vo 56
6.1 SVG'S STYlING PrOPEITIOS . . vttt e e et e e e e e 56
6.2 Usage sCenarios fOr StYliNg ettt et ettt e e e et 57
6.3 Specifying properties using the presentation attributesooviiin i 57
6.4 StYlING With XS .ot e e et e e e e 58
6.5 Case sensitivity of property names and values o i 59
6.6 Facilities from CSSand XSL used by SVGottt e e e 59
6.7 Property inheritance and COMPULAtIoNu ittt ettt e e e ieneaens 59
7 Coordinate Systems, Transformationsand Unitsc.ciiiiiiiiiiiiiiienererecesscnnnsssecnnns 60
7% 1 4 Yo [T 4T o ISP 60
7.2 The iNitial VIEWPOI .ottt e e e e ettt ettt e et e 60
7.3 The initial coordinate SYSteMttt ettt et e e e 61
7.4 Coordinate system transformationsou ittt e 62
7.5 Nested transformMatioNso.i it e e e e e 66
7.6 The transform’ attribULEoui e e e e ettt 67
7.6.1 The TransformList ValUE ottt e e ettt e ittt eneaeans 68

7.7 Constrained transformMatioNnsottt e e e 70
228 T N U=l VT T g 1 =0 T o T o 70
7.7.2 ViewBoX to Viewport transformationuuiuiiir it e e e 70
7.7 3 Element transfOrm StaCK . ..o .ttt et e e e e e e, 70
7.7.4 The current transformation MatriXouiniiiei i e it e et ettt e e ieneanns 71
7.7.5The TransformRef Value. i e e e e ettt et ettt et ieeeaans 71

7.8 The 'VieWBOX attribUte. e e e e e 74
7.9 The 'preserveAspectRatiol attribULe.ot e e et e et 76
7.10 Establishing @ NeW VIEWPOITttt et e e et ettt e e e eaaaas 77
728 I L 0 T3 P 78
7.0 2 BOUNAING DOX ettt ettt et e e e e e e e e e e e 78
7.13 Object bouNding DOX UNItS. . ..o\ttt e et e e et e et e e e 81
7.14 Intrinsic sizing properties of the viewport of SVGcontentcooiiiiiiiii it 82
7.15 Geographic COOrdiNate SYStEMIS ettt ettt ettt et e e et e e e 83
7.16 The 'svg:transform' attribULeot e e e e e e 83

Vi

SVG Tiny 1.2 Specification Expanded Table of Contents

20 o 11 1T 87
S 30 I 101 4 e Yo [Tt e o 1P 87
8.2 The Path ElEMENt . . et e e e e e e 87

8.2.1 Animating path data. . ..ot i e e e e e e e 88
B 3 Path data . ..ottt e e e e e e 88
8.3.1 General information about path data. ...t e e 88
8.3.2 The "MOVEt0" COMMANGS\ttt et ettt e ettt e et e et eieaeanananns 89
8.3.3The "closepath” COMMaANdot e e e ettt ettt 89
8.3.4 The "lINet0” COMMANAS\ttt e e et ettt et e et eaenneenes 90
8.3.5 The CUIVE COMMANGS. . ..ttt ettt ettt ettt ettt et ettt e et e et e e et et et aeaeeneneneneanenenns 90
8.3.6 The Cubic Bézier CUrVe COMMANAS\ttt ettt e ettt e et a i eaeanenanas 20
8.3.7 The Quadratic Bézier CUrve COmMMANASottt e ettt e e et eiaanananas 92
8.3.8 Thegrammarforpath dataottt 93
8.4 Distance aloNg a Path. ...t e e 95

L 05 T T 1 T o 96
LS8 I 014 oY [Tt e o T 96
L0 I o T Tl =1 =T o1 o 96
0.3 The 'CIrCle BlEMENT ...t e et et e et e e e 98
0.4 The elliPse @lEM BNt .. it e e e e e e e e 100
0.5 The lINE" @lEMENt . ..ttt e e e e et e e 101
9.6 The 'Polyling" €lemeNnt.o et et 102
9.7 The 'POlYgoN' @lEMENTttt et et e 104

9.7.1 The grammar for points specifications in 'polyline’ and 'polygon'elements 105

O T Xt i iieiiteieeeeeroeesoeesoeasaessasasacssasasacssasssasssasssasssasssasssasssasasasssasssassss 106
1028 T 4 Yo [T 4o o 106
10.2 Characters and their corresponding glyphsoo it 107
10.3 Fonts, font tables and baselinesottt e e e e e e 108
104 The teXt @lEMENT ..ttt e e e et e et ettt 109
10,5 The S PaN ElEMENT . ..ttt e e e e e e ettt e ettt e 111
TOB TEXE LAYOUL . .o ettt ettt ettt e e e e et e e 112

10.6.1 Text layout INtrodUCIONttt et et eeans 112
10.6.2 Relationship with bidirectionalityt e 113
10.6.3 The 'dirCtioN PrOPEITY . . .ttt ettt ettt e et e et e et e e et iaene e enans 115
10.6.4 The 'unicode-bidi' PropPerty . ..ottt e e e ettt et i 115
O = (=] T LT T o o) o 1= 115
O SJ T Ta T g 1T A o) o] o =T o =T3S 115
10.8.1 Text alignmENt PrOPEItIES . ..ottt ettt e ettt e e et e et e e eaeaenanans 115
10.9 FONT SEIECTION PrOPEITIES .. v vttt ettt ettt ettt e et e et et et e et iea et enenenes 116
10.T0OWhite space handlingouinii i e i e e e e e ettt et e neaens 118
LK B R = S T = I 1= R P 119
10.11.7 Introduction tO tEXt IN AN @I A\ttt t ettt et et e e et e et eiaeaaanans 119
10.11.2 The teXtArea’ €lemMENto e e e e ettt ettt et et 120
10.11.3 The 'threak @lement e e e e et et eaens 121
10.11.4 The liNe-INCremMENt PrOPEItY . . v\ttt ettt ettt ettt e e et e ettt e et eeaeanenanans 122
10.11.5 The text-align' PrOPEItY . ..ottt e e e e ettt et e et e e e eaans 122
10.11.6 The 'display-align' Property.un ettt 123
10.11.7 Textinan area layout rULS et e e e e 123
10.12 Editable teXt flelds. . ..ot e e e e e e e e e e e e 124
10.12.1 The 'editable’ attribUteo i e e e e ettt ettt 124

Vii

SVG Tiny 1.2 Specification Expanded Table of Contents

10.13 Text selection and clipboard Operations.ottt i e ettt et eeas 126
10T T EXt SEAICN . L ettt ettt et e ettt e e 127
11 Painting: Filling, Stroking, Colors and Paint Servers..........ccoiiiiiiiiiiiiieiiiiiinccenccennnnnss 129
LI P8 I L e [T o o 129
LI 720 o<l 1377 g Vo I - 1| 129
IS o1 1) e o T=T =T 130
LI o) (=) o] o =] =3 132
T1.5NON-SCAlING STrOKE. . . ettt e e e e e e e e e e e e 135
11.6 Simple alpha COMPOSITINGttt e e e e et r it a e eienens 136
11.6.1 Compositing the currentColorvalueot i et eaens 137
L o TER Y oY oY g 31 o7 o) o Y=Y o 137
11.8 The 'Viewport-fill-0pacity’ PrOPeItY v ittt ettt et ettt e et enaenas 138
11.9 Controlling visibility and rendering.o .ot e 139
I S =Y T =1 T Ve N o1 140
11.10.1 The 'color-rendering’ ProPeIrtYttt ettt et e e e eaeeans 140
11.10.2 The 'shape-rendering’ ProPertyuu ittt ettt e e e e e e eeans 140
11.10.3 The teXt-rendering' PrOPEITY . . vttt ettt ettt e e et e et e e e aenaeenans 141
11.10.4 The 'iIMage-rendering’ PrOPEITYttt ettt ettt et et e ettt e e eneaeanenenens 142
11.10.5 The 'buffered-rendering’ Propertyuu oottt et iaeeens 142
11.17 Inheritance of PaINtiNG PrOPEITIES. v .\ttt ettt ettt ettt e ettt e e et ieenaenas 143
11.12 Object and group opacity: the 'opacity’ PrOPErtYue et aenes 143
I TR 15 0o o) 146
11.13.1 Syntax for Color Values e e e e 146
11132 HTML €COIOr KEYWOIAS . . ettt ettt e e e ettt et e e e e eeans 147

LI I o 1 0= =T 147
TT.14.7 SYStEM PAINT SEIVEIS .\ttt ettt et e ettt ettt et et e et e et e et e et e eneaennenenens 147
11.14.2 The 'solidColor @lemeENnt. . ..ot e e e e et aens 148

L e B I T o] [o o o 1= Y/ PP 150

TT 1S Gradi@NTS ettt e e e e e 151
11157 LINEar GradiEnts. ..ottt ettt et ettt e e 151
11,152 Radial gradients. . ..ottt e e e e e e e e 153
11.15.3 Defining gradient stops: the 'stop' element ... e 154
T2Multimedia. .. oooiiiiiiiiiiiiiiiiiiieeiiieeneeeeeseeenasscesesssensssssscssssnssssssccssnnnnas 157
121 Media @lEmMENTS ...t e e 157
12.1.1 Media timeline and document timeline o i e 157
12.1.2 Media availability. c.o e e 158
12,0, 3 Platform IMitS ..ottt e e e e e e e e 159
12.1.4 Audio mixing for 'audio’ and 'video' elementsooiriiiii it e 159
12.1.5 Discrete control of audio and VIOo ettt 159
12.1.6 Controlling media playback through script. o e 159
12.2The 'audio’ @lemMENT.ot et e e 159
12.3The 'VIdeo' lEMENT e e et e e e 161
12.3.1 Restricting the transformation of the 'video' element i 164
12.3.2 Restricting compositing of the 'video' element 165
12 3. 3 EXAMIPIES ottt e e e e, 165
12,4 The 'animation’ @leMENTttt e e e e e et e 168
12.5 The 'audio-leVel ProPeITYttt e e e e e ettt e i 170
12.6 Attributes for runtime synchronizationottt ettt i i aenas 170
12.7 The 'initialVisibility' attribute e e 172

SVG Tiny 1.2 Specification Expanded Table of Contents

T3 INtEraCtiVity .o oovvveeeerreeeeoooonasneeeeeeeess 173
5 78 T 40 Yo [T 4o o 173
13.2 Complete list Of SUPPOItEA BVENTS.ttt ettt ettt ettt e e ettt aeeieienenaenas 173
13,3 USerinterface @VeNTS ...ttt e et e e e e e e 177
L0 2 o 1o L= L= 3 178
S TR T o= = o | P 178
L T NS VA=Y= o PN 178
6 2078 YT o o 179
138 EVeNt disPatChingo.i i e e e e e e e e e e 179
13.9 Processing order for userinterface @VeNtSouiiir it et e 179
13.10 The POINtEr-EVENTS PrOPEITY . ..ottt e ettt ettt et ettt e e e e et e e eaaenes 180
13.11 Magnification and Panning c.eue ittt e 182
L 20 78 = 1= 0 YT ol oY U 3 182

13.12.1 The focusable attribULEottt e e e e e e e e ettt eeeaaans 182
L 20015 T8\ =1V T - o T PN 183
13.13.1 Navigation behavior i e e e e e e 183
13.13.2 SPECifyiNg NaVIGatioN vu ettt et ettt e e 184
13.13.3 Specifying focus highlighting. i e 187
13.13.4 Obtaining and listening to focus programmatically........... ... 188

TALINKING toiiiiiiiiiiieeteeenoossssssseessessessssssssssssssssssssssssssnsssssssssssssssssssssssss 190

38 212 =T =Y oV L 190
L IO O =T TP 190
T4 1.21RISANA URIS ..ottt et e e e ettt e e et e e 190
14.1.3 Syntactic forms: IRIand FUNCIRI o e e e e e et e e eieaas 191
14,14 RefEreNCe reSIICHIONS .« .\ttt ettt ettt ettt e e ettt e e e et a e 191
14.1.5 IRl reference attrioULeso et e e e e e e e 194
14.1.6 Processing of external references to documents.ouiiiii it 199

14.2 Links out of SVG content:the 'a" elemento e et 200
14.2.7 Indicating [INKS . . . oot e e e e 202

14.3 Linking into SVG content: IRl fragments and SVG VIEWSoniiiiiiiii ittt i eceeeieeieaenns 203
14.3.1 Introduction: IRl fragments and SVG VIEWSottt 203
14.3.2 SVG fragment identiflers.ot e e e et e e e e e 203

T o 41 T N 205

15.1 Specifying the scripting languageottt e e e e e 205
15.1.1 Specifying the default scripting language ...t i 205
15.1.2 Local declaration of a scripting language. . ..ot e 205

15,2 The 'SCriPt lemMENt . .ot e e e e e e e e ittt e e 205
LT Y] o o o Yo =21 1 o 205

LT B | Y=Y o PN 208

15,4 The listeNer @lEmMENt . ..ottt e e e e et e et e e 210

15,5 The Thandler elemEnt. e e e e e et e e e 212
15.5.1 Parameters to 'handler elementsttt e e e e e e 214

15,6 EVeNt handling ..o e e e e e e e e 214

15.7 Processing inline executable CONteNt.ttt e e ettt et 214

TO ANIMAION .t .iiiiiiiieerteeerroassssssosssossesssssssssssssssscassssssssnsaassssssssssssssssssssss 216
T8 T 4 Yo [T o o 216
16.2 ANIMaAtiON ElEMENTS . .ottt ettt et ettt e et e, 216

TB0.2.1 OVEIVIEW. . e ettt ettt ettt e et et e e ettt e e et e et e et et et et e e e et e et e e et et eneaeeneneens 216
16.2.2 Relationship to SMIL 2.1 ANIMationottt i i et et ettt et e i eneanas 216

SVG Tiny 1.2 Specification Expanded Table of Contents

16.2.3 Animation elements eXamPle.ot i e e e 217
16.2.4 Attributes to identify the target element foran animationcoiiiii it iann, 218
16.2.5 Attributes to identify the target attribute or property for an animation............................ 219
16.2.6 ANIMation With NaMESPACES. . ..o\ttt e ettt e e et e et e et e e e aanans 220
16.2.7 Paced animation and COmMPIeX tyPes v ittt et 221
16.2.8 Attributes to control the timing of the animation......... ... oo 222
16.2.9 Attributes that define animation values Over timeviiii ittt eeans 226
16.2.10 Attributes that control whether animations are additive..............cooiiiiiiii i iiin, 230
L3020 I I 10 T 1 7= Y Vel 231
16.2.12 The animate’ @lemeNt.ot e e e ettt e et 231
16.2.13 The ‘st @lEmMENtttt e e e ettt e ettt e 232
16.2.14 The 'animateMotion' €lemMENtottt e e e et 232
16.2.15 The MPath' €lemMENt . ..o e e e e e e ettt et et e e i, 236
16.2.16 The 'animateColor @lemento. i e i e e et et aans 237
16.2.17 The 'animateTransform’ €lement.ottt e e e e e it e i aaas 237
16.2.18 Attributes and properties that canbeanimated ... e 239
16.3 Animation USING the SVG DOMttt e e e e e ettt e ettt e e eeaens 240
16.4 Animation and the bouNding boX . ..o e e e et e 241
T7 FONES i itttiiieeeonneeeesoneesessossssosassssassassssossssssessassssassssssassassssassnssssssnnas 242
1728 I T 4 Yo [T 4o o T 242
17.1.1 Describing fonts available to SVG oo e 242
17.1.2 DefiNiNg fONtS IN SVGttt e et ettt e 242
17.2 OVeIVIEW Of SV G fONES .ottt it ettt ettt et e ettt e e e 243
17,3 The fONt ElEMENT ...ttt e e et e e 244
174 The 'glyph' @lemeEnt. . . .o e e e e e e e e e 244
17.5 The 'missing-glyph' €lemento e e e e e e e et 248
17.6 Glyph seleCtion rUIES. . . .o v e e e e e e et e ettt e e 248
L2 2 1 A T2 12T 1 B = 170 =T o 249
17.8 Describing @ font e e 250
17.8.1 Overview of foNt desCriptioNsS.ottt i e e ettt ettt 250
17.8.2 The font-face’ @lemMENtttt e e e e et 250
17.8.3 The font-face-SIC @lemMENT. . ..o\ttt e e e e ettt ettt et e et 255
17.8.4 The font-face-Uri' €lemMeENnt.ttt e e e e et ettt e ettt iaiaaas 255
T8Metadata ..ovvvviiiiiieeeeeeiiiieieeeeeeeseeessseeesssssssssssosssssssssssossssssssssscsssnnnnas 258
S 28 I T 4 Yo [T 4o o 258
18.2 The 'metadata’ €lemENt.ttt e e e e e ettt e et e 258
18.2.1 A'metadata’ element eXample.ot e 259
18.3 Extensible metadata attributes. e e 259
TOEXtENSIbIlity...oouiiiiiiiiiiiiiii it iiiiiiiiiiiietiiiieneteteeesennsssesccssensssssscccnnnnnas 261
19.1 Foreign namespaces and private dataouiniiet it ettt ettt 261
19.2 Embedding foreign 0bject typesottt e 261
19.2.1 The 'foreignObject’ elementt e e e e e 262
19.2.2 Examples of foreignObjectvu it e e e e e e 263
Appendix A The SVGMicro DOM (UDOM).vvturreerersccessssssssssssssssssssssssssssssssnsssnns 267
N0 I 10 e Yo ¥ Tt o o T P 268
A20verview of the SVG UDOM ittt e et e e e et ettt ettt e et 268
N0 I T Yol U1 =Y o) - 1] 269
A A I =T 3g T= 1Y T =1 1 o o T PN 269
N0 e B =T o 0T o el Y- 4 o T o 269
A2 4 EIemMent iNSEITION ...ttt ettt e ettt e ettt e e et 269

SVG Tiny 1.2 Specification Expanded Table of Contents

A2 S Element remoVval e e e e 269
A.2.6 ATEribULE aNd PrOPEItY @CCESS ..\ttt ettt ettt ettt ettt e e ettt e et i e e 270
A.2.7 Event listener registration and removalt e e 270
A2 8 ANt ON L e e e, 271
A2.9 MUltimedia CoONtIOl.o e e e e e e e 271
A.2.10Java PacKage NAMING ... u ettt ettt ettt ettt e e et 271
A3 Conforming to the SVG UDOMttt ettt e 271
A B T Float ValUBS . oottt et e et e e e e e e e, 271
A.3.2 Attribute/property Normalizationo.o it i e e 271
e e B =g o)] (= g =Yl 272
A MOdUIE: oM . e e e e e e e e e e 273
L B 1Y/ =5 al=T o) o] 1P A 273
N e Yo [274
e 11T 0T o A 275
L o ol B3 1= 3 A 275
A S ElemMeNntTraVverSal. ..ottt e e e 276
L3 o Tt (0] o T A 276
N A1 T Y Lo 277
AL M OUI: VIS . oottt et et e e e ettt e e e e e 278
F T Y o 13 = Yt Y/ = 278
N0 To Yl U 13 01T 01 Y/ =Y 278
F 1Y T Yo U1 LR YT o 279
N I V=Y o I T o = P 279
F NI Y 7= o) o IR 3 =T Y= 279
AL, 3 BV Nt Lottt e e e e 280
ALB.A MOUSEEVENT. . .ot i i e et et e e e e e e 280
AL6.5 MOUSEWNEEIEVENT . .ttt e e e e e e ettt e e e e 281
A6 TEXIEVENT . .o i e e e 281
LN I A 1G53V o To =T e | =T o 282
R U V<Y o ¥ 286
ALB.9 ProgresSEVENT. . .ottt e e e 287
A7 MOdUIE: SNl o i i i e e e e e e e e 288
A7 ElementTimeCoNtrol ... i e e e e 288
A7 2 TIMEEV Nt . e i e e e e e e e 289
AB MOAUIE: SVG . . ettt ettt e e e e 290
L T BNV €] = el =Y o 4 o o 1S 290
A2 SV G DO UM N Lottt ettt ettt e e e e e e 290
AL8.3 SVGUSEE EMENt . .ot e e e e e 290
A8 SVGEIEMENt NS ANCE ..ottt it e e e e 291
AL8.5 SVGSV GE EMENT. . ettt i i et e e e e e 292
ALB.6 SV GRGB OO vttt et e e e e e e e e e 296
N) V1 1= ot 297
A8 8 SV G P O Nt . ..ttt ittt i et e e e e e e 297
A0 SV Gt .o e e e 298
N T 0T V11 - 4 300
A8 1T SVGLOCAtADIE . .ottt i e e e e 302
A.8.12 SVGLOoCatableEIEMENt. . ..o e e e 306
F Nt 2R G T I - 1 AV P 306
A.8.14 Additional acCessiNg rUIESttt e e e e e e 322
A8 15 SVGEIEMENt ..ttt i i e e e e 323
A8.16 SVGTIMEAEIEMENT . ..ot i e e e et e et e 324

Xi

SVG Tiny 1.2 Specification Expanded Table of Contents

A.8.17 SVGANIMaAtioNEIemMEeNt oo e 324

A.8.18 SVGVisualMediaElementot e e 324

AB T SVGT MY . ettt ettt et e e e e 325

AB.20 SVGGIODbal e 326

A.8.2T AsyncStatusCallback e 329

ALB.22 ASYNCURLSTATUS. .« ettt ettt ettt et ettt et e e e et e e e e 329

A.8.23 EventListenerlnitializer2. e 330
AppendiXx BIDLDefinitions.ocouuettiiiiieneeteeeeeseensseeesssesssssessssssssssssssssssnnssssss 331
Appendix C Implementation Requirementsccoiiiiiiiriieeieroeessersscsscesssssscessssscanss 338
LG I 13 oo [T o Yo TP 338
C.2 Unsupported elements, attributes, properties, attribute values and property values 338

L I g Co T gl o) o Vol 1 o P00 338
C.4 Namespace, version, baseProfile, requiredFeatures and requiredExtensionsccovvvnnn.. 339

C.5 Clamping of color and opacity ValUesc.iuiuiuii e et 339
C.6 'path' element implementation NOTESottt i i i ittt et e i e e 340
C.7 Text selection implementation NOtESttt e e et e et e e eieneaeanas 340
C.8 Printing iMPlementatioN NOTES.\ i 'ttt et e et e ettt ettt e et eneneananas 341
Appendix D Conformance Criteria......covieeeereeeesseerasseeesssossasssssssssssnssessssssnssssssss 342
28 I o o T ¥ Tt T TR 342
207 =T 0311 o] [T Y/ 342
D.3 SVG coNtent CONfOrMAaNCEottt e e ettt e e e e e e 342
D.3.1 Conforming SVG Document Fragmentsouenttn ettt e e e ea e eenes 342

D.3.2 Conforming SVG Stand-Alone DOCUMENTSuutttttin ettt ettt e e e eneenenanans 343

D.3.3 Conforming SVG Included Document Fragments.unerireteeee e eeeeeeianenennenennns 343

D.3.4 Conditionally Conforming SVG Tiny 1.2 Document Fragments..........oooviiiiniiiniininnennenn. 344
DYV 1 (=T el 1 o T ' T- 3 Tl 344
D.4.1 Conforming SVG GENEIATOIS. . .. v ettt e te et e e et e e et et e et et e ee et e e ea e anenanaenenans 344

D.4.2 Conforming SVG AUthoring TOOIS. . ..ottt e e e ettt e e ieeeaeans 344

D.4.3 ConfOrmMing SVG SEIVELS.ttt e e e et e e ettt e e ettt e 344

D.5 SVG reader CONfOrMANCEttt ettt e et e e e e e e e 345
D.5.1 Conforming SVG INTIPretersttt et et e 345

D.5.2 Conforming SVG VIEBWEIS . . .« .o e ettt ettt ettt e e e e e e e e e ea e 345

D.6 Extension CONformance reqUIrEMENTS.ttt ettt ettt ettt et ieae e eneneaenns 347
D.7 Non-XML encoding conformance reqUIr€MENTSc.ueueneunenn ettt e e e eie e eaennennens 347
Appendix E Conformance to QA Framework Specification Guidelinesc.ccciiiiiiiiiiiiiinnnnnnns 348
S0 I o e ¥ et o o TR 348
E.2Checklisttable e e 348

E.3 List Oof deprecated featuresi ittt ettt ettt ettt e 350
Appendix F Accessibility SUPPOrt.......coittiiiiiiiiiiiiiiieiieeessssssssssssssssssssssssssssnssnnns 351
F.1 WAI accessibility guidelingso e e e e e e ettt e 351

F.2 SVG content accessibility guidelines e 351

F.3 SVG user agent accessibility guidelines i e 352
Appendix G Internationalization SUPPOrtciiiiiiiiiiiiiiiiressssssssssceeeeessssssssssssnssnnns 353
LG I 10140 o 11 Tt i o o A PP 353
G.2 Internationalization and SVG. oottt e 353
G.3 SVGinternationalization gUIelings ou it e e 353
G.4 Markup for the internationalization and localization of SVGot 353
ApPendiX HJIPEG SUPPOIt. .. ocuuuenettiiieieneneseeessseennsssscsssessssssssssssssssssssssssnnssssss 355
TR 10 0T L T T o 355

SVG Tiny 1.2 Specification Expanded Table of Contents

[07 (=T [T =Te I U] oY o Yo T 355
Appendix | Minimizing SVGFile Sizesouiueetiiiiiiiienrtiesiseessseesssseesssssssssssnnssssss 356
Appendix JFeature Strings. . .coveeeertteseetoooossseeeeeescesssssssssssssssssssssssssssssssssssnnnns 357

J1 GeNeral fEATUIE STIINGS .ottt ettt et ettt ettt e e ettt e e e et 357

Y o<l 13 (ol =T 1 U [=T ¢ [T L= 358
Appendix KElement Table .. .cooviiieeiteerereseerooeessoesesssssssssssssssssssccssssssssssassasnnns 360
Appendix L Attribute and Property Tablescciiiiiiiiiiiiiiiiiiiiiiieeceiiieneceeecssennnsnanes 368

LT Property table ..o e 368

L 2 At OULE Tab e . oot e e e 370
Appendix M Media Type Registration forimage/svg+xmlciiiiiiiiiiiiiiiiiiiiiieeeiinnnnnenes 381

YRt T 1Y Yo [Tt o AP 381

M.2 Registration of media type image/svg+Xmlttt e 381
Appendix N RelaxNG Schema for SVG Tiny 1.2. iiiiiiiitiiiieiieeeseeeeesseennsssscssssnnnsssaes 383
Appendix O ECMAScript LanguageBindingcoiiiiiitiiiiiiiennrreeessseensssscsssnnnnsssans 384

L 8 I 17 o Yo [0 7= [0 o o TP 384

0.2 MOAUIE VIBWS .ottt e e et e e e ettt e et e 386

0.3 MOAUIE BVENTS .ttt e e et e e e e e e e e e 386

O 4 MOodUIE Sl . e i i i e e e e e e e i 388

O.5 MOAUIE SV ..ttt e e e e e 388

L0 2T Y=o U 1T o= P 393
Appendix P Javalanguage Binding........coiuetiiiiiiiiiiiiiiiiiiieettttttttteenstttccsttnnnsssans 395

Pl Package OrguW B e dom. ..ttt e e e 395

P.2 Package Org.W3C.dOmMVIBWS ...ttt ettt ettt ettt e e e ettt et ettt e e 397

P.3 Package Org.W3C.dOm.@VENTS ...ttt ittt ettt et ettt et e et 397

P.4 Package org.W3C.dom.smil.o.uiii i e e e e 398

e o Tl Yo TN o) o TRV el [' =3 399
Appendix QPerl Language Binding.......cceteueerreeeseoeceessssssssssssssccssesssssssssssssnsssnns 406

(0 17 o Yo [0 7T o o o TP 406

Q.2 MOUIB VIBWS . vttt e e e e e et e e e e e 408

Q.3 MOAUIE BVENTS . vttt et e e e e e e e e e e 408

QA MOdUIE Sl e e e e e e e e e e 409

Q.5 MOAUIE SV ..ot 410
Appendix RPython Language Binding........ccouiiuueiiiiiiiiieesssesssssscessssssssssssssssnsnnnns 416

ST 1 o Yo [1= o o T 416

R2 MOAUIE VIBWS. . e ettt et e e et e e e et et ettt e 418

R B MOAUIE BVENTS. . oottt it e e et et et et et e e e e, 418

R MOAUIE S ..ottt e e e e e e e e e e e e e e 419

RS MOAUIE SVG . . e ettt e et e e e e e e e 420
ApPPeNndiX S RefereNCES . .uuvviiiiiiietiiieressssssssessssssesssssssssssssssssssssssssssssssssnssnnns 426

ST BN 0T 40 0 P L AV =] (=] 1<) L= J AN 0

S 2 INfOIMAtIVE O O ENCES . . ettt ettt et ettt et e e et e e et 0
Appendix TChange Historyouettiiiiiineereieeeneeeneseeesssenssssessssssnsssssssssssnnssssss 434

T.1 Changes over the Whole doCUMENT.ot e e et eeaens 434

Xiii

/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/refs#q1
/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/refs#q2

SVG Tiny 1.2 Specification 1 Introduction

1 Introduction

Contents
LI I 2 oY LU) VT 1
L2514 C T 110V 10 2 1
1.2.1 Profiling the SVG speCificationot e e e e et ettt 2
1.3 Defining an SVG TiNY 1.2 dOCUMIBNT . . .ottt ettt ettt e ettt e e e et et et e e e e e et e e e eaenanananns 2
1.4 SVG MIME type, file name extension and Macintosh file type......... .o i 3
1.5 Compeatibility with other standards efforts. oo e 3
1B DB TN ONS ettt ittt e i e e e e e e e e e e 3
1.7 How to reference this speCification.iitiri i ittt et ettt et 9
1.8 HOW 10 USE this SPeCifIcation. ittt e e e e e e et ettt e e et a e e anaans 9

1.1 About SVG

SVG is a language for describing two-dimensional graphics in XML [XML10, XML11]. SVG allows for three types of
graphic objects: vector graphic shapes (e.g., paths consisting of straight lines and curves), multimedia (such as raster
images, video, and audio), and text. Graphical objects can be grouped, styled, transformed and composited into
previously rendered objects.

SVG documents can be interactive and dynamic. Animations can be defined and triggered either declaratively
(i.e., by embedding SVG animation elements in SVG content) or via scripting.

Sophisticated applications of SVG are possible by use of a supplemental scripting language which accesses the
SVG Micro Document Object Model (uUDOM), which provides complete access to all elements, attributes and proper-
ties. A rich set of event handlers can be assigned to any SVG graphical object. Because of its compatibility and lever-
aging of other Web standards, features like scripting can be done on XHTML and SVG elements simultaneously
within the same Web page.

SVG is a language for rich graphical content. For accessibility reasons, if there is an original source document
containing higher-level structure and semantics, it is recommended that the higher-level information be made
available somehow, either by making the original source document available, or making an alternative version avail-
able in a format which conveys the higher-level information, or by using SVG's facilities to include the higher-level
information within the SVG content. For suggested techniques in achieving greater accessibility, see Accessibility.

It is believed that this specification is in accordance with the Web Architecture principles as described in Archi-
tecture of the World Wide Web [AWWW].

1.2 SVG Tiny 1.2

Industry demand, overwhelming support in the SVG working group and requests from the SVG developer com-
munity established the need for some form of SVG suited to displaying vector graphics on small devices. Moreover,
the mission statement of SVG 1.0 specifically addressed small devices as a target area for vector graphics display. In
order to meet these demands the SVG Working Group created a profile specification that was suitable for use on
mobile devices as well as on desktops. The Mobile SVG Profiles specification [SVGM11] (also known as SVG Mobile
1.1) addressed that requirement and defined two profiles to deal with the variety of mobile devices having different
characteristics in terms of CPU speed, memory size, and color support. The SVG Mobile 1.1 specification defined SVG
Tiny (SVGT) 1.1, suitable for highly restricted mobile devices; it also defined a second profile, SVG Basic (SVGB) 1.1,
targeted for higher level mobile devices. The major difference between SVG Tiny 1.1 and SVG Basic 1.1 was the ab-
sence of scripting and styling in SVG 1.1 Tiny, and thus any requirement to maintain a Document Object Model
(DOM). This saved a substantial amount of memory in most implementations.

Experience with SVG Tiny 1.1, which was widely adopted in the industry and shipped as standard on a variety of
cellphones, indicated that the profile was a little too restrictive in some areas. Features from SVG 1.1 such as gradi-
ents and opacity were seen to have substantial value for creating attractive content, and were shown to be imple-
mentable on cellphones. There was also considerable interest in adding audio and video capabilities, building on
the SMIL support in SVG Tiny 1.1.

Advances such as DOM Level 3, which introduces namespace support and value normalization, prompted a
second look at the use of programming languages and scripting with SVG Tiny. In conjunction with the Java JSR 226

http://www.w3.org/TR/2004/REC-webarch-20041215/
http://www.w3.org/TR/2004/REC-webarch-20041215/
http://www.w3.org/TR/SVGMobile/
http://www.jcp.org/en/jsr/detail?id=226

SVG Tiny 1.2 Specification 1 Introduction

group [JSR226], a lightweight interface called the Micro DOM, or uDOM, was developed. This could be, but need not
be, implemented on top of DOM Level 3. With this advance, lightweight programmatic control of SVG (for example,
for games or user interfaces) and use with scripting languages, became feasible on the whole range of platforms
from cellphones through to desktops. In consequence, there is only a single Mobile profile for SVG 1.2: SVG Tiny 1.2.

This specification defines the features and syntax for Scalable Vector Graphics (SVG) Tiny 1.2, the core specifica-
tion and baseline profile of SVG 1.2. Other SVG specifications will extend this baseline functionality to create super-
sets (for example, SVG 1.2 Full). The SVG Tiny 1.2 specification adds to SVG Tiny 1.1 features requested by SVG au-
thors, implementors and users; SVG Tiny 1.2 is a superset of SVG Tiny 1.1.

1.2.1 Profiling the SVG specification

The Tiny profile of SVG 1.2 consists of all of the features defined within this specification. As a baseline specification,
it is possible for: superset profiles (e.g., SVG Full 1.2) which include all of the Tiny profile but add other features to the
baseline; subset profiles; and special-purpose profiles which incorporate some modules from this specification in com-
bination with other features as needed to meet particular industry requirements.

When applied to conformance, the term "SVG Tiny 1.2" refers to the Tiny profile of SVG 1.2 defined by this spe-
cification. If an implementation does not implement the Tiny profile completely, the UA's conformance claims must
state either the profile to which it conforms and/or the specific set of features it implements.

1.3 Defining an SVG Tiny 1.2 document

SVG Tiny 1.2 is a backwards compatible upgrade to SVG Tiny 1.1 [SVGM11]. Backwards compatible means that con-
formant SVG Tiny 1.1 content will render the same in conformant SVG Tiny 1.2 user agents as it did in conformant
SVG Tiny 1.1 user agents. A few key differences from SVG Tiny 1.1 should be noted:

+ The value of the 'version' attribute on the rootmost 'svg' element should be '1.2'. See the description of version
control in the Implementation Requirements appendix for details.

« Thereis no DTD for SVG 1.2, and therefore no need to specify the DOCTYPE for an SVG 1.2 document (unless it is
desired to use the internal DTD subset ([XML10], section 2.8, and [XML11], section 2.8), for purposes of entity
definitions for example). Instead, identification is by the SVG namespace, plus the 'version' and 'baseProfile’
attributes. In SVG Tiny 1.2, validation can be performed using the RelaxNG schema.

The namespace for SVG Tiny 1.2 is the same as that of SVG 1.0 and 1.1, http://www.w3.0rg/2000/svg and is mutable
[NSState]; names may be added over time by the W3C SVG Working Group by publication in W3C Technical Reports.
Here is an example of an SVG Tiny 1.2 document:

Example: 01_01.svg

<?xml version="1.0"7>
<svg xmlns="http://www.w3.0rg/2000/svg" version="1.2" baseProfile="tiny"
viewBox="0 @ 30 30">
<desc>Example SVG file</desc>
<rect x="10" y="10" width="10" height="10" fill="red"/>
</svg>

Here is an example of defining an entity in the internal DTD subset. Note that in XML, there is no requirement to
fetch the external DTD subset and so relying on an external subset reduces interoperability. Also note that the SVG
Working Group does not provide a normative DTD for SVG Tiny 1.2 but instead provides a normative RelaxNG
schema.

Example: entity.svg

<?xml version="1.0" encoding="UTF-8"7?>
<!DOCTYPE svg [
<!ENTITY Smile "
<rect x='.5" y=".5" width="29"' height="39' fill='black' stroke='red'/>
<g transform='translate(@, 5)'>
<circle cx="15" cy="15" r="10" fill="yellow'/>
<circle cx="12" cy="12" r="1.5" fill='black'/>
<circle cx="17" cy="12" r="1.5" fill='black'/>
<path d='M 10 19 L 15 23 20 19' stroke='black' stroke-width='2"'/>
</g>
">
1>

http://www.jcp.org/en/jsr/detail?id=226
http://www.w3.org/Graphics/SVG/
http://www.w3.org/TR/SVGMobile/
http://www.w3.org/TR/2004/REC-xml11-20040204/#NT-intSubset
http://www.w3.org/2001/tag/doc/namespaceState.html#namespacedef
/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/examples/01_01.svg
/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/examples/entity.svg

SVG Tiny 1.2 Specification 1 Introduction

<svg xmlns="http://www.w3.0rg/2000/svg" version="1.2" baseProfile="tiny">
<title>Smiley face</title>
<desc>
This example shows the use of an entity defined in the
internal DTD subset. Note that there is no external DTD subset
for SVG Tiny 1.2, and thus no formal public identifier.
</desc>
&Smile;
</svg>

1.4 SVG MIME type, file name extension and Macintosh file type

The MIME type for SVG is "image/svg+xml” (see Media type registration for image/svg+xml).

It is recommended that SVG files have the extension ".svg" (all lowercase) on all platforms. It is recommended
that gzip-compressed SVG files have the extension ".svgz" (all lowercase) on all platforms [RFC1952].

It is recommended that SVG files stored on Macintosh HFS file systems be given a file type of "svg " (all lower-
case, with a space character as the fourth letter). It is recommended that gzip-compressed SVG files stored on
Macintosh HFS file systems be given a file type of "svgz" (all lowercase).

(See Conformance Criteria for more information about gzip-compressed SVG files transmitted over HTTP.)

1.5 Compatibility with other standards efforts

SVG Tiny 1.2 leverages and integrates with other W3C specifications and standards efforts. By leveraging and con-
forming to other standards, SVG becomes more powerful and makes it easier for users to learn how to incorporate
SVG into their Web sites.

The following describes some of the ways in which SVG maintains compatibility with, leverages and integrates
with other W3C efforts:

« SVGTiny 1.2 is an application of XML and is compatible with both the Extensible Markup Language (XML) 1.1
[XML11] and Extensible Markup Language (XML) 1.0 (Third Edition) [XML10] Recommendations.

« SVGTiny 1.2 is compatible with both the Namespaces in XML 1.0 [XML-NS10] and the Namespaces in XML 1.1
[XML-NS] Recommendations.

+ SVGTiny 1.2 utilizes XML Linking Language (XLink) [XLINK10] for IRI referencing and requires support for base IRI
specifications defined in XML Base [XML-BASE].

« SVGTiny 1.2 uses the 'xml:id' attribute as defined in xml:id Version 1.0 [XMLID].

« SVGTiny 1.2 content can be generated using XSL Transformations (XSLT) Version 1.0 [XSLT] or Version 2.0 [XSLT2].
(See Styling with XSL.)

« SVGTiny 1.2 supports formatting properties drawn from CSS and XSL. (See SVG's styling properties).

« SVGTiny 1.2 includes a compatible subset of the Document Object Model (DOM) and supports many of the
facilities described in Document Object Model (DOM) Level 3 Core [DOM3], including namespace support and
event handling.

« SVGTiny 1.2 incorporates some features from the Synchronized Multimedia Integration Language (SMIL) 2.1
Specification [SMIL21], including the 'prefetch' and 'switch' elements, the 'systemLanguage' attribute, animation
features (see Animation) and the ability to reference audio and video media (see Multimedia). SVG's animation
features incorporate and extend the general-purpose XML animation capabilities described in SMIL 2.1. In
addition, SVG Tiny 1.2 has been designed to allow SMIL 2.1 to use animated or static SVG content as media
components.

+ SVGis compatible with W3C work on internationalization. References (W3C and otherwise) include: The Unicode
Standard [UNICODE] and the Character Model for the World Wide Web 1.0 [CHARMOD]. (See Internationalization
Support.)

« SVGis compatible with W3C work on Web Accessibility [WAI]. (See Accessibility Support).

In environments which support the Document Object Model (DOM) Core [DOM3] for other XML grammars (e.g.,
XHTML 1.0 [XHTML]) and which also support SVG and the SVG DOM, a single scripting approach can be used simul-
taneously for both XML documents and SVG graphics, in which case interactive and dynamic effects will be possible
on multiple XML namespaces using the same set of scripts.

1.6 Definitions

When used in this specification, terms have the meanings assigned in this section.

http://www.ietf.org/rfc/rfc1952.txt
http://www.w3.org/TR/2006/REC-xml11-20060816/
http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.w3.org/TR/2006/REC-xml-names-20060816/
http://www.w3.org/TR/2006/REC-xml-names11-20060816/
http://www.w3.org/TR/2001/REC-xlink-20010627/
http://www.w3.org/TR/2001/REC-xmlbase-20010627/
http://www.w3.org/TR/2005/REC-xml-id-20050909/
http://www.w3.org/TR/1999/REC-xslt-19991116
http://www.w3.org/TR/2007/REC-xslt20-20070123/
http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/
http://www.w3.org/TR/2005/REC-SMIL2-20051213/
http://www.w3.org/TR/2005/REC-SMIL2-20051213/
http://www.unicode.org/unicode/standard/versions/
http://www.unicode.org/unicode/standard/versions/
http://www.w3.org/TR/2005/REC-charmod-20050215/
http://www.w3.org/WAI/
http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/
http://www.w3.org/TR/2002/REC-xhtml1-20020801/

SVG Tiny 1.2 Specification 1 Introduction

after-edge
Defined in the XSL Area Model ([XSL], section 4.2.3).

animation element
Using the various animation elements, you can define motion paths, fade-in or fade-out effects, and allow
objects to grow, shrink, spin or change color. The following five elements are animation elements: ‘animate’,
‘animateColor', 'animateMotion’, 'animateTransform' and 'set’. Animation elements are further described in
Animation elements.

basic shape
Standard shapes which are predefined in SVG as a convenience for common graphical operations. Specifically,
any instance of the following elements: ‘circle’, 'ellipse’, 'line’, 'polygon’, 'polyline’ and 'rect'.

before-edge
Defined in the XSL Area Model ([XSL], section 4.2.3).

canvas
A surface onto which graphics elements are drawn, which can be real physical media such as a display or
paper or an abstract surface such as a allocated region of computer memory. See the description of the canvas
in the Coordinate Systems, Transformations and Units chapter.

bounding box
A bounding box is the tightest fitting rectangle aligned with the axes of that element’s user coordinate system
that entirely encloses it and its descendants. For details, see the description of the bounding box in the
Coordinate Systems, Transformations and Units chapter.

conditional processing attribute
A conditional processing attribute is one of the five attributes that may appear on most SVG elements to
control whether or not that element will be processed. Those attributes are 'requiredExtensions’,
'requiredFeatures’, 'requiredFonts', 'requiredFormats' and 'systemLanguage'.

container element
An element which can have graphics elements and other container elements as child elements. Specifically,
the following elements are container elements: 'a', 'defs', 'g', 'svg' and 'switch'.

current SVG document fragment
The current SVG document fragment of an element is the XML document sub-tree such that:
+ The sub-tree is a valid SVG document fragment.
+ The sub-tree contains the element in question.
« All ancestors of the element in question in the sub-tree are elements in the SVG language and namespace.
A given element may have no current SVG document fragment.

current transformation matrix (CTM)
Transformation matrices define the mathematical mapping from one coordinate system into another using a
3x3 matrix using the equation [x'y' 1] =[x y 1] * matrix. The current transformation matrix defines the mapping
from the user coordinate system into the viewport coordinate system. See Coordinate system transformations.

decorated bounding box
The decorated bounding box follows the definition for bounding box, with the exception that it takes into
account not only the geometry, but also all geometry-based drawing operations that are marked in their
definitions as contributing to this calculation.

descriptive element
An element, not itself in the rendering tree, which provides supplementary information about the container
element or graphics element to which it applies (i.e., the described element or elements). Specifically, the
following elements are descriptive elements: 'desc’, 'metadata’, and 'title'.

http://www.w3.org/TR/2006/REC-xsl11-20061205/#area_model
http://www.w3.org/TR/2006/REC-xsl11-20061205/#area_model

SVG Tiny 1.2 Specification 1 Introduction

document begin
The document begin for a given SVG document fragment is the time at which the document's timeline is
considered to begin. It depends on the value of the 'timelineBegin’ attribute:
« If 'timelineBegin' is 'onLoad’, then the document begin is the exact time at which the 'svg' element's 10ad
event is triggered.
+ Otherwise, if 'timelineBegin' is 'onStart’, then the document begin is the exact time at which the 'svg'
element's start-tag ((XML10, XML11], section 3.1) is fully parsed and processed.

document end
The document end of an SVG document fragment is the time at which the document fragment has been
released and is no longer being processed by the user agent.

document time
Indicates the position in the timeline relative to the document begin of a given document fragment.
Document time is sometimes also referred to as presentation time. For additional information see the SMIL 2.1
definition of document time ([SMIL21], section 10.7.1).

fill
The operation of painting the interior of a shape or the interior of the character glyphs in a text string.

font
A font represents an organized collection of glyphs in which the various glyph representations will share a
common look or styling such that, when a string of characters is rendered together, the result is highly legible,
conveys a particular artistic style and provides consistent inter-character alignment and spacing.

glyph
A glyph represents a unit of rendered content within a font. Often, there is a one-to-one correspondence
between characters to be drawn and corresponding glyphs (e.g., often, the character "A" is rendered using a
single glyph), but other times multiple glyphs are used to render a single character (e.g., use of accents) or a
single glyph can be used to render multiple characters (e.g., ligatures). Typically, a glyph is defined by one or
more shapes such as a path, possibly with additional information such as rendering hints that help a font
engine to produce legible text in small sizes.

graphics element
A graphics element is an SVG element that can cause graphics to be drawn onto the target canvas. Specifically,
the following elements are graphics elements: 'animation’, 'circle’, 'ellipse’, 'image’, 'line', 'path’, 'polygon’,
'polyline’, 'rect’, 'text’, 'textArea’, 'use' and 'video'.

graphics referencing element
A graphics referencing element is a graphics element that uses a reference to a different document or element
as the source of its graphical content. The following elements are graphics referencing elements: ‘animation’,
'foreignObject’, 'image’, 'use' and 'video'.

host language
A host language is a syntax which incorporates one or more SVG document fragments by inclusion or by
reference, and which defines the interactions between document fragments; an example of this is WICD Core
1.0, an XML framework which defines how XHTML, SVG, MathML, XForms, SMIL, and other syntaxes interact
[WICD].

in error
Avalueis in error if it is specifically stated as being "in error" or "an error" in the prose of this specification. See
Error Processing for more detail on handling errors.

inactive element
An element is inactive when it is outside the active duration or when it is paused. Aural aspects of elements
which are inactive (e.g. audio, and the audio track of a video element) are silent. SMIL defines the behavior of
inactive elements with respect to timing, events, and hyperlinking. See Modelling interactive, event-based

http://www.w3.org/TR/2006/REC-xml-20060816/#sec-starttags
http://www.w3.org/TR/2005/REC-SMIL2-20051213/smil-timing.html#Timing-LocalTime
http://www.w3.org/TR/2007/CR-WICD-20070718/
http://www.w3.org/TR/2007/CR-WICD-20070718/
http://www.w3.org/TR/2005/REC-SMIL2-20051213/smil-timing.html#q174

SVG Tiny 1.2 Specification 1 Introduction

content in SMIL, Paused Elements and Active Duration and Event Sensitivity ((SMIL21], sections 10.11.2 and
10.4.3).

IRI reference
An IRI reference is an Internationalized Resource Identifier with an optional fragment identifier, as defined in
Internationalized Resource Identifiers [RFC3987]. An IRI reference serves as a reference to a resource or (with a
fragment identifier) to a secondary resource. See References.

Invalid IRI reference
Aninvalid IRl reference is an |RI reference that is syntactically invalid, cannot be resolved to a resource or takes
a form that is not allowed for a given attribute, as defined in Reference restrictions.

lacuna value
A lacuna value is a defined behavior used when an attribute or property is not specified, or when an attribute
or property has an unsupported value. This value is to be used for the purposes of rendering, calculating
animation values, and when accessing the attribute or property using the TraitAccess interface. As opposed to
an XML default value, however, the attribute or property and its value are not visible in the DOM, and cannot
be accessed with DOM methods (e.g. getAttribute). For lacunae which are properties, if the property is
inherited and there is no inherited value (for example, on the root element), the lacuna value is the initial value
as specified in the definition of that property ([CSS2], section 6.1.1). For non-inherited properties, the lacuna
value is always the initial value.

Note that a lacuna value is distinct from the XML term default value, which uses DTD lookup to determine
whether an attribute is required and what its value is, and inserts required attributes and their values into the
DOM ([XML10], section 3.3.2). At the XML parser level, SVG Tiny 1.2 does not have default values; lacunae are
part of the SVG application layer, and their values are derived from the UA.

local IRI reference
A local IRl reference is an IRI reference that references a fragment within the same resource. See References.

navigation attribute
A navigation attribute is an XML attribute that specifies the element to be focused when the user instructs the
SVG user agent to navigate the focus in a particular direction or to set the focus to the next or previous
element in the focus ring. Specifically, the following attributes are navigation attributes: 'nav-next’, 'nav-prev’,
'nav-up', 'nav-down', 'nav-left’, 'nav-right', 'nav-up-left', 'nav-up-right', 'nav-down-left' and 'nav-down-right'. See
Specifying navigation.

non-local IRl reference
A non-local IRI reference is an IRl reference that references a different document or an element within a
different document.

media element
A media element is an element which defines its own timeline within its own time container. The following
elements are media elements: 'animation’, 'audio’ and 'video'. See Multimedia.

paint
A paint represents a way of putting color values onto the canvas. A paint might consist of both color values
and associated alpha values which control the blending of colors against already existing color values on the
canvas. SVG Tiny 1.2 supports two types of built-in paint: color and gradients.

presentation attribute
A presentation attribute is an XML attribute on an SVG element which specifies a value for a given property for
that element. See Styling.

property
A property is a parameter that helps specify how a document should be rendered. A complete list of the SVG
properties can be found in the Attribute and Property Table appendix. Properties are assigned to elements in
the SVG language by presentation attributes. See Styling.

http://www.w3.org/TR/2005/REC-SMIL2-20051213/smil-timing.html#q174
http://www.w3.org/TR/2005/REC-SMIL2-20051213/smil-timing.html#Timing-PausedElementsAndActiveDur
http://www.w3.org/TR/2005/REC-SMIL2-20051213/smil-timing.html#Timing-EventSensitivity
http://www.ietf.org/rfc/rfc3987.txt
http://www.w3.org/TR/CSS2/cascade.html#x1
http://www.w3.org/TR/xml/#dt-default

SVG Tiny 1.2 Specification 1 Introduction

rendering tree

The rendering tree is the set of elements being rendered, aurally or visually using the painters model, in an
SVG document fragment. The following elements in the fragment and their children are part of the SVG
document fragment, but not part of the rendering tree (and thus are not rendered):

- a'defs', 'discard’, 'font’, 'handler’, 'linearGradient’, 'listener’, 'metadata’, 'mpath’, 'prefetch’, 'radialGradient’,

'script’ or 'solidColor' element

+ elements whose 'display' property is set to 'none’

- elements with one or more conditional processing attributes that evaluate to false

- direct children of a 'switch' element, other than the child that evaluates to true

« animation elements
The copies of elements referenced by a 'use' element, on the other hand, are not in the SVG document
fragment but are in the rendering tree. Note that elements with zero opacity, or no 'fill' and no 'stroke', or with
an 'audio-level' of zero, or with the 'visibility' property set to hidden, are still in the rendering tree.

rootmost 'svg' element
The rootmost 'svg' element is the furthest 'svg' ancestor element that does not exit an SVG context.

Note that this definition has been carefully chosen to be applicable not only to SVG Tiny 1.2 (where the
rootmost 'svg' element is the only 'svg' element, except when there is an 'svg' element inside a 'foreignObject')
but also for SVG Full 1.2 and SVG that uses XBL [XBL2]. See also SVG document fragment.

shadow tree
A tree fragment that is not part of the DOM tree, but which is attached to a referencing element (e.g. 'use’

element) in a non-parent-child relationship, for the purpose of rendering and event propagation. The shadow
tree is composed as if it were deep-structure clone of the referenced element in the rendering tree. The
shadow tree is kept in synchronization with the contents of the referenced element, so that any animation,
DOM manipulation, or non-DOM interactive state occurring on the referenced element are also applied to all
the referencing instances. In SVG Tiny 1.2, only a subset of all SVG DOM methods to access the shadow tree are
available.

Also referred to as an "instance tree".

shape
A shape is a graphics element that comprises a defined combination of straight lines and curves. Specifically,

the following elements are shapes: 'circle’, 'ellipse’, 'line', 'path’, 'polygon’, 'polyline’ and 'rect'.

stroke
Stroking is the operation of painting the outline of a shape or the outline of character glyphs in a text string.

SVG context
An SVG context is a document fragment where all elements within the fragment must be subject to

processing by an SVG user agent according to the rules in this specification.

If SVG content is embedded inline within parent XML (such as XHTML), the SVG context does not include
the ancestors above the rootmost 'svg' element. If the SVG content contains any 'foreignObject’' elements
which in turn contain non-SVG content, the SVG context does not include the contents of the 'foreignObject'
elements.

In SVG Tiny 1.2, an SVG context contains one SVG document fragment.

SVG document fragment
An SVG document fragment is the XML document sub-tree whose rootmost element is an 'svg' element (that
is, the rootmost 'svg' element.)

An SVG document fragment consists of either a stand-alone SVG document, or a fragment of a parent XML
document where the fragment is enclosed by the rootmost 'svg' element.

In SVG Tiny 1.2, the SVG document fragment must not contain nested 'svg' elements. Nested 'svg' elements
are unsupported elements and must not be rendered. Note that document conformance is orthogonal to SVG
document fragment conformance.

For further details, see the section on Conforming SVG Document Fragments.

SVG Tiny 1.2 Specification 1 Introduction

SVG element
An SVG element is an element within the SVG namespace defined by the SVG language specification.

SVG user agent
An SVG user agent is a user agent that is able to retrieve and render SVG content.

syncbase
The syncbase of an animation element timing specifier is the element whose timing this element is relative to,
as defined in SMIL 2.1 ([SMIL21], section 10.7.1).

text content element
A text content element is an SVG element that causes a text string to be rendered onto the canvas. The SVG
Tiny 1.2 text content elements are the following: 'text’, 'textArea’ and 'tspan’.

text content block element
A text content block element is a text content element that serves as a standalone element for a unit of text,
and which may optionally contain certain child text content elements (e.g. ‘tspan’). SVG Tiny 1.2 defines two
text content block elements: 'text' and 'textArea'.

timed element
A timed element is an element that supports the SVG timing attributes. The following elements are timed
elements: 'audio’, 'animate’, 'animateColor’, 'animateMotion’, 'animateTransform', 'animation’, 'set' and 'video'.

transformation
A transformation is a modification of the current transformation matrix (CTM) by providing a supplemental
transformation in the form of a set of simple transformations specifications (such as scaling, rotation or
translation) and/or one or more transformation matrices. See Coordinate system transformations.

transformation matrix
A transformation matrix defines the mathematical mapping from one coordinate system into another using a
3x3 matrix using the equation [x'y' 11=[xy 1] * matrix. See current transformation matrix (CTM) and Coordinate
system transformations.

unsupported value
An unsupported value is a value that does not conform to this specification, but is not specifically listed as
being in error. See the Implementation Notes for more detail on processing unsupported values.

user agent
The general definition of a user agent is an application that retrieves and renders Web content, including text,
graphics, sounds, video, images, and other content types. A user agent may require additional user agents that
handle some types of content. For instance, a browser may run a separate program or plug-in to render sound
or video. User agents include graphical desktop browsers, multimedia players, text browsers, voice browsers;
used alone or in conjunction with assistive technologies such as screen readers, screen magnifiers, speech
synthesizers, onscreen keyboards, and voice input software [UAAG].

A user agent may or may not have the ability to retrieve and render SVG content; however, an SVG user

agent must be able to retrieve and render SVG content.

user coordinate system
In general, a coordinate system defines locations and distances on the current canvas. The current user
coordinate system is the coordinate system that is currently active and which is used to define how
coordinates and lengths are located and computed, respectively, on the current canvas. See initial user
coordinate system and Coordinate system transformations.

user space
User space is a synonym for user coordinate system.

http://www.w3.org/TR/2005/REC-SMIL2-20051213/smil-timing.html#Timing-Syncbases

SVG Tiny 1.2 Specification 1 Introduction

user units
A coordinate value or length expressed in user units represents a coordinate value or length in the current
user coordinate system. Thus, 10 user units represents a length of 10 units in the current user coordinate

system.

viewport
A viewport is a rectangular region within the current canvas onto which graphics elements are to be rendered.
See the description of the initial viewport in the Coordinate Systems, Transformations and Units chapter.

viewport coordinate system
In general, a coordinate system defines locations and distances on the current canvas. The viewport coordinate
system is the coordinate system that is active at the start of processing of an 'svg' element, before processing
the optional 'viewBox' attribute. In the case of an SVG document fragment that is embedded within a parent
document which uses CSS to manage its layout, then the viewport coordinate system will have the same
orientation and lengths as in CSS, with the origin at the top-left on the viewport. See The initial viewport and
Establishing a new viewport.

viewport space
Viewport space is a synonym for viewport coordinate system.

viewport units
A coordinate value or length expressed in viewport units represents a coordinate value or length in the
viewport coordinate system. Thus, 10 viewport units represents a length of 10 units in the viewport coordinate

system.

Note: When this specification uses the term 'svg’ element, 'path' element, or similar reference to an SVG element
defined within this specification, it is referring to the element whose namespace URI is http://www.w3.0rg/2000/svg
and whose local name is the string in quotes (e.g., "svg" or "path"). An exception to this is the 'listener' element,
whose namespace URI is http://www.w3.org/2001/xml-events.

1.7 How to reference this specification

When referencing this specification as a whole or when referencing a chapter or major section, use the undated URI,
http://www.w3.org/TR/SVGTiny12/, Where possible. This allows the reference to always refer to the latest version of this
specification.

1.8 How to use this specification

This section is informative.

This specification is meant to serve both as a guide to authors in creating SVG content, and as a detailed refer-
ence for implementors of browsers, viewers, authoring tools, content processing tools, and other user agents to cre-
ate conforming interoperable implementations for viewing SVG documents or outputting robust SVG code. It is not
intended as a comprehensive manual for authoring content, and it is expected that books, tutorials, and other ma-
terials based on this specification will be produced to appeal to different audiences. It is meant to serve as a definit-
ive source for authors and users to reference when reporting bugs and feature requests to implementations.

When reading this specification, in order to gain a complete understanding of the syntax concepts, readers
should reference the individual definitions for elements, attributes, and properties, but also consult the definitions
list, the element, attribute, property tables, and for more technically adept readers, the RelaxNG schema. For under-
standing scripting in SVG, readers should consult the sections on Interactivity, Scripting, and the SVG Micro DOM
(UDOM).

SVG Tiny 1.2 Specification 2 Concepts

2 Concepts

Contents

2.1 EXPlaining the NamE: SV G. . ..ottt e ettt e ettt e e et e e 10
N 0 Y- -1 o[10
0 0 V=Tt o P 10
8 0 1 - o] Tk 10
0 0 11
0 BT N\ T 4 =T o T L= P 11
R BT 3 Yl o =1 o] [P 11

2 A 0] o o) 0 7= 1 0T AV G oo g U= o | 375 PP 1
2.2.1 GraphiCal O ECES. . ottt e e e e e e e e 11
S = P 11
0. T o 01 (3 11
B N o [T 1 o) o T PP 11

2.3 Options for using SVG IN Web pageso.uiii i e e e e e et e 11

This chapter is informative.

2.1 Explaining the name: SVG

SVG stands for Scalable Vector Graphics, an XML grammar for 2D vector graphics, usable as an XML namespace.

2.1.1 Scalable

To be scalable means to increase or decrease uniformly. In terms of graphics, scalable means not being limited to a
single, fixed, pixel size. On the Web, scalable means that a particular technology can grow to a large number of files,
a large number of users, a wide variety of applications. SVG, being a graphics technology for the Web, is scalable in
both senses of the word.

SVG graphics are scalable to different display resolutions, so that for example printed output uses the full resolu-
tion of the printer and can be displayed at the same size on screens of different resolutions. The same SVG graphic
can be placed at different sizes on the same Web page, and re-used at different sizes on different pages. SVG graph-
ics can be magnified to see fine detail, or to aid those with low vision.

SVG graphics are scalable because the same SVG content can be a stand-alone graphic or can be referenced or
included inside other SVG graphics, thereby allowing a complex illustration to be built up in parts, perhaps by sever-
al people. The use and font capabilities promote re-use of graphical components, maximize the advantages of HTTP
caching and avoid the need for a centralized registry of approved symbols.

2.1.2 Vector

Vector graphics contain geometric objects such as lines and curves. This gives greater flexibility compared to raster-
only formats (such as PNG and JPEG) which have to store information for every pixel of the graphic. Typically, vector
formats can also integrate raster images and can combine them with vector information to produce a complete il-
lustration; SVG is no exception.

Since all modern displays are raster-oriented, the difference between raster-only and vector graphics comes
down to where they are rasterized; client side in the case of vector graphics, as opposed to already rasterized on the
server. SVG provides hints to control the rasterization process, for example to allow anti-aliased artwork without the
ugly aliasing typical of low quality vector implementations.

2.1.3 Graphics

Most existing XML grammars represent either textual information, or represent raw data such as financial informa-
tion. They typically provide only rudimentary graphical capabilities, often less capable than the HTML 'img' element.
SVG fills a gap in the market by providing a rich, structured description of vector and mixed vector/raster graphics; it
can be used stand-alone, or as an XML namespace with other grammars.

10

SVG Tiny 1.2 Specification 2 Concepts

2.1.4 XML

XML [XML10, XML11], a W3C Recommendation for structured information exchange, has become extremely popu-
lar and is both widely and reliably implemented. By being written in XML, SVG builds on this strong foundation and
gains many advantages such as a sound basis for internationalization, powerful structuring capability, an object
model, and so on. By building on existing, cleanly-implemented specifications, XML-based grammars are open to
implementation without a huge reverse engineering effort.

2.1.5 Namespace

It is certainly useful to have a stand-alone, SVG-only viewer. But SVG is also intended to be used as one component
in a multi-namespace XML application. This multiplies the power of each of the namespaces used, to allow innovat-
ive new content to be created. For example, SVG graphics may be included in a document which uses any text-ori-
ented XML namespace — including XHTML. A scientific document, for example, might also use MathML [MATHML]
for mathematics in the document. The combination of SVG and SMIL leads to interesting, time based, graphically
rich presentations.

SVG is a good, general-purpose component for any multi-namespace grammar that needs to use graphics.

2.1.6 Scriptable

The combination of scripting and the HTML DOM is often termed "Dynamic HTML" and is widely used for animation,
interactivity and presentational effects. Similarly SVG allows the script-based manipulation of the document tree us-
ing a subset of the XML DOM and the SVG uDOM.

2.2 Important SVG concepts

2.2.1 Graphical objects

With any XML grammar, consideration has to be given to what exactly is being modelled. For textual formats, mod-
elling is typically at the level of paragraphs and phrases, rather than individual nouns, adverbs, or phonemes. Simil-
arly, SVG models graphics at the level of graphical objects rather than individual points.

SVG provides a general path element, which can be used to create a huge variety of graphical objects, and also
provides common basic shapes such as rectangles and ellipses. These are convenient for hand coding and may be
used in the same ways as the more general path element. SVG provides fine control over the coordinate system in
which graphical objects are defined and the transformations that will be applied during rendering.

2.2.2 Re-use

It would have been possible to define some standard, pre-defined graphics that all SVG implementations would
provide. But which ones? There would always be additional symbols for electronics, cartography, flowcharts, etc.,
that people would need that were not provided until the "next version". SVG allows users to create, re-use and share
their own graphical assets without requiring a centralized registry. Communities of users can create and refine the
graphics that they need, without having to ask a committee. Designers can be sure exactly of the graphical appear-
ance of the graphics they use and not have to worry about unsupported graphics.

Graphics may be re-used at different sizes and orientations.

2.2.3 Fonts

Graphically rich material is often highly dependent on the particular font used and the exact spacing of the glyphs.
In many cases, designers convert text to outlines to avoid any font substitution problems. This means that the ori-
ginal text is not present and thus searchability and accessibility suffer. In response to feedback from designers, SVG
includes font elements so that both text and graphical appearance are preserved.

2.2.4 Animation

Animation can be produced via script-based manipulation of the document, but scripts are difficult to edit and in-
terchange between authoring tools is harder. Again in response to feedback from the design community, SVG in-
cludes declarative animation elements which were designed collaboratively by the SVG and SYMM Working Groups.
This allows the animated effects common in existing Web graphics to be expressed in SVG.

2.3 Options for using SVG in Web pages

There are a variety of ways in which SVG content can be included within a Web page. Here are some of the options:

11

http://www.w3.org/TR/MathML2/

SVG Tiny 1.2 Specification 2 Concepts

A stand-alone SVG Web page
In this case, an SVG document (i.e., a Web resource whose MIME type is "image/svg+xml”) is loaded directly into a
user agent such as a Web browser. The SVG document is the Web page that is presented to the user.
Embedding by reference
In this case, a parent Web page references a separately stored SVG document and specifies that the given SVG
document should be embedded as a component of the parent Web page. For HTML or XHTML, here are three
options:

« The (X)HTML 'img' element is the most common method for using graphics in HTML pages. For faster
display, the width and height of the image can be given as attributes. One attribute that is required is 'alt’,
used to give an alternate textual string for people browsing with images off, or who cannot see the images.
The string cannot contain any markup. A 'longdesc’ attribute lets you point to a longer description — often
in HTML — which can have markup and richer formatting.

+ The (X)HTML 'object' element can contain other elements nested within it, unlike 'img', which is empty. This
means that several different formats can be offered, using nested 'object' elements, with a final textual
alternative (including markup, links, etc). The rootmost element which can be displayed will be used.

« The (X)HTML 'applet' element which can invoke a Java applet to view SVG content within the given Web
page. These applets can do many things, but a common task is to use them to display images, particularly
ones in unusual formats or which need to be presented under the control of a program for some other
reason.

Embedding inline
In this case, SVG content is embedded inline directly within the parent Web page. An example is an XHTML
Web page with an SVG document fragment textually included within the XHTML.

External link, using the HTML 'a’ element
This allows any stand-alone SVG viewer to be used, which can (but need not) be a different program to that
used to display HTML. This option typically is used for unusual image formats.

Referenced from a CSS or XSL property
When a user agent supports Cascading Style Sheets, Level 2 [CSS2] styled XML content, or Extensible Stylesheet
Language [XSL] Formatting Objects, and the user agent is a Conforming SVG Viewer, then that user agent must
support the ability to reference SVG resources wherever CSS or XSL properties allow for the referencing of
raster images, including the ability to tile SVG graphics wherever necessary and the ability to composite the
SVG into the background if it has transparent portions. Examples include the 'background-image' ([(CSS2],
section 14.2.1) and 'list-style-image' ([CSS2], section 12.6.2) properties that are included in both CSS and XSL.

12

http://www.w3.org/TR/1998/REC-CSS2-19980512/
http://www.w3.org/TR/2006/REC-xsl11-20061205/
http://www.w3.org/TR/2006/REC-xsl11-20061205/
http://www.w3.org/TR/CSS2/colors.html#propdef-background-image
http://www.w3.org/TR/CSS2/generate.html#propdef-list-style-image

SVG Tiny 1.2 Specification 3 Rendering Model

3 Rendering Model

Contents
70 10 0T [T o) o P 13
207 I 1=l o - 110 T 305 0 o Yo [P 13
I J8C 32 { T e 1= T Ve I e =T 13
3.4 Types of graphics €lemMENTSottt e e e e e e 13
3.4.1 Rendering shapes and tOXEttt ettt et e e e e 13
T e P] o = 1) €T] ' T Vo =T3P 14
343 RENAEING VIAEO ..ottt ettt e et e ettt e et et e e et e 14
TR @ o [Tl o] o - Tl | 47700 O 14
3.6 Parent COMPOSITING .. ut ettt ettt ettt ettt ettt e et e et e et e et et ettt 14

3.1 Introduction

Implementations of SVG are expected to behave as though they implement a rendering (or imaging) model corres-
ponding to the one described in this chapter. A real implementation is not required to implement the model in this
way, but the result on any device supported by the implementation shall match that described by this model.

The appendix on conformance requirements describes the extent to which an actual implementation may devi-
ate from this description. In practice an actual implementation will deviate slightly because of limitations of the out-
put device (e.g. only a limited gamut of colors might be supported) and because of practical limitations in imple-
menting a precise mathematical model (e.g. for realistic performance curves may be approximated by straight lines,
the approximation need only be sufficiently precise to match the conformance requirements).

3.2 The painters model

SVG uses a "painters model" of rendering. Paint is applied in successive operations to the output device such that
each operation paints over some area of the output device. When the area overlaps a previously painted area the
new paint partially or completely obscures the old. When the paint is not completely opaque the result on the out-
put device is defined by the (mathematical) rules for compositing described under simple alpha compositing.

3.3 Rendering order

SVG defines a rendering tree. Elements in the rendering tree have an implicit drawing order. Elements are rendered
using a pre-order, depth-first walk of the SVG document fragment. Subsequent elements are painted on top of pre-
viously painted elements.

3.4 Types of graphics elements

SVG supports three fundamental types of graphics elements that can be rendered onto the canvas:
+ Shapes, which represent some combination of straight lines and curves.
+ Text, which represents some combination of character glyphs.
+ Replaced content:

« Raster images, which represent an array of values that specify the paint color and opacity (often termed
alpha) at a series of points on a rectangular grid. (SVG requires support for specified raster image formats
under conformance requirements.)

+ Video, which represents a timed sequence of raster images.

+ Animation, which represents a timed vector animation.

+ Foreign objects, which represent rendering of non-SVG content.

3.4.1 Rendering shapes and text

Shapes and text can be filled (i.e., paint can be applied to the interior of the shape) and stroked (i.e., painted applied
along the outline of the shape). A stroke operation is centered on the outline of the object; thus, in effect, half of the
paint falls on the interior of the shape and half of the paint falls outside of the shape.

The fill is painted first, then the stroke.

13

SVG Tiny 1.2 Specification 3 Rendering Model

Each fill and stroke operation has its own opacity settings; thus, you can fill and/or stroke a shape with a semi-
transparently drawn solid color, with different opacity values for the fill and stroke operations.
The fill and stroke operations are entirely independent rendering operations; thus, if you both fill and stroke a
shape, half of the stroke will be painted on top of part of the fill.
SVG Tiny supports the following built-in types of paint which can be used in fill and stroke operations:
+ Solid color
+ Gradients (linear and radial)

3.4.2 Rendering raster images

When a raster image is rendered, the original samples are "resampled" using standard algorithms to produce
samples at the positions required on the output device. Resampling requirements are discussed under conform-
ance requirements.

3.4.3 Rendering video

As a video stream is a timed sequence of raster images, rendering video has some similarity to rendering raster im-
ages. However, given the processing required to decode a video stream, not all implementations may be able to
transform the video output into SVG's userspace. Instead they may be limited to rendering in device space. More in-
formation can be found in the definition for video.

3.5 Object opacity

Each fill or stroke painting operation must behave as though the operation were first performed to an intermediate
canvas which is initialized to transparent black onto which either the solid color or gradient paint is applied. Then,
the alpha values on the intermediate canvas are multiplied by the ‘fill-opacity' or 'stroke-opacity' values. The result-
ing canvas is composited into the background using simple alpha compositing.

3.6 Parent compositing

SVG document fragments can be semi-opaque. In many environments (e.g., Web browsers), the SVG document
fragment has a final compositing step where the document as a whole is blended translucently into the back-
ground canvas.

14

SVG Tiny 1.2 Specification 4 Basic Data Types

4 Basic Data Types

This chapter defines a number of common data types used in the definitions of SVG properties and attributes. Some
data types that are not referenced by multiple properties and attributes are defined inline in subsequent chapters.

<boolean>
A boolean value, specified as either "true’ or 'false'.

<Char>
A character, as defined by the Char production in Extensible Markup Language (XML) 1.0 ([XML10], section 2.2),
or the Char production in Extensible Markup Language (XML) 1.1 ((XML11], section 2.2) if the document is an
XML 1.1 document.

<Clock-value>
An amount of time, used by various attributes on timed elements. The grammar describing possible values for
a <Clock-value> is given in the Clock values section of the Animation chapter.

<color>
The basic type <color> defines a color within the SRGB color space [SRGB]. The <color> type is used as the
value of the 'color' property and is a component of the definitions of properties 'fill', 'stroke’, 'stop-color", 'solid-
color' and 'viewport-fill'.
All of the syntax alternatives for <color> defined in Syntax for color values must be supported. All RGB
colors are specified in the sSRGB color space [SRGB]. Using sRGB provides an unambiguous and objectively
measurable definition of the color, which can be related to international standards [COLORIMETRY].

<content-type>
An Internet media type, as per Multipart Internet Mail Extensions: (MIME) Part Two: Media Types [RFC2046].

<coordinate>
A <coordinate> is a length in the user coordinate system that is the given distance from the origin of the user
coordinate system along the relevant axis (the x-axis for X coordinates, the y-axis for Y coordinates). Its syntax
is the same as that for <length>.

<focus>
The type of value that can be used in the various navigation attributes, such as 'nav-next’, 'nav-prev’, etc. See
Specifying navigation for the definition of the values that can be used in those attributes.

<font-family-value>
A list of font family names and generic names. Specifically, this is the type of value that can be used for the
‘font-family' property, excluding the ‘inherit' value.

<family-name>
A single font family name as given by a <family-name>, as defined in Extensible Stylesheet Language (XSL)
Version 1.1 ([XSL], section 7.9.2).

<font-size-value>
A value that can be used for the 'font-size' property, excluding the 'inherit' value.

<FunclRI>
Functional notation for an IRI: "url(" <IRI>")".

<ID>
The type of value that can be used in an XML attribute of type ID (such as 'id' and 'xml:id"); that is, a string
matching the Name production in Extensible Markup Language (XML) 1.0 (XML10], section 2.3), or the Name
production in Extensible Markup Language (XML) 1.1 (IXML11], section 2.3) if the document is an XML 1.1
document.

15

http://www.w3.org/TR/2006/REC-xml-20060816/#dt-character
http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.w3.org/TR/2004/REC-xml11-20040204/#dt-character
http://www.w3.org/TR/2004/REC-xml11-20040204/
http://www.ietf.org/rfc/rfc2046.txt
http://www.w3.org/TR/2006/REC-xsl11-20061205/#font-family
http://www.w3.org/TR/2006/REC-xml-20060816/#NT-Name
http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.w3.org/TR/2004/REC-xml11-20040204/#NT-Name
http://www.w3.org/TR/2004/REC-xml11-20040204/

SVG Tiny 1.2 Specification 4 Basic Data Types

<IDREF>
The type of value that can be used in an XML attribute of type IDREF (such as 'observer'); that is, a string
matching the Name production in Extensible Markup Language (XML) 1.0 ([XML10], section 2.3), or the Name
production in Extensible Markup Language (XML) 1.1 ([XML11], section 2.3) if the document is an XML 1.1
document.

<integer>
An <integer> is specified as an optional sign character ("+" or "-") followed by one or more digits "0" to "9". If
the sign character is not present, the number is non-negative.
<integer> values in conforming SVG Tiny 1.2 content must be within the range of -32,768 to 32,767,
inclusive.

<IRI>
An Internationalized Resource Identifier (see IRI). For the specification of IRl references in SVG, see IRI
references.

<language-id>
The type of value accepted by the 'xml:lang' attribute as defined in Extensible Markup Language (XML) 1.0
(IXML10], section 2.12) and Extensible Markup Language (XML) 1.1 (IXML11], section 2.12). Specifically, this is
either a language tag as defined by BCP 47 ([BCP 47], section 2) or the empty string.

<length>
A length is a distance measurement. The format of a <length> is a <number> optionally followed by a unit
identifier. If the <length> is expressed as a value without a unit identifier (e.g., '48"), then the <length>
represents a distance in the current user coordinate system.

SVG Tiny 1.2 only supports optional units on the 'width' and 'height' attributes on the 'svg' element. These
can specify values in any of the following units: in, cm, mm, pt, pc, px and %. If one of the unit identifiers is
provided (e.g., '12mm"), then the <length> is processed according to the description in Units.

Percentage values (e.g., '"10%") on the 'width' and 'height' attributes of the 'svg' element represent a
percentage of the viewport size (refer to the section that discusses Units in general).

<list-of-content-types>
A space-separated list of Internet media types, as used by the 'requiredFormats' attribute.
The following is an EBNF grammar describing the <list-of-content-types> syntax [EBNF]:

list-of-content-types ::= content-type
| content-type wsp list-of-content-types
wsp = (#x9 | #xD | #xA | #x20)*

<list-of-family-names>
A <list-of-family-names> is a list of font family names using the same syntax as the 'font-family' property,
excluding the <generic-family> and 'inherit' values.

<list-of-language-ids>
A <list-of-language-ids> is a comma separated list of non-empty <language-id> values. White space may be
used before or after the commas.

<list-of-strings>
A <list-of-strings> consists of a separated sequence of <string>s. String lists are white space-separated, where
white space is defined as one or more of the following consecutive characters: "space" (U+0020), "tab"
(U+0009), "line feed" (U+000A) and "carriage return” (U+000D).
The following is an EBNF grammar describing the <list-of-strings> syntax [EBNFI:

list-of-strings ::= string
| string wsp list-of-strings
(#x9 | #xD | #xA | #x20)*

wsp

16

http://www.w3.org/TR/2006/REC-xml-20060816/#NT-Name
http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.w3.org/TR/2004/REC-xml11-20040204/#NT-Name
http://www.w3.org/TR/2004/REC-xml11-20040204/
http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.w3.org/TR/2004/REC-xml11-20040204/
http://www.rfc-editor.org/rfc/bcp/bcp47.txt

SVG Tiny 1.2 Specification 4 Basic Data Types

<list-of-Ts>
(Where Tis a type other than <content-type>, <string>, <language-id> and <family-name>.) A list consists of a
separated sequence of values. Unless explicitly described differently, each pair of list items can be separated
either by a comma (with optional whitespace before and after the comma) or by white space alone.
White space in lists is defined as one or more of the following consecutive characters: "space” (U+0020),
"tab" (U+0009), "line feed" (U+000A) and "carriage return" (U+000D).
The following is a template for an EBNF grammar describing the <list-of-Ts> syntax [EBNF]:

list-of-Ts ::= T

| T comma-wsp list-of-Ts
comma-wsp ::= (wspt comma? wspx) | (comma wspx)
comma o
wsp

(#x9 | #xD | #xA | #x20)

Substituting a type other than <content-type>, <string>, <language-id> and <family-name> for T will yield a
grammar for a list of that type.

<long>
A <long> is specified as an optional sign character ("+" or "-") followed by one or more digits "0" to "9". If the
sign character is not present, the number is non-negative.
<long> values in conforming SVG Tiny 1.2 content must be within the range of -2,147,483,648 to
2,147,483,647, inclusive.

<NCName>
An XML name without colons, as defined by the NCName production in Namespaces in XML 1.0 ([XML-NS10],
section 3), or the NCName production in Namespaces in XML 1.1 ([XML-NS], section 3) if the document is an
XML 1.1 document.

<number>
A <number> value is specified in either decimal or scientific notation. A <number> using decimal notation
consists of either an <integer>, or an optional sign character followed by zero or more digits followed by a dot
(.) followed by one or more digits. Using scientific notation, it consists of a number in decimal notation
followed by the letter "E" or "e", followed by an <integer>.
The following is an EBNF grammar describing the <number> syntax [EBNF]:

number = decimal-number | scientific-number
decimal-number = integer

["+ | "=")? [0-9]x "." [0-9]+
scientific-number ::= decimal-number [Ee] integer

<number> values in conforming SVG Tiny 1.2 content must have no more than 4 decimal digits in the
fractional part of their decimal expansion and must be in the range -32,767.9999 to +32,767.9999, inclusive. It
is recommended that higher precision floating point storage and computation be performed on operations
such as coordinate system transformations to provide the best possible precision and to prevent round-off
errors.

<paint>
The values for properties 'fill' and 'stroke’ are specifications of the type of paint to use when filling or stroking a
given graphics element. The available options and syntax for <paint> are described in Specifying paint.

<path-data>
The <path-data> type is used to represent path data, as can be specified in the 'd' attribute on a 'path’ element.
See the detailed description of path data, including the grammar for path data.

<points-data>
The <points-data> type is used to represent a list of points, as can be specified in the 'points' attribute on a
'polyline’ or 'polygon' element. See the grammar for points data.

<QName>
The <QName> type is a qualified name, as defined by the QName production in Namespaces in XML 1.0 ([XML-
NS10], section 3), or the QName production in Namespaces in XML 1.7 ([XML-NS], section 3) if the document is

17

http://www.w3.org/TR/2006/REC-xml-names-20060816/#NT-NCName
http://www.w3.org/TR/2006/REC-xml-names-20060816/
http://www.w3.org/TR/2006/REC-xml-names11-20060816/#NT-NCName
http://www.w3.org/TR/2006/REC-xml-names11-20060816/
http://www.w3.org/TR/2006/REC-xml-names-20060816/#NT-QName
http://www.w3.org/TR/2006/REC-xml-names-20060816/
http://www.w3.org/TR/2006/REC-xml-names11-20060816/#NT-QName
http://www.w3.org/TR/2006/REC-xml-names11-20060816/

SVG Tiny 1.2 Specification 4 Basic Data Types

an XML 1.1 document. If the <QName> has a prefix, then the prefix is expanded into a tuple of an IRI reference
and a local name, using the namespace declarations in effect where the name occurs. Note that, as with
unprefixed attributes, the default namespace is not used for unprefixed names.

<string>
A sequence of zero or more <Char>s.

<transform>
A <transform> is a transformation specification, as can be specified in the 'transform' attribute. As described in
The 'transform’ attribute, three types of values are allowed: a transform list, a transform reference and the
'none' value.
The following is an EBNF grammar describing the <transform> syntax [EBNF]:

transform ::= transform-list | transform-ref | "none”

<XML-Name>
An XML name, as defined by the Name production in Extensible Markup Language (XML) 1.0 ((XML10], section
2.3), or the Name production in Extensible Markup Language (XML) 1.1 ([XML11], section 2.3) if the document is
an XML 1.1 document.

<XML-NMTOKEN>
An XML name token, as defined by the Nmtoken production in Extensible Markup Language (XML) 1.0 (XML10],
section 2.3), or the Nmtoken production in Extensible Markup Language (XML) 1.1 ([XML11], section 2.3) if the
document is an XML 1.1 document.

<XML-NMTOKENS>
An space separated sequence of XML name tokens, as defined by the Nmtokens production in Extensible
Markup Language (XML) 1.0 ((XML10], section 2.3), or the Nmtokens production in Extensible Markup Language
(XML) 1.7 ([XML11], section 2.3) if the document is an XML 1.1 document.

18

http://www.w3.org/TR/2006/REC-xml-20060816/#NT-Name
http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.w3.org/TR/2004/REC-xml11-20040204/#NT-Name
http://www.w3.org/TR/2004/REC-xml11-20040204/
http://www.w3.org/TR/2006/REC-xml-20060816/#NT-Nmtoken
http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.w3.org/TR/2004/REC-xml11-20040204/#NT-Nmtoken
http://www.w3.org/TR/2004/REC-xml11-20040204/
http://www.w3.org/TR/2006/REC-xml-20060816/#NT-Nmtokens
http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.w3.org/TR/2004/REC-xml11-20040204/#NT-Nmtokens
http://www.w3.org/TR/2004/REC-xml11-20040204/
http://www.w3.org/TR/2004/REC-xml11-20040204/

SVG Tiny 1.2 Specification 5 Document Structure

5 Document Structure

Contents
5.1 Defining an SVG document fragment: the 'svg' elementttt 19
TR IR O A=Y = AP 19
5.1 2 T SVG BlEMENT L.ttt e e e e e e 21
5.2 GroUPING: the G @lEMENT. . ot e e e e e e e e e 25
LT IO A=Y Qo 25
5.2 2 e g BlEMENT. . .ot e e 25
5 3 The defs ElemMENt . .. e e 26
DA The ' discard @lemMENt i e e 27
5.5 The 'title' and 'desC €lEMENTSttt e e e et e e e 28
5.5.1 Applicable title' and 'desCot e e 29
5.5.2 Multiple 'title' and 'desc’ @lemENtSttt e e 30
5.5.3 User interface behavior for 'title' and 'desc’.ooi it e e 30
5B ThE USE lEMIENT . . ettt e e ettt e e e e i 31
LI 1 T 1 g =T o =T =T ' 1= o 36
5.8 CONdItioNAl PrOCESSING ..ttt ettt ettt ettt et e et e 39
5.8.1 Conditional ProCesSiNng OVEIVIEWttt ettt e et e e e e e e e e 39
5.8, 2 The 'SWItCh' @lEMENT .. .t i e e e ettt e e e 40
5.8.3 The 'requiredFeatures’ attribULe ottt e et e ettt et i, 41
5.8.4 The 'requiredEXtensions' attributeottt e e e et i 42
5.8.5 The 'systembLanguage’ attributeot e e e ettt 42
5.8.6 The 'requiredFormats’ attribUte.ot e e e e et et 43
5.8.7 The 'requiredFonts’ attributeot et e et 43
oIl N =T g Y= I 15T 10] el L 44
5.9.1 The 'externalResourcesRequired' attributeot it et 44
5.9.2 ProgressiVe r@NAEING . . .« ettt ettt ettt e ettt e e ettt e e et 44
5.0.3 The Prefetch €lEMENTt e i et et e ettt e 48
510 CoMMON At I OUTES ...\ttt it it ettt ettt ettt e 51
5.10.1 Attributes common toall elementst 51
5.10.2 Attributes for character-content elemMENTS ittt e et et 54

5.1 Defining an SVG document fragment: the 'svg' element

5.1.1 Overview

An SVG document fragment consists of any number of SVG elements contained within an 'svg' element, including
the 'svg' element.

An SVG document fragment can range from an empty fragment (i.e., no content inside of the 'svg' element), to a
very simple SVG document fragment containing a single SVG graphics element such as a 'rect’, to a complex, deeply
nested collection of container elements and graphics elements.

An SVG document fragment can stand by itself as a self-contained file or resource, in which case the SVG docu-
ment fragment is an SVG document, or it can be embedded inline as a fragment within a parent XML document.

The following example shows simple SVG content embedded inline as a fragment within a parent XML docu-
ment. Note the use of XML namespaces to indicate that the 'svg' and 'ellipse' elements belong to the SVG
namespace:

19

SVG Tiny 1.2 Specification 5 Document Structure

Example: 05_01.xml

<?xml version="1.0"7>
<parent xmlns="http://example.org"”
xmlns:svg="http://www.w3.0rg/2000/svg">
<!-- parent contents here -->
<svg:svg width="4cm"” height="8cm"” version="1.2" baseProfile="tiny" viewBox="0 @ 100 100">
<svg:ellipse cx="50" cy="50" rx="40" ry="20" />
</svg:svg>
<l-- .. -
</parent>

This example shows a slightly more complex (i.e., it contains multiple rectangles) stand-alone, self-contained SVG
document:

Example: 05_02.svg

<?xml version="1.0" encoding="UTF-8"7?>
<svg xmlns="http://www.w3.0rg/2000/svg"” version="1.2" baseProfile="tiny"
width="5cm"” height="4cm" viewBox="0 @ 100 100">

<desc>Four separate rectangles</desc>

<rect x="20" y="20" width="20" height="20"/>
<rect x="50" y="20" width="30" height="15"/>
<rect x="20" y="50" width="20" height="20"/>
<rect x="50" y="50" width="20" height="40"/>

<!-- Show outline of canvas using 'rect’' element -->
<rect x="1" y="1" width="98" height="98"
fill="none" stroke="blue" stroke-width="2" />
</svg>

An SVG document fragment can only contain one single 'svg' element, this means that 'svg' elements cannot appear
in the middle of SVG content.

In all cases, for compliance with either the Namespaces in XML 1.0 or Namespaces in XML 1.1 Recommendations
[XML-NS10, XML-NS], an SVG namespace declaration must be in scope for the 'svg' element, so that all SVG ele-
ments are identified as belonging to the SVG namespace.

For example, an 'xmlins' attribute without a prefix could be specified on an 'svg' element, which means that SVG
is the default namespace for all elements within the scope of the element with the 'xmlins' attribute:

Example: 05_03.svg

<?xml version="1.0"7>

<svg xmlns="http://www.w3.0rg/2000/svg"” version="1.2" baseProfile="tiny">
<desc>Demonstrates use of a default namespace prefix for elements.</desc>
<rect width="7" height="3"/>

</svg>

If a namespace prefix is specified on the 'xmins' attribute (e.g., xmlns:svg="http://www.w3.org/2000/svg"), then the cor-
responding namespace is not the default namespace, so an explicit namespace prefix must be assigned to the
elements:

Example: 05_04.svg

<?xml version="1.0"7>
<s:svg xmlns:s="http://www.w3.0rg/2000/svg" version="1.2" baseProfile="tiny">
<s:desc>Demonstrates use of a namespace prefix for elements.
Notice that attributes are not namespaced</s:desc>
<s:rect width="7" height="3"/>
</s:svg>

Namespace declarations can also be specified on ancestor elements (illustrated in example 05_01, above). For more
information, refer to the Namespaces in XML 1.0 or Namespaces in XML 1.1 Recommendations [XML-NS10, XML-NS].

20

/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/examples/05_02.svg
http://www.w3.org/TR/2006/REC-xml-names-20060816/
http://www.w3.org/TR/2006/REC-xml-names11-20060816/
http://www.w3.org/TR/2006/REC-xml-names-20060816/
http://www.w3.org/TR/2006/REC-xml-names11-20060816/

SVG Tiny 1.2 Specification 5 Document Structure

5.1.2 The 'svg' element

Schema: svg

<define name='svg'>
<element name='svg'>
<ref name='svg.AT'/>
<zeroOrMore><ref name='svg.G.group'/></zeroOrMore>
</element>
</define>

<define name='svg.AT' combine='interleave'>
<ref name='svg.Properties.attr'/>
<ref name='svg.FocusHighlight.attr'/>
<ref name='svg.External.attr'/>
<ref name='svg.Focus.attr'/>
<ref name='svg.AnimateSyncDefault.attr'/>
<ref name='svg.Core.attr'/>
<ref name='svg.WH.attr'/>
<ref name='svg.PAR.attr'/>
<optional>
<attribute name='viewBox' svg:animatable='true' svg:inheritable='false’'>
<text/>
</attribute>
</optional>
<optional>
<attribute name='zoomAndPan' svg:animatable='false' svg:inheritable='false'>
<choice>
<value>disable</value>
<value>magnify</value>
</choice>
</attribute>
</optional>
<optional>
<attribute name='version' svg:animatable='false' svg:inheritable='false'>
<choice>
<value type='string’'>1.0</value>
<value type='string’'>1.1</value>
<value type='string'>1.2</value>
</choice>
</attribute>
</optional>
<optional>
<attribute name='baseProfile’ svg:animatable='false' svg:inheritable='false’'>
<choice>
<value type='string’'>none</value>
<value type='string'>tiny</value>
<value type='string'>basic</value>
<value type='string'>full</value>
</choice>
</attribute>
</optional>
<optional>
<attribute name='contentScriptType’' svg:animatable='false’' svg:inheritable='false'>
<ref name='ContentType.datatype'/>
</attribute>
</optional>
<optional>
<attribute name='snapshotTime' svg:animatable='false’ svg:inheritable='false’'>
<choice>
<value type='string’'>none</value>
<ref name='Clock-value.datatype'/>
</choice>
</attribute>
</optional>
<optional>
<attribute name='timelineBegin' svg:animatable='false' svg:inheritable='false'>
<choice>
<value type='string'>onLoad</value>
<value type='string'>onStart</value>
</choice>
</attribute>
</optional>
<optional>

21

SVG Tiny 1.2 Specification 5 Document Structure

<attribute name='playbackOrder' svg:animatable='false’ svg:inheritable='false'>
<choice>
<value type='string'>all</value>
<value type='string’'>forwardOnly</value>
</choice>
</attribute>
</optional>
</define>

Attribute definitions:

version="1.0"|"1.1"|"1.2"
Indicates the SVG language version to which this document fragment conforms.
In SVG 1.0 and SVG 1.1 this attribute had the value '1.0' or '1.1' respectively, and SVG 1.2 adds the value "1.2".
See rules for version processing for further instructions, notably on handling of unsupported values.
Modifying the 'version' attribute using the DOM does not cause any change in behavior. In this case, the
original value of the attribute is the one used for document processing.
Animatable: no.

baseProfile ="none" | "full" | "basic" | "tiny"
Describes the minimum SVG language profile that the author believes is necessary to correctly render the
content. See rules for baseProfile processing for further instructions.

This specification defines the values 'none' and 'tiny'. The value 'full' corresponds to all features in the SVG
language; for SVG 1.1, this corresponds to the language features defined in the SVG 1.1 Specification [SVG11].
The value 'basic' was defined in the Mobile SVG Profiles: SVG Tiny and SVG Basic [SVGM11]. This specification
corresponds to baseProfile="tiny" and version="1.2". A value of 'none' provides no information about the
minimum language profile that is necessary to render the content.

The lacuna value is 'none".

Modifying the 'baseProfile' attribute using the DOM does not cause any change in behavior. In this case,
the original value of the attribute is the one used for document processing.

Animatable: no.

width ="<length>"
The intrinsic width of the SVG document fragment. Together with the 'height’, 'viewBox' and
'preserveAspectRatio’ attributes it defines the intrinsic aspect ratio and (unless both width and height are
percentages) the intrinsic size of the svg element. See The initial viewport.
A negative value is unsupported. A value of zero disables rendering of the element.
The lacuna value is '100%".
Animatable: yes.

height = "<length>"
The intrinsic height of the SVG document fragment.
A negative value is unsupported. A value of zero disables rendering of the element.
The lacuna value is '100%".
Animatable: yes.

viewBox = "<list-of-numbers>" | "none"
See attribute definition for description.
Animatable: yes.

preserveAspectRatio = "[defer] <align> [<xmeet>]"
See attribute definition for description.
Animatable: yes.

snapshotTime = "<clock-value>" | "none"
Indicates a moment in time which is most relevant for a still-image of the animated SVG content. This time
may be used as a hint to the SVG user agent for rendering a still-image of an animated SVG document, such as

22

http://www.w3.org/TR/SVG11/
http://www.w3.org/TR/SVGMobile11/

SVG Tiny 1.2 Specification 5 Document Structure

a preview. A value of 'none' means that no 'snapshotTime' is available. See example 05_22 for an example of
using the 'snapshotTime' attribute.

The lacuna value is 'none'.

Animatable: no.

playbackOrder = "forwardOnly" | "all"
Indicates whether it is possible to seek backwards in the document. In earlier versions of SVG there was no
need to put restrictions on the direction of seeking but with the newly introduced facilities for long-running
documents (e.g. the 'discard' element) there is sometimes a need to restrict this.

If 'playbackOrder is set to ‘forwardOnly', the content will probably contain 'discard’ elements or scripts that
destroy resources, thus seeking back in the document's timeline may result in missing content. If
'playbackOrder' is ‘forwardOnly', the content should not provide a way, through hyperlinking or script, of
seeking backwards in the timeline. Similarly the UA should disable any controls it may provide in the user
interface for seeking backwards. Content with 'playbackOrder' = 'forwardOnly' that provides a mechanism for
seeking backwards in time may result in undefined behavior or a document that is in error.

‘forwardOnly'
This file is intended to be played only in the forward direction, sequentially, therefore seeking backwards
should not be allowed.

‘all'
Indicates that the document is authored appropriately for seeking in both directions.
The lacuna value is 'all'.
Animatable: no.

timelineBegin ="onLoad" | "onStart"
Controls the initialization of the timeline for the document.

The 'svg' element controls the document timeline, which is the timeline of the 'svg' element's time
container. For progressively loaded animations, the author would typically set this attribute to 'onStart’, thus
allowing the timeline to begin as the document loads, rather than waiting until the complete document is
loaded.

'onLoad’
The document's timeline starts the moment the 1oad event for the rootmost 'svg' element is triggered.
'onStart'
The document's timeline starts at the moment the rootmost 'svg' element's start-tag (as defined in XML
1.0 (IXML10], section 3.1), or XML 1.1 ([XML11], section 3.1), if the document is an XML 1.1 document) is
fully parsed and processed.
The lacuna value is 'onLoad'".
Animatable: no.

contentScriptType = "<content-type>"
Identifies the default scripting language for the given document. This attribute sets the default scripting
language for all the instances of script in the document fragment. This language must be used for all scripts
that do not specify their own scripting language. The <content-type> value specifies a media type, per
Multipart Internet Mail Extensions: (MIME) Part Two: Media Types [RFC2046]. The lacuna value is "application/
ecmascript".
Animatable: no.

zoomAndPan = "magnify" | "disable"
See attribute definition for description.
Animatable: no.

focusable ="true" | "false" | "auto"
See attribute definition for description.
Animatable: yes.

Navigation Attributes
See definition.

23

http://www.w3.org/TR/2006/REC-xml-20060816/#sec-starttags
http://www.w3.org/TR/2006/REC-xml-20060816/#sec-starttags
http://www.w3.org/TR/2004/REC-xml11-20040204/#sec-starttags
http://www.ietf.org/rfc/rfc2046.txt

SVG Tiny 1.2 Specification 5 Document Structure

Note that 'animateMotion' and 'animateTransform' are legal as children to 'svg' but don't apply to their 'svg' parent
(since the 'svg' element doesn't have a 'transform’ attribute). They only have any effect if the 'xlink:href' attribute is
specified so that they target a different element for animation.

Content produced by illustration programs originally targeted at print often has a fixed width and height, which
will prevent it scaling for different display resolutions. The first example below has a fixed width and height in pixels,
and no 'viewBox'.

Example: width-height.svg

<?xml version="1.0"7>
<svg xmlns="http://www.w3.0rg/2000/svg" version="1.2" baseProfile="tiny"
width="300px" height="600px">
<desc>...</desc>
</svg>

Normally, SVG content is designed to be scalable. In order for the SVG content to scale automatically to fill the avail-
able viewport, it must include a 'viewBox' attribute on the 'svg' element. This describes the region of world coordin-
ate space (the initial user coordinate system) used by the graphic. This attribute thus provides a convenient way to
design SVG documents to scale-to-fit into an arbitrary viewport.

The second example is scalable, using a 'viewBox' rather than a fixed width and height.

Example: viewBox.svg

<?xml version="1.0"7>
<svg xmlns="http://www.w3.0rg/2000/svg"” version="1.2"
baseProfile="tiny" viewBox="0 0 300 600">
<desc>...</desc>
</svg>

Below is an example of 'snapshotTime'. An SVG user agent is displaying a number of SVG files in a directory by ren-
dering a thumbnail image. It uses the 'snapshotTime' as the time to render when generating the image, thus giving a
more representative static view of the animation. The appearance of the thumbnail for an SVG user agent that hon-
ors the 'snapshotTime' and for an SVG user agent that does not is shown below the example (UA which generates
thumbnails based on 'snapshotTime' at the left, UA which doesn't generate thumbnails based on 'snapshotTime' at
the right, e.g. a static viewer).

Example: 05_22.svg

<svg xmlns="http://www.w3.0rg/2000/svg" version="1.2" baseProfile="tiny"
viewBox="0 @ 400 300" snapshotTime="3">

<title>Snapshot time example</title>
<desc>This example shows the use of snapshotTime on an animation of color.</desc>

<rect x="60" y="85" width="256" height="65" fill="none" stroke="rgb(60,126,220)" stroke-width="4"/>

<text x="65" y="140" fill="white"” font-size="60">
Hello SVG
<animateColor attributeName="fill" begin="0" dur="3" from="white" to="rgb(60,126,220)"/>
</text>
</svg>

Hello SVG

24

/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/examples/width-height.svg
/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/examples/viewBox.svg
/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/examples/05_22.svg

SVG Tiny 1.2 Specification 5 Document Structure

5.2 Grouping: the 'g' element

5.2.1 Overview

The 'g' element is a container element for grouping together related graphics elements.

Grouping constructs, when used in conjunction with the 'desc' and 'title' elements, provide information about
document structure and semantics. Documents that are rich in structure may be rendered graphically, as speech, or
as braille, and thus promote accessibility.

A group of elements, as well as individual objects, can be given a name using the 'id' or 'xml:id" attribute. Named
groups are needed for several purposes such as animation and re-usable objects.

An example:

Example: 05_05.svg

<?xml version="1.0"7>
<svg xmlns="http://www.w3.0rg/2000/svg" version="1.2" baseProfile="tiny"
width="5cm" height="5cm" viewBox="@ @ 5 5">

<desc>Two groups, each of two rectangles</desc>

<g xml:id="groupl” fill="red">
<desc>First group of two red rectangles</desc>
<rect x="1" y="1" width="1" height="1"/>
<rect x="3" y="1" width="1" height="1"/>

</g>

<g xml:id="group2” fill="blue">
<desc>Second group of two blue rectangles</desc>
<rect x="1" y="3" width="1" height="1"/>
<rect x="3" y="3" width="1" height="1"/>

</g>

<!-- Show outline of canvas using 'rect' element -->
<rect x=".01" y=".01" width="4.98" height="4.98"
fill="none" stroke="blue" stroke-width=".02"/>
</svg>

A'g' element can contain other 'g' elements nested within it, to an arbitrary depth. Thus, the following is possible:

Example: 05_06.svg

<?xml version="1.0"7>
<svg xmlns="http://www.w3.0rg/2000/svg" version="1.2" baseProfile="tiny"
width="5cm"” height="5cm">

<desc>Groups can nest</desc>

<g>
<g>
<g>
</g>
</g>
</g>
</svg>

Any element that is not contained within a 'g' is treated (at least conceptually) as if it were in its own group.

5.2.2 The'g' element

Schema: g

<define name='g'>
<element name='g'>
<ref name='g.AT'/>
<zeroOrMore><ref name='svg.G.group'/></zeroOrMore>
</element>
</define>

25

/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/examples/05_05.svg

SVG Tiny 1.2 Specification 5 Document Structure

<define name='g.AT' combine='interleave'>
<ref name='svg.Properties.attr'/>
<ref name='svg.FocusHighlight.attr'/>
<ref name='svg.Core.attr'/>
<ref name='svg.External.attr'/>
<ref name='svg.Conditional.attr'/>
<ref name='svg.Focus.attr'/>
<ref name='svg.Transform.attr'/>
</define>

Attribute definitions:

focusable ="true" | "false" | "auto"
See attribute definition for description.
Animatable: yes.

Navigation Attributes
See definition.

5.3 The 'defs' element

The 'defs' element is a container element for referenced elements. For understandability and accessibility reasons, it
is recommended that, whenever possible, referenced elements be defined inside of a 'defs'. For performance reas-
ons, authors should put the 'defs' element before other document content, so that all resources are available to be
referenced.

The content model for 'defs' is the same as for the 'g' element; thus, any element that can be a child of a 'g' can
also be a child of a 'defs', and vice versa.

Elements that are descendants of a 'defs' are not rendered directly; they are prevented from becoming part of
the rendering tree just as if the 'defs' element were a 'g' element and the 'display' property were set to none. Note,
however, that the descendants of a 'defs' are always present in the source tree and can be referenced by other ele-
ments. The actual value of the 'display' property on the 'defs' element or any of its descendants does not change the
rendering of these elements or prevent these elements from being referenced.

Schema: defs

<define name='defs’'>
<element name='defs'>
<ref name='defs.AT'/>
<zeroOrMore><ref name='svg.G.group'/></zeroOrMore>
</element>
</define>

<define name='defs.AT' combine='interleave'>
<ref name='svg.Properties.attr'/>
<ref name='svg.Core.attr'/>

</define>

Creators of SVG content are encouraged to place all elements which are targets of local [RI references (except of
course for animation targets) within a 'defs' element which is a direct child of one of the ancestors of the referencing
element. For example:

Example: 05_10.svg

<?xml version="1.0"7>
<svg xmlns="http://www.w3.0rg/2000/svg" version="1.2" baseProfile="tiny"
width="100%" height="100%" viewBox="0 @ 8 3">

<desc>Local URI references within ancestor’'s 'defs’ element.</desc>

<defs>
<linearGradient xml:id="Gradient@l">
<stop offset="0.2" stop-color="#39F"/>
<stop offset="0.9" stop-color="#F3F"/>
</linearGradient>

26

/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/examples/05_10.svg

SVG Tiny 1.2 Specification 5 Document Structure

</defs>
<rect x="1" y="1" width="6" height="1" fill="url(#Gradient@l)"/>

<!-- Show outline of canvas using 'rect' element -->
<rect x=".01" y=".01" width="7.98" height="2.98"
fill="none" stroke="blue" stroke-width=".02" />
</svg>

In the document above, the linear gradient is defined within a 'defs' element which is the direct child of the 'svg' ele-
ment, which in turn is an ancestor of the 'rect' element which references the linear gradient. Thus, the above docu-
ment conforms to the guideline.

5.4 The 'discard' element

The 'discard' element allows authors to specify the time at which particular elements are to be discarded, thereby re-
ducing the resources required by an SVG user agent. This is particularly useful to help SVG viewers conserve
memory while displaying long-running documents. This element will not be processed by static SVG viewers.

The 'discard' element may occur wherever the 'animate’ element may.

Schema: discard

<define name='discard'>
<element name='discard'>
<ref name='discard.AT'/>
<ref name='discard.CM'/>
</element>
</define>

<define name='discard.AT' combine='interleave'>
<ref name='svg.Core.attr'/>
<ref name='svg.XLink.attr'/>
<ref name='svg.AnimateBegin.attr'/>
<ref name='svg.Conditional.attr'/>
</define>

<define name='discard.CM'>
<zeroOrMore>
<ref name='svg.Desc.group'/>
<ref name='svg.Handler.group'/>
</zeroOrMore>
</define>

Attribute definitions:

xlink:href ="<IRI>"

An [RI reference that identifies the target element to discard. See the definition of 'xlink:href' on animation
elements for details on identifying a target element.

Note that if the target element is not part of the current SVG document fragment then whether the target
element will be removed or not is defined by the host language.

If the 'xlink:href' attribute is not provided, then the target element will be the immediate parent element of
the discard element.

Animatable: no.

begin = "begin-value-list"
Indicates when the target element will be discarded. See the definition of 'begin' on animation elements for
details.
The lacuna value is '0s'. This indicates that the target element should be discarded immediately once the
document begins.
Animatable: no.

The 'discard’ element has an implicit simple duration of "indefinite". As soon as the element's active duration starts,
the SVG user agent discards the element identified by the xlink:href' attribute ([SMIL21], section 10.4.3). The remov-
al operation acts as if the method removechild were called on the parent of the target element with the target

27

http://www.w3.org/TR/2005/REC-SMIL2-20051213/smil-timing.html#Timing-DefiningSimpleDur
http://www.w3.org/TR/2005/REC-SMIL2-20051213/smil-timing.html#Timing-ComputingActiveDur

SVG Tiny 1.2 Specification 5 Document Structure

element as parameter. The SVG user agent must remove the target node as well as all of its attributes and
descendants.

After removal of the target element, the 'discard' element is no longer useful. It must also be discarded following
the target element removal. If the 'xlink:href' attribute has an invalid IRl reference (the target element did not exist,
for example), the 'discard' element itself must still be removed following activation.

Seeking backwards in the timeline ([SMIL21], section 10.4.3) must not re-insert the discarded elements. Dis-
carded elements are intended to be completely removed from memory. So, authors are encouraged to set the
'playbackOrder’ attribute to "forwardOnly" when using the 'discard’ element.

The 'discard' element itself can be discarded prior to its activation, in which case it will never trigger the removal
of its own target element. SVG user agents must allow the 'discard' element to be the target of another 'discard’
element.

The following example demonstrates a simple usage of the 'discard' element. The list below describes relevant
behavior in the document timeline of this example:

Attime=0:
When the document timeline starts, the blue ellipse starts to move down the page.

Attime =1 second:
The red rectangle starts moving up the page.

At time = 2 seconds:
The 'animateTransform' on the 'ellipse' ends. The 'ellipse’ and its children are also discarded, as it is the target
element of a 'discard’ with begin="2". The green 'polygon' starts to move across the page.

At time = 3 seconds:
The animation on the red rectangle ends. The rectangle and its children are discarded as it is the target of a
‘discard’ element with begin="3".

At time = 4 seconds:
The animation on the green triangle ends. The green 'polygon’ and its children are discarded as it is the target
of a 'discard’ element with begin="4".

Example: discard01.svg

<?xml version="1.0"7>
<svg xmlns="http://www.w3.0rg/2000/svg" version="1.2" baseProfile="tiny"
width="352" height="240" playbackOrder="forwardOnly">

<ellipse cx="98.5" cy="17.5" rx="20.5" ry="17.5" fill="blue" stroke="black"
transform="translate(9 252) translate(3 -296)">
<animateTransform attributeName="transform” begin="0s" dur="2s" fill="remove"
calcMode="linear" type="translate” additive="sum"
from="0 0" to="-18 305"/>
<discard begin="2s"/>
</ellipse>

<rect x="182" y="-39" width="39" height="30" fill="red" stroke="black"
transform="translate(30 301)">
<animateTransform attributeName="transform” begin="1s" dur="2s" fill="remove"
calcMode="linear" type="translate” additive="sum"
from="0 0" to="-26 -304"/>
<discard begin="3s"/>
</rect>

<polygon points="-66,83.5814 -43,123.419 -89,123.419" fill="green" stroke="black"”
transform="matrix(1 @ @ 1.1798 @ -18.6096)">
<animateTransform attributeName="transform” begin="2s" dur="2s"
fill="remove" calcMode="linear" type="translate” additive="sum"
from="0 0" to="460 63.5699"/>
<discard begin="4s"/>
</polygon>
</svg>

"

5.5 The 'title' and 'desc’ elements

Each container element or graphics element in an SVG document may contain one or more of each of the 'title’' and
'desc’ descriptive elements, which together comprise a sort of heading and summary of the containing element. The
'title' element must contain a brief plain text passage representing the title for the container or graphics element

28

http://www.w3.org/TR/2005/REC-SMIL2-20051213/smil-timing.html#Timing-HyperlinksAndTiming
/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/examples/discard01.svg

SVG Tiny 1.2 Specification 5 Document Structure

containing it. This short title must provide information supplementary to the rendering of the element, but will nor-
mally not be sufficient to replace it. The 'desc' element must contain a longer, more detailed plain text description
for the container or graphics element containing it. This description, along with the content of the 'title' element,
must be usable as replacement content for cases when the user cannot see the rendering of the SVG element for
whatever reason.

Authors should always provide at least a 'title', and preferably a 'desc’, as an immediate child element to the 'svg'
element within an SVG document, and to every significant individual graphical composition within the document.
The 'title' child element to an 'svg' element serves the purposes of identifying the content of the given SVG docu-
ment fragment. Since users often consult documents out of context, authors should provide context-rich titles.
Thus, instead of a title such as "Introduction”, which doesn't provide much contextual background, authors should
supply a title such as "Introduction to Medieval Bee-Keeping" instead. For reasons of accessibility, SVG user agents
should always make the content of the 'title' child element to the 'svg' element available to users (See the User
Agent Accessibility Guidelines 1.0 [UAAG]). The mechanism for doing so depends on the SVG user agent (e.g., as a
caption, spoken). If for any reason, a graphical presentation of the document is not available, the rootmost descript-
ive elements may represent the complete document and its purpose in a textual manner, and authors should sup-
ply meaningful content accordingly.

When descriptive elements are present, alternate presentations of the document are possible, both visual and
aural, which display the 'title' and 'desc' elements but do not display graphics elements.

For both the 'title' and the 'desc' element, the content must be plain text. To provide structured data in other
markup languages, authors should use the 'metadata’ or 'foreignObject' elements instead, as appropriate. When
markup is included as a child of the 'title' or the 'desc’, a user agent should present only the text content of the de-
scriptive elements.

Note that the 'title' element is distinct in purpose from the 'xlink:title' attribute of the 'a' element. The 'xlink:title'
attribute content is intended not to describe the current resource, but the nature of the linked resource.

Schema: title

<define name='title'>
<element name='title'>
<ref name='DTM.AT'/>
<ref name='DTM.CM'/>
</element>
</define>

Schema: desc

<define name='desc’'>
<element name='desc'>
<ref name='DTM.AT'/>
<ref name='DTM.CM'/>
</element>
</define>

<define name='DTM.AT' combine='interleave'>
<ref name='svg.Core.attr'/>
<ref name='svg.Conditional.attr'/>
<ref name='svg.Media.attr'/>

</define>

<define name='DTM.CM'>
<text/>
</define>

5.5.1 Applicable 'title' and 'desc’

Normally, the descriptive elements that describe a container element or graphics element are direct children of that
element. However, SVG documents can have a rich structure, with nested elements each potentially containing
'title' or 'desc' child elements, as well as 'use' elements with 'title’ or 'desc’ in both the 'use' element itself and in the
referenced content. Because of this complex structure, and because the descriptive elements may or may not be

29

http://www.w3.org/TR/UAAG10/

SVG Tiny 1.2 Specification 5 Document Structure

present at any given level, the applicable descriptive elements for any given content is determined by the structure,
as described here.

For each container element or graphics element, the applicable descriptive elements shall be those which are
most shallowly nested in that document fragment, without taking into account descriptive elements in any 'use’ ele-
ment shadow trees. If the document fragment has no descriptive elements, and it is a 'use' element, the applicable
descriptive elements shall be those contained in the shadow tree. If no descriptive elements are found in the docu-
ment fragment or any shadow tree, the applicable descriptive elements shall be the nearest ancestor descriptive
elements. This algorithm allows authors to reuse descriptive elements defined in referenced resources when de-
sired, or to override them as needed, as well as to describe whole groups of elements. Note that the 'title' and 'desc’
are not necessarily always paired (i.e., in the same document hierarchy level), and if the user agent should stop
searching for an applicable descriptive element if only one or the other is encountered at a particular hierarchy
level.

Note that the applicable descriptive elements for elements in a container element does not necessarily entail a
description of the individual graphical elements in question, but rather their membership in a more inclusive group
(e.g., if the image is of a basket of fruit, with a title of "Fruit Basket" for the containing group and no other descriptive
elements, while no one piece of fruit is a fruit basket, the title would still be applicable through inclusion). In es-
sence, there is a difference between container elements and graphics elements when it comes to determining the
applicability of a descriptive element; a 'title’ or 'desc’ for a graphics element should be assumed to apply only to
that element, while a 'title' or 'desc' for a 'g' may apply to each of the children of that group. Authors should take
care to designate all important elements with their own descriptive elements to avoid misconstrued identities and
entailments.

5.5.2 Multiple 'title' and 'desc' elements

It is strongly recommended that authors use at most one 'title' and at most one 'desc’ element as an immediate child
of any particular element, and that these elements appear before any other child elements (except possibly
'metadata’ elements) or character data content.

Authors may wish to deliberately provide multiple descriptive elements, such as to provide alternate content for
different languages. In this case, the author should use conditional processing attributes to allow the user agent to
select the best choice according to the user's preferences. For example, the 'systemLanguage' attribute, with or
without the 'switch' element, will determine the applicable descriptive elements.

If an SVG user agent needs to choose among multiple 'title' or 'desc’ elements for processing (e.g., to decide
which string to use for a tooltip), and if any available conditional processing attributes are insufficient to resolve the
best option, the user agent must choose the first of each of the available descriptive elements as the applicable
'title' and 'desc'.

5.5.3 User interface behavior for 'title' and 'desc’

When the current SVG document fragment is rendered as SVG on visual media, 'title' and 'desc' elements are not
rendered as part of the canvas. Often, the intent of authors is for descriptive elements to remain hidden (e.g., for
aesthetic reasons in pieces of art). However, other authors may wish for this content to be displayed, and providing
tangible benefit to these authors encourages best practice in providing descriptive elements. In this case, authors
are encouraged to use the 'role' attribute, with the value tooltip ([ARIA], section 4.4.1) to indicate their intent. Future
SVG specifications may define an explicit mechanism for indicating whether a tooltip should be displayed.

In order to honor authorial intent, it is strongly recommended that when, and only when, the appropriate 'role'
attribute value is present, user agents display the text content of the applicable 'title' and 'desc’ elements in a highly
visible manner supported by the user agent, such as in a tooltip or status bar, when the pointing device is hovered
over the described element or elements, or when the described element is given focus (e.g., through keyboard or
pointer navigation). If a tooltip is provided, the user agent is recommended to display the applicable title and de-
scriptions on separate lines, title first, with font styling that distinguishes the two. For long descriptions, the tooltip
may wrap the text, and truncate longer passages to a reasonable length. A user agent may preserve spaces and line
breaks in the text content in order to structure the presentation of the text.

When an element with descriptive elements is itself the child of an 'a' element with an xlink:title' attribute, the
user agent should display as much of the available information as possible. The user agent is suggested to display
the 'xlink:title' attribute value on a separate line, with a label to identify it, such as "link: ". Commonly, many user
agents display the URI of the link (i.e., the value of the 'xlink:href' attribute) in the status bar or other display area.
This information is important, and should not be overridden by any descriptive element content, but may be sup-
plemented by such content.

30

http://www.w3.org/TR/wai-aria/#tooltip

SVG Tiny 1.2 Specification 5 Document Structure

The rootmost 'title' element should be used as the document title, and for stand-alone SVG documents, the title
should not be displayed as a tooltip, but rather in the browser chrome (as appropriate for the user agent). For em-
bedded SVG documents, such as an SVG image referenced in an HTML document, displaying the rootmost title and
description as a tooltip is more appropriate, and the user agent should do so.

If a user agent is an accessibility tool, all available descriptions of the currently focused or hovered element
should be exposed to the user in a categorical manner, such that the user may selectively access the various de-
scriptions. The 'desc’ element, in particular, may be given different semantic distinctions by use of values in the 'role’
attribute, such as the ARIA ontology value description ([ARIA], section 4.4.1) for textual equivalents of the graphics
(the default role).

The following is an example in which an SVG user agent might present the 'title' and 'desc' elements as a tooltip.

Example: title-desc-tooltip.svg

<svg xmlns="http://www.w3.0rg/2000/svg"
xmlns:x1link="http://www.w3.0rg/1999/x1link"
version="1.2"
width="100%" height="100%" viewBox="0 @ 160 170">

<title>Titles and Descriptions</title>
<desc>An example of how the contents of the 'title’ and 'desc’' elements may be presented in a user agent.</desc>

<defs>
<polygon id="beeCell” points="-14,-24.2487 14,-24.2487 28,0 14,24.2487 -14,24.2487 -28,0" stroke="yellow”
stroke-width="3" stroke-linejoin="round">
<title role="tooltip">Beehive cell</title>
<desc role="tooltip”">A simple hexagon with a yellow outline and no fill.</desc>
</polygon>
</defs>

<g fill="white">
<use xlink:href="#beeCell” x="30" y="60" />
<use xlink:href="#beeCell” x="75" y="34.0192" />
<use xlink:href="#beeCell” x="120" y="60" />
<use xlink:href="#beeCell” x="120" y="111.9615" />
<use xlink:href="#beeCell” x="30" y="111.9615" />
<use xlink:href="#beeCell” x="75" y="137.9423" />

<a xlink:href="http://www.example.com/bees.html” xlink:title="Beekeeper's Hive: an apiary resource”>
<title role="tooltip">Link to Beekeeper's Hive: an apiary resource</title>
<use xlink:href="#beeCell” x="75" y="85.9808" fill="#9900CC">
<title role="tooltip”>Queen’'s Cell</title>
<desc role="tooltip">
A hexagonal beehive cell.

A purple hexagon in the middle of 6 other empty hexagons, symbolizing that it's filled with royal jelly.
</desc>
</use>

</g>

</svg>

5.6 The 'use' element

Any 'g' or graphics element is potentially a template object that can be re-used (i.e. "instantiated") in the SVG docu-
ment via a 'use' element, thus creating an instance tree. The 'use' element references another element and indicates
that the graphical contents of that element is to be included and drawn at that given point in the document.

Unlike 'animation’, the 'use' element cannot reference entire files.

Besides what is described about the 'use' element in this section important restrictions for 'use' can be found in
the Reference Section.

The 'use' element has optional attributes 'x' and 'y' which are used to place the referenced element and its con-
tents into the current coordinate system.

The effect of a 'use’ element is as if the SVG element contents of the referenced element were deeply cloned into
a separate non-exposed DOM tree which had the 'use' element as its parent and all of the 'use' element's ancestors
as its higher-level ancestors. Because the cloned DOM tree is non-exposed, the SVG Document Object Model (DOM)

31

http://www.w3.org/TR/wai-aria/
http://www.w3.org/TR/wai-aria/#description
/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/examples/title-desc-tooltip.svg

SVG Tiny 1.2 Specification 5 Document Structure

only contains the 'use' element and its attributes. The SVG DOM does not show the referenced element's contents as
children of the 'use' element. The deeply-cloned tree, also referred to as the shadow tree, is then kept in synchroniz-
ation with the contents of the referenced element, so that any animation, DOM manipulation, or non-DOM interact-
ive state occurring on the referenced element are also applied to the 'use' element's deeply-cloned tree.

Relative IRIs on a node in a shadow tree are resolved relative to any 'xml:base' on the node itself, then recursively
on any 'xml:base’ on its parentNode, and finally any 'xml:base’ on the ownerDocument if there is no parentNode.

Property inheritance works as if the referenced element had been textually included as a deeply cloned child of
the 'use' element. The referenced element inherits properties from the 'use' element and the 'use' element's ancest-
ors. An instance of a referenced element does not inherit properties from the referenced element's original parents.

The behavior of the 'visibility' property conforms to this model of property inheritance. Thus, a computed value
of visibility="hidden" on a 'use' element does not guarantee that the referenced content will not be rendered. If the
'use’ element has a computed value of visibility="hidden" and the element it references specifies visibility="hidden"
or visibility="inherit", then that element will be hidden. However, if the referenced element instead specifies visibil-
ity="visible", then that element will be visible even if the 'use' element specifies visibility="hidden".

If an event listener is registered on a referenced element, then the actual target for the event will be the svctle-
mentInstance object within the "instance tree" corresponding to the given referenced element.

The event handling for the non-exposed tree works as if the referenced element had been textually included as
a deeply cloned child of the 'use' element, except that events are dispatched to the svcElementInstance objects. The
event's target and currentTarget attributes are set to the svGElementInstance that corresponds to the target and current
target elements in the referenced subtree. An event propagates through the exposed and non-exposed portions of
the tree in the same manner as it would in the regular document tree: first going to the target of the event, then
bubbling back through non-exposed tree to the 'use' element and then back through regular tree to the rootmost
'svg' element in the bubbling phase.

An element and all its corresponding svGElementInstance objects share an event listener list. The currentTarget at-
tribute of the event can be used to determine through which object an event listener was invoked.

Animations on a referenced element will cause the instances to also be animated.

As listed in the Reference Section the 'use’ element is not allowed to reference an 'svg' element.

Except for resolution of relative IRl references as noted and until the referenced elements are modified, a 'use’
element has the same visual effect as if the 'use' element were replaced by the following generated content:

+ Inthe generated content, the 'use' will be replaced by 'g', where all attributes from the 'use’ element except for
'¥','y", 'xml:base' and 'xlink:href' are transferred to the generated 'g' element. An additional transformation
translate(x,y) is appended to the end (i.e., right-side) of the 'transform' attribute on the generated 'g', where x
and y are the values of the 'x' and 'y’ attributes of the 'use' element. The referenced object and its contents are
deep-cloned into the generated tree.

Note also that any changes to the used element are immediately reflected in the generated content.

When a 'use' references another element which is another 'use' or whose content contains a 'use' element, then
the deep cloning approach described above is recursive. However, a set of references that directly or indirectly ref-
erence a element to create a circular dependency is an error, as described in the References section.

Schema: use

<define name='use'>
<element name='use'>
<ref name='use.AT'/>
<ref name='use.CM'/>
</element>
</define>

<define name='use.AT' combine='interleave'>
<ref name='svg.Properties.attr'/>
<ref name='svg.FocusHighlight.attr'/>
<ref name='svg.Core.attr'/>
<ref name='svg.Conditional.attr'/>
<ref name='svg.Transform.attr'/>
<ref name='svg.XLinkEmbed.attr'/>
<ref name='svg.Focus.attr'/>
<ref name='svg.External.attr'/>
<ref name='svg.XY.attr'/>

</define>

<define name='use.CM'>

32

SVG Tiny 1.2 Specification 5 Document Structure

<zeroOrMore>
<choice>
<ref name='svg.Desc.group'/>
<ref name='svg.Animate.group'/>
<ref name='svg.Handler.group'/>
</choice>
</zeroOrMore>
</define>

Attribute definitions:

x = "<coordinate>"
The x-axis coordinate of one corner of the rectangular region into which the referenced element is placed.
The lacuna value is '0'".
Animatable: yes.

y = "<coordinate>"
The y-axis coordinate of one corner of the rectangular region into which the referenced element is placed.
The lacuna value is '0'.
Animatable: yes.

x1link:href ="<IRI>"
An [RI reference to an element/fragment within an SVG document. An invalid IRI reference is an unsupported
value. An empty attribute value (xlink:href="") disables rendering of the element. The lacuna value is the
empty string.
Animatable: yes.

focusable = "true" | "false" | "auto"
See attribute definition for description.
Animatable: yes.

Navigation Attributes
See definition.

Below are two examples of the 'use' element. For another example see use and animation example.
Example 05_13 below has a simple 'use' on a 'rect'.

Example: 05_13.svg

<?xml version="1.0"7>

<svg xmlns="http://www.w3.0rg/2000/svg"” xmlns:xlink="http://www.w3.0rg/1999/x1link"
version="1.2" baseProfile="tiny"
width="10cm" height="3cm"” viewBox="0 @ 100 30">

<desc>Simple case of 'use’ on a 'rect’'</desc>

<defs>
<rect xml:id="MyRect” width="60" height="10"/>
</defs>
<rect x=".1" y=".1" width="99.8" height="29.8"
fill="none" stroke="blue" stroke-width=".2"/>
<use x="20" y="10" xlink:href="#MyRect"” />
</svg>

33

/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/examples/05_13.svg

SVG Tiny 1.2 Specification

The visual effect would be equivalent to the following document:

Example: 05_14.svg

5 Document Structure

<?xml version="1.0"7>

<svg xmlns="http://www.w3.0rg/2000/svg" xmlns:xlink="http://www.w3.0rg/1999/xlink"
version="1.2" baseProfile="tiny"
width="10cm"” height="10cm" viewBox="0 @ 100 30">

<desc>
The equivalent rendering tree of example ©5_13 once the
'use' element's shadow tree has been created.

</desc>

<!-- 'defs' section left out -->

<rect x=".1" y=".1" width="99.8" height="29.8"
fill="none" stroke="blue" stroke-width=".2" />

<!-- begin shadow tree content that the <use> element in the original
file would generate -->
<g transform="translate(20,10)">
<rect width="60" height="10"/>
</g>
<!-- end of shadow tree content -->
</svg>

Example 05_17 illustrates what happens when a 'use' has a 'transform’ attribute.

Example: 05_17.svg

<?xml version="1.0"7>

<svg xmlns="http://www.w3.0rg/2000/svg" xmlns:xlink="http://www.w3.0rg/1999/x1link"
version="1.2" baseProfile="tiny"
width="10cm" height="3cm" viewBox="0 @ 100 30">

<desc>'use' with a 'transform’ attribute</desc>

<defs>
<rect xml:id="MyRect” x="0" y="0" width="60" height="10"/>
</defs>

<rect x=".1" y=".1" width="99.8" height="29.8"
fill="none" stroke="blue" stroke-width=".2"/>
<use xlink:href="#MyRect"” transform="translate(20,2.5) rotate(10)"/>
</svg>

The visual effect would be equivalent to the following document:

Example: 05_18.svg

<?xml version="1.0"7>

<svg xmlns="http://www.w3.0rg/2000/svg"” xmlns:xlink="http://www.w3.0rg/1999/x1link"
version="1.2" baseProfile="tiny"
width="100%" height="100%" viewBox="0 @ 100 30">

<desc>'use' with a 'transform’ attribute</desc>

34

/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/examples/05_14.svg
/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/examples/05_17.svg
/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/examples/05_18.svg

SVG Tiny 1.2 Specification 5 Document Structure

<!-- 'defs' section left out -->

<rect x=".1" y=".1" width="99.8" height="29.8"
fill="none" stroke="blue" stroke-width=".2"/>

<!-- begin shadow tree content that the <use> element in the original
file would generate -->
<g transform="translate(20,2.5) rotate(10)">
<rect x="0" y="0" width="60" height="10"/>
</g>
<!-- end of shadow tree content-->
</svg>

Example use-bubble-example-1.svg illustrates four cases of event bubbling with use elements. In case 1, all in-
stances of the 'rect' element are filled blue on mouse over. For cases 2 and 3, in addition to the 'rect' elements being
filled blue, a black stroke will also appear around the referencing rectangle on mouse over. In case 4, all the rect-
angles turn blue on mouse over, and a black stroke appears on mouse click.

Example: use-bubble-example-1.svg

<?xml version="1.0"7>

<svg xmlns="http://www.w3.0rg/2000/svg"
xmlns:xlink="http://www.w3.0rg/1999/x1ink"
xmlns:ev="http://www.w3.0rg/2001/xml-events”
version="1.2" baseProfile="tiny">

<defs>
<rect id="rect” width="20" height="20" fill="red">
<set attributeName="fill" begin="mouseover” end="mouseout” to="blue"/>
</rect>
</defs>

<use fill="red" x="5" y="5" xlink:href="#rect"/>
<text x="10" y="35">1</text>

<use id="use2" fill="red" x="30" y="5" xlink:href="#rect"/>
<rect pointer-events="none"” x="30" y="5" width="20" height="20"
fill="none" stroke-width="3" stroke="none">
<set attributeName="stroke"” begin="use2.mouseover” end="use2.mouseout” to="black"/>
</rect>
<text x="35" y="35">2</text>

<g id="gl">

<use fill="red"” x="5" y="4@" xlink:href="#rect"/>

<rect pointer-events="none"” x="5" y="40" width="20" height="20"

fill="none" stroke-width="3" stroke="none">
<set attributeName="stroke"” begin="gl.mouseover"” end="gl.mouseout” to="black"/>

</rect>
</g>
<text x="10" y="70">3</text>

<use id="use3" fill="red" x="30" y="40" xlink:href="#rect"/>
<rect pointer-events="none" x="30" y="40" width="20" height="20"
fill="none" stroke-width="3" stroke="none">
<set attributeName="stroke" begin="use3.click” dur="500ms" to="black"/>
</rect>
<text x="35" y="70">4</text>
</svg>

s
1
3 4

Example use-bubble-example-2.svg illustrates event bubbling with nested 'use' elements. On mouse over, the 'rect'
element is filled blue and displays a green and black ring.

/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/examples/use-bubble-example-1.svg

SVG Tiny 1.2 Specification 5 Document Structure

Example: use-bubble-example-2.svg

<?xml version="1.0"7>

<svg xmlns="http://www.w3.0rg/2000/svg"
xmlns:x1link="http://www.w3.0rg/1999/x1link"
xmlns:ev="http://www.w3.0rg/2001/xml-events”
version="1.2" baseProfile="tiny">

<defs>
<rect id="rect” width="20" height="20" fill="red">
<set attributeName="fill" begin="mouseover” end="mouseout” to="blue"/>
</rect>
<g id="use">
<use fill="red" xlink:href="#rect"/>
<rect pointer-events="none"” width="20" height="20"
fill="none" stroke-width="8" stroke="none">
<set attributeName="stroke" begin="use.mouseover"” end="use.mouseout” to="green"/>
</rect>
</g>
</defs>

<use x="5" y="5" id="use2" fill="red" xlink:href="#use"/>
<rect pointer-events="none" x="5" y="5" width="20" height="20" fill="none" stroke-width="3" stroke="none">
<set attributeName="stroke" begin="use2.mouseover" end="use2.mouseout” to="black"/>
</rect>
</svg>

Example image-use-base.svg illustrates the handling of relative IRl references. All three use elements result in the
same image being displayed, http://a.example.org/aaa/bbb/ddd/foo. jpg.

Example: image-use-base.svg

<?xml version="1.0" encoding="UTF-8"7?>
<svg xmlns="http://www.w3.0rg/2000/svg” xmlns:xlink="http://www.w3.0rg/1999/x1link"
version="1.2" baseProfile="tiny" viewBox="00 100 100">

<g xml:base="http://a.example.org/aaa/">
<g xml:base="/bbb/ccc/">
<g xml:base="../ddd/" xml:id="bar">
<image xml:id="foo"” xlink:href="foo.jpg" width="100" height="100"/>
</g>
</g>
</g>
<g xml:base="http://z.example.net/zzz/">
<g xml:base="/yyy/xxx/">
<g xml:base="../xxx/">
<use xlink:href="#foo" />
<use xlink:href="#bar" />
<use xlink:href="#bar" xml:base="../ggg/" />
</g>
</g>
</g>
</svg>

5.7 The 'image' element

The 'image’ element indicates that the contents of an image are to be rendered into a given rectangle within the
current user coordinate system. In SVG Tiny 1.2, the 'image' must reference content that is a raster image format,
such as PNG or JPEG [PNG, JPEG]. SVG Tiny 1.2 does not allow an SVG document to be referenced by the 'image’ ele-
ment; instead, authors should use the 'animation' element for referencing SVG documents. Conforming SVG viewers
must support PNG and JPEG image file formats. Other image file formats may be supported.

For details of the required JPEG support see the JPEG Support appendix. PNG support is required as defined in
the Portable Network Graphics (PNG) Specification (Second Edition) [PNG].

36

/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/examples/use-bubble-example-2.svg
/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/examples/image-use-base.svg
http://www.w3.org/TR/2003/REC-PNG-20031110/

SVG Tiny 1.2 Specification 5 Document Structure

The result of processing an 'image' is always a four-channel RGBA result. When an 'image' element references a
raster image file such as PNG or JPEG files which only has three channels (RGB), then the effect is as if the object
were converted into a 4-channel RGBA image with the alpha channel uniformly set to 1. For a single-channel raster
image, the effect is as if the object were converted into a 4-channel RGBA image, where the single channel from the
referenced object is used to compute the three color channels and the alpha channel is uniformly set to 1.

The 'image' element supports the 'opacity' property for controlling the image opacity. The 'fill-opacity' property
does not affect the rendering of an image.

An 'image' element establishes a new viewport for the referenced file as described in Establishing a new view-
port. The bounds for the new viewport are defined by attributes 'x', 'y, 'width' and 'height'. The placement and scal-
ing of the referenced image are controlled by the 'preserveAspectRatio’ attribute on the 'image' element.

The value of the 'viewBox' attribute to use when evaluating the 'preserveAspectRatio’ attribute is defined by the
referenced content. For content that clearly identifies a 'viewBox' that value should be used. For most raster content
(such as PNG and JPEG) the bounds of the image should be used (i.e. the 'image' element has an implicit 'viewBox' of
"0 0 raster-image-width raster-image-height"). Where no value is readily available the 'preserveAspectRatio’ attribute is
ignored and only the translate due to the 'x' and 'y attributes of the viewport is used to display the content.

For example, if the 'image' element referenced a PNG or JPEG and preserveAspectRatio="xMinYMin meet", then
the aspect ratio of the raster would be preserved (which means that the scale factor from the image's coordinates to
the current user space coordinates would be the same for both x and y), the raster would be sized as large as pos-
sible while ensuring that the entire raster fits within the viewport, and the top left of the raster would be aligned
with the top left of the viewport as defined by the attributes 'x', 'y, 'width' and 'height' on the 'image’ element. If the
value of 'preserveAspectRatio’ was "none" then aspect ratio of the image would not be preserved. The image would
be positioned such that the top-left corner of the raster exactly aligns with coordinate ('x', 'y') and the bottom-right
corner of the raster exactly aligns with coordinate ('x'+'width’, 'y'+'height’).

The SVG specification does not specify when an image that is not being displayed should be loaded. An SVG
user agent is not required to load image data for an image that is not displayed (e.g. an image which is outside the
initial document viewport), except when that image is contained inside a subtree for which
'externalResourcesRequired' is set to "true". However, it should be noted that this may cause a delay when an image
becomes visible for the first time. In the case where an author wants to suggest that the SVG user agent loads image
data before it is displayed, they should use the 'prefetch’' element.

Note that an SVG user agent may choose to incrementally render an image as it is loading but is not required to
do so.

Schema: image

<define name='image'>
<element name='image'>
<ref name='image.AT'/>
<ref name='image.CM'/>
</element>
</define>

<define name='image.AT' combine='interleave'>
<ref name='svg.Core.attr'/>
<ref name='svg.FocusHighlight.attr'/>
<ref name='svg.Media.attr'/>
<ref name='svg.XLinkEmbed.attr'/>
<ref name='svg.Conditional.attr'/>
<ref name='svg.External.attr'/>
<ref name='svg.Focus.attr'/>
<ref name='svg.Transform.attr'/>
<ref name='svg.Opacity.attr'/>
<ref name='svg.XYWH.attr'/>
<ref name='svg.PAR.attr'/>
<ref name='svg.ContentTypeAnim.attr'/>
</define>

<define name='image.CM'>
<zeroOrMore>
<choice>
<ref name='svg.Desc.group'/>
<ref name='svg.Animate.group'/>
<ref name='svg.Discard.group'/>
<ref name='svg.Handler.group'/>

37

SVG Tiny 1.2 Specification 5 Document Structure

</choice>
</zeroOrMore>
</define>

Attribute definitions:

x = "<coordinate>"
The x-axis coordinate of one corner of the rectangular region.
The lacuna value is '0'".
Animatable: yes.

y = "<coordinate>"
The y-axis coordinate of one corner of the rectangular region.
The lacuna value is '0'".
Animatable: yes.

width ="<length>"
The width of the rectangular region.
A negative value is unsupported. A value of zero disables rendering of the element. The lacuna value is '0'.
Animatable: yes.

height = "<length>"
The height of the rectangular region.
A negative value is unsupported. A value of zero disables rendering of the element. The lacuna value is '0'.
Animatable: yes.

preserveAspectRatio = "[defer] <align> [<meet>]"
See attribute definition for description.
Animatable: yes.

xlink:href ="<IRI>"
An [RI reference to the image. An invalid IRl reference is an unsupported value. An empty attribute value
(xlink:href="") disables rendering of the element. The lacuna value is the empty string.
Animatable: yes.

type = "<content-type>"
A hint about the expected Internet Media Type of the raster image. Implementations may choose to not fetch
images of formats that they do not support. Note that if an Internet Media type returned by the server, the
server metadata is authoritative over the type attribute. See Metadata hints in specifications in the
Authoritative Metadata TAG finding ([MIME-RESPECT], section 5). To ensure that a user agent only downloads
media in formats that it supports, thus optimizing download time and bandwidth usage, authors are
encouraged to use 'requiredFormats', instead of 'type'.

Animatable: yes.

focusable = "true" | "false" | "auto"
See attribute definition for description.
Animatable: yes.

Navigation Attributes
See definition.

An example:

Example: 05_21.svg

<?xml version="1.0"7>
<svg xmlns="http://www.w3.0rg/2000/svg" xmlns:xlink="http://www.w3.0rg/1999/xlink"
version="1.2" baseProfile="tiny">

38

http://www.w3.org/2001/tag/doc/mime-respect.html#metadata-hints
http://www.w3.org/2001/tag/doc/mime-respect.html

SVG Tiny 1.2 Specification 5 Document Structure

<desc>This document has a reference to an external image</desc>

<image x="200" y="200" width="100" height="100" xlink:href="externallImage.png">
<title>External image</title>
</image>
</svg>

5.8 Conditional processing

5.8.1 Conditional processing overview

SVG provides a 'switch' element and five conditional processing attributes — 'requiredExtensions’, 'requiredFeatures’,
'requiredFonts', 'requiredFormats' and 'systemLanguage' — which provide the ability to specify alternate content de-
pending on the capabilities of a given SVG user agent or the user's language.

Schema: conditional

<define name='svg.Conditional.attr’' combine='interleave'>
<optional>
<attribute name='requiredFeatures’ svg:animatable='false’' svg:inheritable='false’>
<ref name='ListOfIRI.datatype’'/>
</attribute>
</optional>
<optional>
<attribute name='requiredExtensions’' svg:animatable='false’ svg:inheritable='false’'>
<ref name='ListOfIRI.datatype’'/>
</attribute>
</optional>
<optional>
<attribute name='requiredFormats’' svg:animatable='false’' svg:inheritable='false'>
<ref name='FormatList.datatype'/>
</attribute>
</optional>
<optional>
<attribute name='requiredFonts’' svg:animatable='false’ svg:inheritable='false'>
<ref name='FontList.datatype'/>
</attribute>
</optional>
<optional>
<attribute name='systemlLanguage' svg:animatable='false’ svg:inheritable='false'>
<ref name='lLanguageIDs.datatype'/>
</attribute>
</optional>
</define>

Conditional processing attributes do not affect the processing of all elements. They can be specified only on graph-
ics elements, container elements, text content elements, descriptive elements, timed elements and the
'foreignObject' and 'discard' elements. A conditional processing attribute on any other element does not affect
whether that element will be processed. When a conditional processing attribute is specified on a container ele-
ment, it affects only the elements on which conditional processing attributes can be specified. For example, a
'requiredExtensions' attribute on a 'script’ element will not control whether the script is executed. Note that if a con-
ditional processing attribute is specified on a container element which contains scripts, it has no effect on whether
the script is executed. In particular, all scripts contained in a 'switch' element are processed.

The conditional processing attributes act as boolean tests and evaluate to either true or false. If one is not spe-
cified, then it is assumed to evaluate to true. The attributes can be used in two ways, depending on the context of
the element on which the attributes are specified. If the element's parent node is a 'switch' element, then at most
one of the 'switch' element's children that conditional processing attributes apply to will be processed. (See the de-
scription of the 'switch' element for details.) Otherwise, if the element's parent node is not a 'switch' element, and
conditional processing attributes do apply to the element, then the attributes determine whether that element will
be processed.

What it means for an element not to be processed because of conditional processing attributes specified on it,
or because it is a child of a 'switch' that has selected a different child for processing, depends on the type of element:
- If the element is a graphics element, container element, text content element or a 'foreignObject' element, then

the element is not rendered and is not a part of the rendering tree.

39

SVG Tiny 1.2 Specification 5 Document Structure

« Ifthe element is a timed element, then the element will never begin, regardless of its timing attributes and any
invocations of methods on the svGTimedElement and ElementTimeControl interfaces. If the element serves as a
syncbase for any other timed elements in the document, then those syncbase references will never resolve to a
concrete time. Thus, for example, if the element is an animation element, the animation will never have an
effect, and if the element is an 'audio’ element, then it will never generate any sound.
+ Ifthe element is a 'discard' element, then it will never trigger the removal of its target element, nor will it remove
itself.
Similar to the 'display' property, conditional processing attributes only affect the direct rendering and processing of
applicable elements and do not prevent elements from being successfully referenced by other elements (such as via
a 'use’). Conditional processing attributes in a shadow tree are processed normally.

Example systemLanguage below displays one of three text strings (in Welsh, Greek, or Spanish) if one of those is
the user's preferred language. Otherwise, in this example, it displays nothing.

Example: systemLanguage.svg

<?xml version="1.0" encoding="UTF-8"7>

<svg xmlns="http://www.w3.0rg/2000/svg"
xmlns:xlink="http://www.w3.0rg/1999/x1ink"
version="1.2" baseProfile="tiny" viewBox="0Q @ 170 200">

<title>systemLanguage example</title>

<switch>
<g systemlLanguage="cy">
<text x="20" y="220" xml:lang="cy" font-size="20">Pam dydyn nhw ddim yn
siarad Cymraeg?</text>
</g>
<g systemlLanguage="el">
<text x="20" y="220" xml:lang="el-GR" font-size="22">Ma yiat{ dev pnopolv
va g LAncouv EAANv LkG ;</text>
</g>
<g systemLanguage="es">
<text x="20" y="220" xml:lang="es-ES" font-size="18">iPor qué no pueden
simplemente hablar en castellano?</text>
</g>
</switch>
</svg>

5.8.2 The 'switch' element

The 'switch' element is a container element that can be used to select one of its child elements to process based on
their conditional processing attributes. The first direct child element of a 'switch' whose conditional processing at-
tributes all evaluate to true will be processed as normal. All other direct child elements of the 'switch' that support
conditional processing attributes will not be processed. The elements that support conditional processing attrib-
utes are listed in the Conditional processing overview section, above.

While conditional processing attributes are supported only on certain elements, those attributes on all direct
child elements of a 'switch' are used to determine which children to disable processing for.

The values of the 'display' and 'visibility' properties have no effect on 'switch' element processing. In particular,
setting 'display’ to none on a child of a 'switch' element has no effect on the testing associated with 'switch' element
processing.

Note that regardless of whether they are processed or disabled, child elements of the 'switch' element are still
part of the DOM, and rules applying to the uniqueness of the 'id' and 'xml:id' attributes still apply. Additionally, ele-
ments which would not otherwise be rendered due to conditional processing can still be referenced, for example as
the target of a 'use’ element or as a paint server reference in a 'fill' property.

The element definition schema and content model for 'switch' are not defined here. It is defined in all the places
it can occur.

Schema: switch.at

<define name='switch.AT' combine='interleave'>
<ref name='svg.Core.attr'/>
<ref name='svg.Conditional.attr'/>
<ref name='svg.Properties.attr'/>

40

/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/examples/systemLanguage.svg

SVG Tiny 1.2 Specification 5 Document Structure

<ref name='svg.FocusHighlight.attr'/>

<ref name='svg.External.attr'/>

<ref name='svg.Transform.attr'/>

<ref name='svg.Focus.attr'/>
</define>

For more information and an example, see Embedding foreign object types.
Attribute definitions:

requiredExtensions = "<list-of-strings>"
See attribute definition for description.
Animatable: no.

requiredFeatures = "<list-of-strings>"
See attribute definition for description.
Animatable: no.

requiredFonts = "<list-of-strings>"
See attribute definition for description.
Animatable: no.

requiredFormats = "<list-of-content-types>"
See attribute definition for description.
Animatable: no.

systemLanguage = "<list-of-language-ids>"
See attribute definition for description.
Animatable: no.

focusable = "true" | "false" | "auto"
See attribute definition for description.
Animatable: yes.

Navigation Attributes
See definition.

5.8.3 The 'requiredFeatures' attribute
Definition of 'requiredFeatures'":

requiredFeatures = "<list-of-strings>"
A conditional processing attribute that controls conditional processing based on whether the specified
features are supported by the SVG user agent. The value is a list of feature strings, with the individual values
separated by white space. Only feature strings defined in an existing version of the SVG specification at the
time the document is authored (such as those listed in this document's Feature String appendix) should be
used, while third party extension features that are not part of an SVG standard should be indicated using the
'requiredExtensions' attribute instead.

This attribute evaluates to true for the purpose of conditional processing if and only if all of the specified
features are supported. As with all conditional processing attributes, if 'requiredFeatures' is not specified, then
it implicitly evaluates to true. However, if the attribute is specified, but has an empty string value, it evaluates
to false. See Conditional processing overview for details on how conditional processing attributes influence
document processing.

Animatable: no.

41

SVG Tiny 1.2 Specification 5 Document Structure

5.8.4 The 'requiredExtensions' attribute

The 'requiredExtensions' attribute specifies a list of required language extensions. Language extensions are capabil-
ities within an SVG user agent that go beyond the feature set defined in this specification. Each extension is
identified by an IRI reference.

Language extensions may be vendor-specific or experimental features for the SVG language itself, or may be
separate languages (e.g., XHTML, MathML). If an extension is a separate language that supports the Namespaces in
XML 1.0 specification [XML-NS10] or the Namespaces in XML 1.1 specification [XML-NS], the IRI reference should be
the Namespace URI for that language (e.g., "http://www.w3.0rg/1999/xhtml", "http://www.w3.0rg/1998/Math/
MathML"). If the language does not support either Namespaces in XML specification, the IRl reference should be an
otherwise unique identifier for that language.

Definition of 'requiredExtensions":

requiredExtensions = "<list-of-strings>"
A conditional processing attribute that controls conditional processing based on whether the specified
extensions are supported by the SVG user agent. The value is a list of |RI references which identify the required
extensions, with the individual values separated by white space.

This attribute evaluates to true for the purpose of conditional processing if and only if all of the specified
extensions are supported. As with all conditional processing attributes, if 'requiredExtensions' is not specified,
then it implicitly evaluates to true. However, if the attribute is specified, but has an empty string value, it
evaluates to false. See Conditional processing overview for details on how conditional processing attribute
influence document processing.

Animatable: no.

Since white space is used to separate values in the attribute, any white space characters in the IRl reference must be
escaped.

5.8.5 The 'systemLanguage’ attribute
Definition of 'systemLanguage":

systemLanguage = "<list-of-language-ids>"
A conditional processing attribute that controls conditional processing based on the system language. The
value is a comma-separated list of language tags as defined in BCP 47 ([BCP 471], section 2).

This attribute evaluates to true for the purpose of conditional processing if one of the languages indicated
by user preferences equals one of the languages given in the value of this attribute, or if one of the languages
indicated by user preferences exactly equals a prefix of one of the languages given in the value of this
attribute such that the first tag character following the prefix is U+002D HYPHEN-MINUS ("-"). As with all
conditional processing attributes, if 'systemLanguage’ is not specified, then it implicitly evaluates to true.
However, if the attribute is specified, but has an empty string value, it evaluates to false. See Conditional
processing overview for details on how conditional processing attribute influence document processing.

Animatable: no.

Note that the use of a prefix matching rule to determine whether the attribute evaluates to true or false does not
imply that language tags are assigned to languages in such a way that it is always true that if a user understands a
language with a certain tag, then this user will also understand all languages with tags for which this tag is a prefix.
The prefix rule simply allows the use of prefix tags if this is the case.

Implementation note: When making the choice of linguistic preference available to the user, implementers
should take into account the fact that users are not familiar with the details of language matching as described
above, and should provide appropriate guidance. As an example, users may assume that on selecting "en-GB", they
will be served any kind of English document if British English is not available. The user interface for setting user pref-
erences should guide the user to add "en" to get the best matching behavior.

Multiple languages may be listed for content that is intended for multiple audiences. For example, content that
is presented simultaneously in the original Maori and English versions, would call for:

<text systemLanguage="mi, en"”><!-- content goes here --></text>
However, just because multiple languages are present within the element on which the 'systemLanguage' condi-
tional processing attribute is placed, this does not mean that it is intended for multiple linguistic audiences. An

42

http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/xml-names11/
http://www.rfc-editor.org/rfc/bcp/bcp47.txt

SVG Tiny 1.2 Specification 5 Document Structure

example would be a beginner's language primer, such as "A First Lesson in Latin," which is clearly intended to be
used by an English-literate audience. In this case, the 'systemLanguage' conditional processing attribute should only
include "en".

Authoring note: Authors should realize that if several alternative language objects are enclosed in a 'switch', and
none of them matches, this may lead to situations where no content is displayed. It is thus recommended to include
a "catch-all" choice at the end of such a 'switch' which is acceptable in all cases.

5.8.6 The 'requiredFormats' attribute

Many resources, especially media such as audio and video, have a wide range of formats. As it is often not possible
to require support for a particular format, due to legal or platform restrictions, it is often necessary for content to
provide alternatives so that SVG user agents can choose the format they support. The 'requiredFormats' attribute
can be used to control conditional processing based on whether a particular format is supported by the user agent.

Definition of 'requiredFormats":

requiredFormats = "<list-of-content-types>"
A conditional processing attribute that controls conditional processing based on whether the specified
formats are supported by the SVG user agent. The value is a list of Internet media types, with the individual
values separated by white space. For a list of registered Internet media types (formerly called MIME types), see
the IANA Media Type registry [MIMETYPES]. For a list of Internet media types types for audio and video codecs,
see the IANA codec registry and WAVE and AVI Codec Registries [CODECS, RFC2361].

As with all conditional processing attributes, if 'requiredFormats' is not specified, then it implicitly evaluates
to true. However, if the attribute is specified, but has an empty string value, it evaluates to false. See
Conditional processing overview for details on how conditional processing attribute influence document
processing.

Animatable: no.

The following formats must always evaluate to true in conforming SVG viewers:
+ image/png
+ image/jpeg
+ image/svg+xml

5.8.7 The 'requiredFonts' attribute

If the author wishes to have complete control over the appearance and location of text in the document then they
must ensure that the correct font is used when rendering the text. This can be achieved by using SVG fonts and em-
bedding the font in the document. However, this is not practical in all cases, especially when the number of glyphs
used is very large or if the licensing of the font forbids such embedding.

Definition of 'requiredFonts":

requiredFonts = "<list-of-family-names>"
A conditional processing attribute that controls conditional processing based on whether the specified fonts
are available. The value is a list of font family names, using the same syntax as the 'font-family' property, for
example when processing quoted strings, multiple, leading and trailing spaces, and case sensitivity. Generic
family names may not be used, however.

This attribute evaluates to true for the purpose of conditional processing if and only if all of the specified
fonts are available, either installed on the system or as an SVG font defined or embedded within the
document. As with all conditional processing attributes, if 'requiredFonts' is not specified, then it implicitly
evaluates to true. However, if the attribute is specified, but has an empty string value, it evaluates to false. See
Conditional processing overview for details on how conditional processing attribute influence document
processing.

Animatable: no.

43

http://www.iana.org/assignments/media-types/
http://www.iana.org/assignments/wave-avi-codec-registry
http://www.rfc-editor.org/rfc/rfc2361.txt

SVG Tiny 1.2 Specification 5 Document Structure

5.9 External resources

5.9.1 The 'externalResourcesRequired' attribute

Documents often reference and use the contents of other document and other web resources as part of their ren-
dering or processing. In some cases, authors want to specify that particular resources are required for a document to
be considered correct.

The 'externalResourcesRequired' attribute is available on all container elements except 'defs' and on all elements
which potentially can reference external resources. It specifies whether referenced resources that are not part of the
current document are required for proper rendering of the given element.

Attribute definition:

externalResourcesRequired = "false" | "true"

An attribute that specifies whether external resources are required for correct rendering of this element and its

descendants.

false
(The lacuna value.) Indicates that resources external to the current document are optional. Document
rendering can proceed even if external resources are unavailable to the current element and its
descendants.

true
Indicates that resources external to the current document are required. If an external resource is not
available (for example the request for the required resource times out), progressive rendering is
suspended, the 1oad event is not fired for the element, and the document becomes in error (see Error
processing). The document remains in error until all required resources become available.

Animatable: no.

Attribute 'externalResourcesRequired' is not inheritable (from a sense of attribute value inheritance), but if set on a
container element, its value will apply to all elements within the container.

Because setting externalResourcesRequired="true" on a container element will have the effect of disabling pro-
gressive display of the contents of that container, if that container includes elements that reference external re-
sources, tools that generate SVG content should normally not just set externalResourcesRequired="true" on the 'svg'
element on a universal basis. Instead, it is better to specify externalResourcesRequired="true" on those particular ele-
ments which specifically need the availability of external resources in order to render properly.

5.9.2 Progressive rendering

When progressively downloading a document, an SVG user agent conceptually builds a tree of nodes in various
states. The possible states for these nodes are unresolved, resolved and error.

This description uses two conceptual parsing events to simplify the prose in explaining the intended behaviour
of progressive rendering. The events referred to in the following prose are the start element and end element events.
The start element event is considered to be triggered when a start-tag or an empty-element tag is read. The end ele-
ment event occurs either immediately following the start element event in the case of an empty-element tag, or when
an end-tag is read. The terms start-tag, end-tag and empty-element tag are as defined in Extensible Markup Lan-
guage (XML) 1.0 ([XML10], section 3.1) and Extensible Markup Language (XML) 1.1 ([XML11], section 3.1).

When loading a document following the start element event on a node, that node becomes part of the docu-
ment tree in the unresolved state. It is appended as the last child of the most recently opened element that is still
open (that is, the most recent element for which a start element event has occurred with no corresponding end ele-
ment event). If the node's dependencies are successfully resolved, then the node enters the resolved state or if the
node's dependencies are found to be in error, then the node enters the error state.

When an end element event occurs for a 'script’ element, that element is processed according to the Script pro-
cessing section of the Scripting chapter. Further parsing of the document will be blocked until processing of the
'script’ is complete.

Node dependencies include both children content (like the child elements on a 'g') and resources (e.g. images
referenced by an 'image') referenced from that node or from its children. Empty elements (elements without chil-
dren) become resolved when the end element event occurs on the element; elements with child nodes become re-
solved when all their children are resolved and when the end element event occurs on the element. Resources be-
come resolved (or found in error) by an SVG user agent specific mechanism.

44

http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.w3.org/TR/2004/REC-xml11-20040204/

SVG Tiny 1.2 Specification 5 Document Structure

SVG user agents must implement progressive rendering although there is no minimum rendering update fre-
quency required for conformance. Implementations should find their own balance between processing the changes
in the document tree and rendering the tree to produce a smooth rendering avoiding significant pauses. The fol-
lowing rules apply to progressive rendering:

« The SVG user agent has the opportunity to update the rendering following each start element and/or end
element event, i.e. each time the SVG user agent parses a start-tag, empty-element tag or end-tag.

« The SVG user agent renders the conceptual document tree nodes in document order up to, and not including
the first node in the unresolved state which has 'externalResourcesRequired' set to "true". Nodes in the resolved
state are always rendered. Nodes in the unresolved state but with 'externalResourcesRequired' set to "false" are
rendered in their current state. If the node has no rendering (e.g., an 'image’ pending a resource), then nothing is
rendered for that node.

« If a node enters the error state then the document enters the error state and progressive rendering stops.

Note that even if the SVG user agent has the opportunity to update the rendering after each start/end element
event there are situations where such an update shouldn't be done. For example, 'font' element children (‘font-face’,
'hkern', 'missing-glyph’, 'glyph’) should not cause an update of the document rendering, only the end element event
on the 'font' element should cause a document rendering as for other node types.

Note that forward referencing from a 'discard' element should be avoided when using progressive rendering. If it
fails to find (and thus discard) an element, it will not later discard the element when it has finally loaded.

In Example progRend01 below, the 'g' element rendering may start when the 'g' end-tag has been parsed and
processed and when all the resources needed by its children have been resolved. This means that the group's ren-
dering may start when the group has been fully parsed and mylmage.png has been successfully retrieved.

Example: progRend01.svg

<svg xmlns="http://www.w3.0rg/2000/svg" xmlns:xlink="http://www.w3.0rg/1999/xlink"
version="1.2" baseProfile="tiny" viewBox="0Q @ 480 360">

<desc>externalResourcesRequired example.</desc>

<g externalResourcesRequired="true">
<rect xml:id="rect_1" width="5" height="7"/>

<rect xml:id="rect_1000" width="5" height="7"/>
<image xlink:href="myImage.png"” width="5" height="7" externalResourcesRequired="true"/>
<rect xml:id="rect_1001" width="5" height="7"/>

</g>
</svg>

Example progRend02 demonstrates how progressive rendering is performed when there is a 'use' element with a
forward reference.

Example: progRend02.svg

<svg xmlns="http://www.w3.0rg/2000/svg"” xmlns:xlink="http://www.w3.0rg/1999/x1link"
version="1.2" baseProfile="tiny" viewBox="0Q @ 480 360">

<desc>Forward reference of use element</desc>

<use xlink:href="#myRect"” x="200" fill="green"/>
<circle cx="450" cy="50" r="50" fill="yellow"/>

<g fill="red">
<rect xml:id="myRect” width="100" height="100"/>
</g>
</svg>

The following list shows the possible renderings of the document as it is parsed (the rendering state follows the
colon):

1. 'use' - start element: empty
2. 'circle' - start element: yellow circle
3. 'g' - start element: no update

45

SVG Tiny 1.2 Specification 5 Document Structure

4,

'rect' — start element (use reference becomes resolved): green rect, yellow circle, red rect

Example progRend03 demonstrates how progressive rendering is performed when there is a 'use' element with a
forward reference and which has externalResourcesRequired="true".

Example: progRend03.svg

<svg xmlns="http://www.w3.0rg/2000/svg” xmlns:xlink="http://www.w3.0rg/1999/x1link"
version="1.2" baseProfile="tiny" viewBox="0Q @ 480 360">

<desc>Forward reference on use with eRR=true</desc>

<use xlink:href="#myGroup” x="200" fill="green"” externalResourcesRequired="true"/>
<circle cx="450" cy="50" r="50" fill="yellow"/>

<g fill="red">
<g xml:id="myGroup">
<rect xml:id="myRect” width="100" height="100"/>
<use xlink:href="#myRect” x="50" fill="purple"/>
</g>
</g>
</svg>

The possible rendering states are as follows:

1.
2.

'use' — start element: empty

‘circle' — start element: empty 'use' is unresolved, externalResourcesRequired="true", rendering is stopped at the
'use')

Outer'g' — start element: no update

Inner 'g' — start element: no update (use is resolved but externalResourcesRequired="true" so rendering may not
proceed until that reference enters the resolved state)

'rect' - start element: no update

'use' > start element: no update

Inner'g' — end element (#myGroup reference becomes resolved, rendering can proceed): green rect, purple rect,
yellow circle, red rect, purple rect

Example progRend04 shows a 'use' element with a reference to an element that is in a container with externalRe-

sourcesRequired="true".

Example: progRend04.svg

<svg xmlns="http://www.w3.0rg/2000/svg" xmlns:xlink="http://www.w3.0rg/1999/x1link"
version="1.2" baseProfile="tiny" viewBox="0 @ 480 360">

<desc>Forward reference to a use under a container with eRR=true</desc>

<use xlink:href="#myRect"” x="200" fill="green"/>
<circle cx="250" cy="50" r="50" fill="pink"/>

<g fill="red" externalResourcesRequired="true">
<circle cx="450" cy="50" r="50" fill="yellow"/>
<rect xml:id="myRect” width="100" height="100"/>
</g>
</svg>

The possible rendering states as the document is parsed are as follows:

1.
2.
3.

o

'use' - start element: empty

Pink 'circle' — start element: pink circle

'g' - start element: no update (rendering is suspended because of externalResourcesRequired="true" on the 'g'
element, i.e. because the children of 'g' are not resolved at the time of parsing of the start tag of the 'g’).

Yellow ‘circle' — start element: no update (rendering suspended because of 'g')

'rect’ - start element: no update

'g" — end element (resources referenced by 'use' become resolved and can be rendered, so rendering can
proceed): green rect, pink circle, yellow circle, red rect

46

SVG Tiny 1.2 Specification 5 Document Structure

Example progRend05 shows an example of progressive rendering with a forward reference to an SVG font. Render-
ing updates do not occur mid-way through parsing a 'font' element.

Example: progRend05.svg

<svg xmlns="http://www.w3.0rg/2000/svg" xmlns:xlink="http://www.w3.0rg/1999/x1link"
version="1.2" baseProfile="tiny" viewBox="0 @ 480 360">

<desc>Font Resolution Example</desc>

<text x="240" y="230" text-anchor="middle" font-size="120"
font-family="fontC, fontB, fontA">A</text>

<defs>

<font-face
font-family="fontA"
units-per-em="1000"
panose-1="0 0 0 0 0 0 0 0 @ Q"
ascent="917"
descent="-250"
alphabetic="0"/>

<missing-glyph horiz-adv-x="800" d="..." />
<glyph unicode="A" glyph-name="A" d="..."/>

<font-face
font-family="fontB"
units-per-em="1000"
panose-1="0 0 0 0 0 0 0 @ @ Q"
ascent="917"
descent="-250"
alphabetic="0"/>
<missing-glyph horiz-adv-x="800" d="..."/>
<glyph unicode="A" glyph-name="B" d="..." />

<font-face

font-family="fontC"
units-per-em="1000"
panose-1="0 0 0 0 0 0 0 0 @ Q"
ascent="917"
descent="-250"
alphabetic="0"/>

<missing-glyph d="..."/>
<glyph unicode="A" glyph-name="C" d="..."/>

</defs>
</svg>

Rendering update possibilities as the document is parsed are as follows:

1. ‘'text' - start element: "A" rendered with the default font
2. 'defs' - start element: no update
3. #fontA - start element: no update
4. #fontA /'font-face' — start element: no update
5. #fontA /'missingGlyph' - start element: no update
6. #fontA /'glyph' - start element: no update
7. #fontA — end element: "A" rendered with fontA (represents current document state rendering)
8. #fontB - start element: no update
9. #fontB /'font-face' - start element: no update
10. #fontB /'missingGlyph' — start element: no update
11. #fontB /'glyph' — start element: no update
12. #fontB — end element: "A" rendered with fontB (represents current document state rendering)
13. #fontC - start element: no update

47

SVG Tiny 1.2 Specification 5 Document Structure

14. #fontC/ 'font-face' — start element: no update

15. #fontC/'missingGlyph' — start element: no update

16. #fontC/'glyph' — start element: no update

17. #fontC - end element:"A" rendered with fontC (represents current document state rendering)

5.9.3 The 'prefetch' element

SVG 1.1 did not specify when an SVG user agent should begin downloading referenced media. This lead to imple-
mentation differences particularly when the media was not used in the initial document state (e.g. it was offscreen
or hidden). SVG Tiny 1.2 does not require SVG user agents to download referenced media that is not visible at the
time the document is loaded, unless those media are contained inside a subtree for which
'externalResourcesRequired' is set to "true". This means there may be a pause to download the file the first time a
piece of media is displayed. More advanced SVG user agents may wish to predict that particular media streams will
be needed and therefore download them in anticipation.

SVG Tiny 1.2 therefore adds functionality to allow content developers to suggest prefetching content from the
server before it is needed to improve the rendering performance of the document. The SMIL 2.1 'prefetch’ element
([SMIL21], section 4.4) has been incorporated into SVG as the 'prefetch’ element, with the following modifications:

« Attributes cannot be given <percent-value> values.

« The 'xlink:href' attribute is permitted to point into the document in which the 'prefetch’' element appears so that
this feature can be used as a hint indicating how much of the document is required before playback can start.

+ In order to adequately support non-local IRI references, the 'mediaCharacterEncoding' and

'mediaContentEncodings' attributes have been added.

The 'prefetch' element provides a hint to the SVG user agent that media will be used in the future and the author
would like part or all of it fetched ahead of time to make document playback smoother. As it is a hint, user agents
may ignore 'prefetch’ elements, although doing so may cause an interruption in the document playback when the
resource is needed. It gives authoring tools and authors the ability to schedule retrieval of resources when they
think that there is available bandwidth or time to do it.

When instead of referring to external media, 'prefetch’ refers to the same document it occurs in, then it can only
reference a top level 'g' element. A top level 'g' element is a 'g' element that is a direct child of the rootmost 'svg'
element.

To enable smooth playback during progressive downloading in this scenario, it is recommended that each adja-
cent top level 'g' element contains adjacent chronological scenes in the animation. In this case the 'prefetch' ele-
ment must appear in a 'defs' block before all defined 'g' elements in the document. In such cases, 'prefetch’ is used to
tell the SVG user agent how much it needs to buffer in order to be able to play content back in a smooth and pre-
dictable manner.

Schema: prefetch

<define name='prefetch’'>
<element name='prefetch'>
<ref name='prefetch.AT'/>
<ref name='prefetch.CM'/>
</element>
</define>

<define name='prefetch.AT' combine='interleave'>
<ref name='svg.Core.attr'/>
<ref name='svg.XLinkRequired.attr'/>
<optional>
<attribute name='mediaSize' svg:animatable='false’' svg:inheritable='false’'>
<ref name='Number.datatype'/>
</attribute>
</optional>
<optional>
<attribute name='mediaTime' svg:animatable='false’' svg:inheritable='false’'><text/></attribute>
</optional>
<optional>
<attribute name='mediaCharacterEncoding’' svg:animatable='false’
svg:inheritable='false'><text/></attribute>
</optional>
<optional>
<attribute name='mediaContentEncodings’' svg:animatable='false’
svg:inheritable='false'><text/></attribute>

48

http://www.w3.org/TR/2005/REC-SMIL2-20051213/smil-content.html#ContentControlNS-PrefetchControl

SVG Tiny 1.2 Specification 5 Document Structure

</optional>
<optional>
<attribute name='bandwidth' svg:animatable='false’' svg:inheritable='false’'>
<choice>
<ref name='Number.datatype’'/>
<value>auto</value>
</choice>
</attribute>
</optional>
</define>

<define name='prefetch.CM'>
<zeroOrMore>
<ref name='svg.Desc.group'/>
</zeroOrMore>
</define>

Attribute definitions:

mediaSize ="<long>"
Defines how much of the media to fetch in bytes in terms of the file size of the media.

When 'prefetch’ refers to a resource in the same document (i.e. a top level 'g' element), the 'mediaSize’
attribute indicates the size in bytes of the 'g' element and its children. That size corresponds to the encodings
used when transmitting the document. If the document is encoded in UTF-8 [RFC3629] and gzipped
[RFC1952], then the size of the gzipped UTF-8 fragment applies. If that same document were decompressed
and transcoded to UTF-16 [RFC2781] the hints will become stale. Since streaming hints are to be used
primarily in streaming scenarios, it is not expected that hint staleness will occur frequently.

Animatable: no.

mediaTime = "<clock-value>"

Defines how much of the media to fetch in terms of the duration of the media. For discrete media (non-time
based media such as PNG) using this attribute causes the entire resource to be prefetched.

When 'prefetch'’ refers to a resource in the same document (i.e. a top level 'g' element), this is the active
duration of the referenced element. In cases where the exact active duration can not be calculated beforehand
(e.g. if the end of an animation depends on user interaction), it is suggested that the content author estimate
the minimum active duration for the referenced element. This estimate, even if zero, will allow the SVG user
agent to calculate how much of the overall document to download before beginning playback in a streaming
scenario.

Animatable: no.

bandwidth ="<long>"
Defines how much network bandwidth, in bits per second, the SVG user agent should use when performing
the prefetch. If the attribute is not specified, all available bandwidth should be used.
Animatable: no.

mediaCharacterEncoding = "<string>"
Indicates the XML character set encoding (UTF-8, ISO-8859-1, etc.) that the 'mediaSize' attribute applies to.
Tools that produce SVG should include this attribute if they specify the 'mediaSize’ attribute. The main use of
this attribute is to know what character encoding was used when measuring 'mediaSize’ so that staleness of
the hints may be easily detected. If the attribute is not specified, the encoding that was used to calculate the
size is that which is returned by the server.
Animatable: no.

mediaContentEncodings = "<list-of-strings>"
The 'mediaContentEncodings' attribute is a white space separated list of the content encodings as defined in
section 3.5 of HTTP/1.1 [RFC2616] (gzip, compress, etc.) that the 'mediaSize' attribute applies to. The order of
the list is the order in which the content encodings were applied to encode the data. Note that while
situations in which multiple content codings are applied are currently rare, they are allowed by HTTP/1.1 and
thus that functionality is supported by SVG. Tools that produce SVG must include this attribute if they specify
the 'mediaSize' attribute and the Content-Encoding is other than the identity encoding. The main use of this

49

SVG Tiny 1.2 Specification 5 Document Structure

attribute is to know what parameters were used when measuring 'mediaSize' so that staleness of the hints may
be easily detected. If the 'mediaContentEncodings' attribute is not specified it is as if the identity encoding
value from HTTP/1.1 had been specified. This indicates that no transformation (i.e. encodings) at all has been
used.

Animatable: no.

xlink:href ="<IRI>"
An IRl reference to the resource to prefetch. An invalid IRI reference is an unsupported value. An empty
attribute value (xlink:href="") means that no prefetching will occur. The lacuna value is the empty string.
Animatable: no.

When 'prefetch’ refers to external media, if both 'mediaSize' and 'mediaTime' are specified, then 'mediaSize’ shall be
used and 'mediaTime' is ignored. If neither 'mediaSize' nor 'mediaTime' is specified, the behavior is that the entire re-
source should be fetched.

When 'prefetch’ refers to a resource in the same document (i.e. a top level 'g' element), both the 'mediaSize' and
'mediaTime' attributes can be used together by a more advanced SVG user agent to determine how much it needs
to buffer in order to be able to play content back in a smooth manner.

Note that whereas the 'externalResourcesRequired' attribute is used to designate that a resource is required, the
'‘prefetch’ element is used to optimize the retrieval of a resource. Setting the 'externalResourcesRequired' attribute
does not influence the behavior of the 'prefetch' element and vice-versa. This is true whether the 'prefetch' element
points to an internal 'g' element or external resource.

Example prefetch01 demonstrates the use of the 'prefetch’ element when it refers to external media:

Example: prefetch01.svg

<svg width="400" height="300" version="1.2"
xmlns="http://www.w3.0rg/2000/svg" baseProfile="tiny"
xmlns:xlink="http://www.w3.0rg/1999/x1link">

<desc>
Prefetch the large images before starting the animation
if possible.

</desc>

<defs>
<prefetch xlink:href="http://www.example.com/images/hugel.png"/>
<prefetch xlink:href="http://www.example.com/images/huge2.png"/>
<prefetch xlink:href="http://www.example.com/images/huge3.png"/>
</defs>

<image x="0" y="0" width="400" height="300"
xlink:href="http://www.example.com/images/hugel.png"
display="none">

<set attributeName="display” to="inline" begin="10s"/>

<animate attributeName="xlink:href"” values="
http://www.example.com/images/hugel.png;
http://www.example.com/images/huge2.png;
http://www.example.com/images/huge3.png”
begin="15s" dur="30s"/>
</image>

</svg>

Example prefetch02 is an example of the 'prefetch’ element referring to a resource in the same document (i.e. a top
level 'g' element):

Example: prefetch02.svg

<?xml version="1.0" encoding="utf-16"7>

<svg width="400" height="300" version="1.2"
xmlns="http://www.w3.0rg/2000/svg" baseProfile="tiny"
xmlns:xlink="http://www.w3.0rg/1999/x1ink"

50

SVG Tiny 1.2 Specification 5 Document Structure

timelineBegin="onStart"
playbackOrder="forwardOnly">

<desc>
Example of using SVGT 1.2 features for smooth playback
during progressive downloading.

</desc>

<defs>

<prefetch xlink:href="#scenel”
mediaCharacterEncoding="UTF-16"
mediaTime="5s" mediaSize="94230" />

<prefetch xlink:href="#scene2"
mediaCharacterEncoding="UTF-16"
mediaTime="10s" mediaSize="283474" />

<prefetch xlink:href="#scene3"
mediaCharacterEncoding="UTF-16"
mediaTime="15s" mediaSize="627638" />

</defs>

<g xml:id="scenel">

<discard begin="6s"/>

<!-- graphics for scene 1 go here -->
</g>

<g xml:id="scene2">

<discard begin="16s"/>

<!-- graphics for scene 2 go here -->
</g>

<g xml:id="scene3">

<discard begin="21s"/>

<!-- graphics for scene 3 go here -->
</g>

</svg>

5.10 Common attributes

5.10.1 Attributes common to all elements

The 'id', 'xml:id', 'xml:base’, ‘class', 'role’, 'rel', 'rev', 'about’, 'content’, 'datatype’, 'property’, 'resource’, and 'typeof' attrib-
utes are available on all elements defined by SVG Tiny 1.2. Some of these elements, such as 'id', 'xml:id', and
'xml:base' may have a direct effect on the structure and rendering of SVG, while others may only affect SVG indir-
ectly, or may be used only for auxiliary processing of SVG content. See extensible metadata attributes for more
details.

Attribute definitions:

id ="<NCName>"
This attribute specifies a unique identifier for the element. Because of wider use and compatibility with legacy
content and existing user agents (including authoring tools), it is recommended that content intended for use
in a Web browser environment use 'id' instead of 'xml:id'. (See details on ID attributes below.)
Animatable: no.

xml:id ="<NCName>"
This attribute specifies a unique identifier for the element. Refer to xml:id Version 1.0 [XMLID]. It is
recommended that content intended for use with generic XML processing tools, particularly in a scenario
where the datatype of the 'id" attribute is not known, use 'xml:id". (See details on ID attributes below.)
Animatable: no.

51

http://www.w3.org/TR/2005/REC-xml-id-20050909/

SVG Tiny 1.2 Specification 5 Document Structure

xml:base = "<IRI>"
This attribute specifies a base IRI other than the base [RI of the document or external entity. Refer to XML Base
[XML-BASE].
Animatable: no.

class ="<XML-NMTOKENS>"
The 'class' attribute assigns one or more class names to an element. The element may be said to belong to
these classes. A class name may be shared by several element instances. The class attribute has several roles:
+ Asa style sheet selector (when an author wishes to assign style information to a set of elements). Note: SVG
Tiny 1.2 does not mandate the support of style sheets.
+ For general purpose processing by user agents.
The attribute value indicates membership in one or more sets. Any number of elements may be assigned to
the same set. Multiple set names must be separated by white space characters.
Animatable: yes.

role = "<list-of-strings>"

The 'role’ attribute assigns one or more role values to an element. The element may be said to have these roles.
A role value may be shared by several element instances. Unlike the 'class' attribute, 'role' attribute values are
intended to be selected from a predefined set of values with specific semantic aspects that are assigned to the
element, such as those defined in the ARIA ontology [ARIA], XHTML Role Attribute Module [ROLE], XHTML
Vocabulary collection [XHTMLVOCAB], and in future SVG specifications.

The 'role’ attribute is intended to functionally align with the XHTML Role Attribute Module [ROLE].

The attribute value indicates membership in one or more sets. Any number of elements may be assigned
to the same set. Multiple set names must be separated by white space characters.

Animatable: yes.

rel = "<list-of-strings>"

The 'rel' attribute assigns one or more relationship values to an element. The value of the 'rel' attribute
expresses the relationships between two resources. For 'a' elements in particular, the 'rel' attribute indicates
the relationship that the linked resource holds for the element's children or the element's containing
document.

This attribute is an analog of the HTML [HTMLA4] attribute of the same name. It is intended to be used in the
same manner, such as with RDFa [RDFA], Microformats [MF], and other semantic purposes.

The attribute value indicates membership in one or more sets. Any number of elements may be assigned
to the same set. Multiple set names must be separated by white space characters.

Animatable: yes.

rev = "<list-of-strings>"

The 'rev' attribute assigns one or more relationship values to an element. The value of the 'rev' attribute
expresses the reverse relationships between two resources. For 'a' elements in particular, the 'rev' attribute
indicates the relationship that the element's children or the element's containing document holds for the
linked resource.

This attribute is an analog of the HTML [HTMLA4] attribute of the same name. It is intended to be used in the
same manner, such as with RDFa [RDFA], Microformats [MF], and other semantic purposes.

The attribute value indicates membership in one or more sets. Any number of elements may be assigned
to the same set. Multiple set names must be separated by white space characters.

Animatable: yes.

about = "<list-of-strings>"

The 'about' attribute assigns one or more relationship values to an element. The value of the 'about’ attribute is
intended to be used for stating the subject of the element's data.

This attribute is intended to functionally align with the attribute of the same name in the RDFa [RDFA]
specification, but is not limited to use with that format.

The attribute value indicates membership in one or more sets. Any number of elements may be assigned
to the same set. Multiple set names must be separated by white space characters.

Animatable: yes.

52

http://www.w3.org/TR/2001/REC-xmlbase-20010627/
http://www.w3.org/TR/wai-aria/
http://www.w3.org/TR/xhtml-role/
http://www.w3.org/1999/xhtml/vocab/
http://www.w3.org/1999/xhtml/vocab/
http://www.w3.org/TR/xhtml-role/
http://www.w3.org/TR/rdfa-syntax/
http://microformats.org/
http://www.w3.org/TR/rdfa-syntax/
http://microformats.org/
http://www.w3.org/TR/rdfa-syntax/

SVG Tiny 1.2 Specification 5 Document Structure

content ="<string>"
The 'content’ attribute provides a plain text value that may be suitable for humans, or may be machine-
readable, or both, depending on the context. In general, this should only be used to supplement textual child
content, or to be used on elements which do not normally take text as child content.
This attribute is intended to functionally align with the attribute of the same name in the RDFa [RDFA]
specification, but is not limited to use with that format.
Animatable: yes.

datatype = "<string>"

The 'datatype’ attribute specifies a semantic datatype for the content of the element, or the value of the
‘content' attribute if one is provided for the element.

This attribute should not be confused with the 'type' attribute, and has no direct effect on the rendering or
execution of the element.

This attribute is intended to functionally align with the attribute of the same name in the RDFa [RDFA]
specification, but is not limited to use with that format.

Animatable: yes.

property = "<list-of-strings>"

The 'property’ attribute is used for expressing relationships between the element's subject (e.g., the text
content of a child node or of an attribute value) and a set of known or referenced properties.

This attribute is intended to functionally align with the attribute of the same name in the RDFa [RDFA]
specification, but is not limited to use with that format.

The attribute value indicates membership in one or more sets. Any number of elements may be assigned
to the same set. Multiple set names must be separated by white space characters.

Animatable: yes.

resource = "<string>"
The 'resource’ attribute associates a resource, typically expressed with an [RI reference, to the element, in a
manner that does not normally resolve the IRl reference.
This attribute is intended to functionally align with the attribute of the same name in the RDFa [RDFA]
specification, but is not limited to use with that format.
Animatable: yes.

typeof = "<list-of-strings>"
The 'typeof' attribute associates one or more datatypes with the element. This attribute should not be
confused with the 'type' attribute, and has no direct effect on the rendering or execution of the element.
This attribute is intended to functionally align with the attribute of the same name in the RDFa [RDFA]
specification, but is not limited to use with that format.
The attribute value indicates membership in one or more sets. Any number of elements may be assigned
to the same set. Multiple set names must be separated by white space characters.
Animatable: yes.

The 'id' and 'xml:id' attributes

Both the 'id' and 'xml:id' attributes specify a unique identifier for the element. Both are have the data type
<NCName>, but are of type <ID> for purposes of validation. 'xml:id' is intended to represent type <ID> universally
across all document types. This makes it more suitable for certain compound documents with arbitrary XML, or with
generic XML toolchains which require explicit knowledge of <ID>-typed attributes.

It is strongly recommended that SVG generators only use 'id' to assign identity to elements, to maintain back-
wards compatibility with existing viewers, authoring tools, and other content.

There remains only one single id field on the svcelement interface, which can be used to change the value of
either attribute (e.g. by using the setattributeNs(), setTraitNsS(), Or setTrait() methods). Likewise, the getElementById
method on the bocument interface applies equally to both the 'id' and 'xml:id' attributes.

Because they are intended for different environments, the 'id' and 'xml:id' attributes must not be used together
on SVG elements in the same document. Such documents are not conforming SVG 1.2 Tiny content, and the behavi-
or is not specified.

53

http://www.w3.org/TR/rdfa-syntax/
http://www.w3.org/TR/rdfa-syntax/
http://www.w3.org/TR/rdfa-syntax/
http://www.w3.org/TR/rdfa-syntax/
http://www.w3.org/TR/rdfa-syntax/

SVG Tiny 1.2 Specification 5 Document Structure

Transforming between 'id' and 'xml:id'

In order to facilitate the creation of content that can be used in both primary scenarios (that is, in existing desktop
browsers and authoring tools, and in XML toolchains), an XSLT stylesheet can be used to convert the 'id' attributes
to 'xml:id' attributes (and vice versa). For example, when content that has been authored with the browser environ-
ment in mind is being prepared for consumption by a generic XML tool, it can be preprocessed by using the id2xm-
lid.xsl sample stylesheet. This allows the same content to be used with little overhead or risk of breaking content.
Example transformation stylesheets are provided below:

Example: id2xmlid.xsl

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0org/1999/XSL/Transform">

<xsl:template match="node() | @x">
<xsl:copy>
<xsl:apply-templates select="node() | @x"/>
</xsl:copy>
</xsl:template>

<xsl:template match="@id">
<xsl:attribute name="xml:id">
<xsl:value-of select="."/>
</xsl:attribute>
</xsl:template>

</xsl:stylesheet>

Example: xmlid2id.xsl

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:template match="node() | @x">
<xsl:copy>
<xsl:apply-templates select="node() | @x"/>
</xsl:copy>
</xsl:template>

<xsl:template match="@xml:id">
<xsl:attribute name="1id">
<xsl:value-of select="."/>
</xsl:attribute>
</xsl:template>

</xsl:stylesheet>

5.10.2 Attributes for character-content elements

Elements that might contain character data content have attributes 'xml:lang' and 'xml:space’ to specify the natural
language and whitespace processing of the content.

54

/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/examples/id2xmlid.xsl
/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/examples/xmlid2id.xsl

SVG Tiny 1.2 Specification 5 Document Structure

Schema: langspace

<attribute name='xml:space’ svg:animatable='false’ svg:inheritable='false’>
<choice>
<value>default</value>
<value>preserve</value>
</choice>
</attribute>

<attribute name='xml:lang' svg:animatable='false’ svg:inheritable='false’'>
<choice>
<ref name='LanguageCode.datatype'/>
<empty/>
</choice>
</attribute>

Attribute definitions:

xml:lang = "<language-id>"
This is a standard XML attribute used to specify the language (e.g., English) used in the child text content and
attribute values of the element it occurs on. The value is either a language tag as defined in IETF BCP 47 [BCP
47] or the empty string, ™. Refer to Extensible Markup Language (XML) 1.0 ([XML10], section 2.12) and Extensible
Markup Language (XML) 1.1 ([XML11], section 2.12) for the definition of this attribute.
Animatable: no.

xml:space = "default" | "preserve"
This is a standard XML attribute used to specify whether white space is preserved in character data. The only
possible values are "default" and "preserve". Refer to Extensible Markup Language (XML) 1.0 ([XML10], section
2.10) and Extensible Markup Language (XML) 1.1 (IXML11], section 2.10) for the definition of this attribute. See
also the discussion of white space handling for text content elements in SVG.
Animatable: no.

55

http://www.rfc-editor.org/rfc/bcp/bcp47.txt
http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.w3.org/TR/2004/REC-xml11-20040204/
http://www.w3.org/TR/2004/REC-xml11-20040204/
http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.w3.org/TR/2004/REC-xml11-20040204/

SVG Tiny 1.2 Specification 6 Styling

6 Styling

Contents

6.1 SVG's SEYlING PrOP OIS . . ottt ettt ettt ettt e et ettt e e ettt e e 56
6.2 Usage sCeNarios fOor STYliNgG. ... vni ittt ittt e et ettt e et e 57
6.3 Specifying properties using the presentation attributes.o 57
6.4 Sty lING WIth XL ottt et et et et et et e e e e 58
6.5 Case sensitivity of property names and valuesttt e et 59
6.6 Facilities from CSS and XSL used by SVG.ottt e e e e e et 59
6.7 Property inheritance and ComMPULAtioNttt e e e et i et enenans 59

6.1 SVG's styling properties

SVG uses styling properties to describe many of its document parameters. Styling properties define how the graphics
elements in the SVG content are to be rendered. SVG uses styling properties for the following:
« Parameters which are clearly visual in nature and thus lend themselves to styling. Examples include all attributes
that define how an object is "painted,” such as fill and stroke colors, line widths and dash styles.
« Parameters having to do with text styling such as ‘font-family' and ‘font-size'.
« Parameters for interactivity and multimedia, such as 'pointer-events' and 'audio-level'.
SVG shares many of its styling properties with CSS [CSS2] and XSL [XSL]. Except for any additional SVG-specific rules
explicitly mentioned in this specification, the normative definition of properties that are shared with CSS and XSL is
the definition of the property from the CSS 2 specification [CSS2]. Note: The CSS 2 specification is no longer main-
tained, and implementors may wish to refer instead to its future replacement, CSS 2.1 [CSS21], for more precise de-
tails. SVG 1.2 Tiny refers to CSS 2 due to the maturity of that specification on the W3C Recommendation track.
The following properties are shared between CSS 2 and SVG. Apart from 'display’, these properties are also
defined in XSL:
« Font properties:
+ 'font-family'
 'font-size'
+ 'font-style'
+ 'font-weight'
« Text properties:
'direction’
* 'unicode-bidi'
« Other properties for visual media:
+ 'color', which is used to provide a potential indirect value (currentColor) for the 'fill', 'stroke' and 'stop-color'
properties
- 'display'
visibility'
The following SVG properties are not defined in CSS 2. The complete normative definitions for these properties are
found in this specification:
« Gradient properties:
« 'stop-color'
- 'stop-opacity'
« Interactivity properties:
- 'pointer-events'
« Multimedia properties:
- 'audio-level'
« Color and Painting properties:
 'buffered-rendering'
'color-rendering’
- 'fill'
+ 'fill-opacity'
+ 'fill-rule'

 'image-rendering'

56

SVG Tiny 1.2 Specification 6 Styling

+ 'shape-rendering'

- 'solid-color'

- 'solid-opacity'

- 'stroke'
'stroke-dasharray’
'stroke-dashoffset'

+ 'stroke-linecap'

- 'stroke-linejoin'

« 'stroke-miterlimit'

- 'stroke-opacity'
'stroke-width'
'text-rendering'

 'vector-effect'

+ 'viewport-fill'

+ 'viewport-fill-opacity'

« Text properties:

'display-align’
'line-increment'
+ 'text-anchor'

A table that lists and summarizes the styling properties can be found in the Property Index.

6.2 Usage scenarios for styling

SVG has many usage scenarios, each with different needs. Here are three common usage scenarios:

1.

SVG content used as an exchange format (style sheet language-independent):

In some usage scenarios, reliable interoperability of SVG content across software tools is the main goal. Since
support for a particular style sheet language is not guaranteed across all implementations, it is a requirement
that SVG content can be fully specified without the use of a style sheet language.

SVG content generated as the output from XSLT [XSLT]:

XSLT offers the ability to take a stream of arbitrary XML content as input, apply potentially complex
transformations, and then generate SVG content as output. XSLT can be used to transform XML data extracted
for instance from databases into an SVG graphical representation of that data. It is a requirement that fully
specified SVG content can be generated from XSLT.

SVG content styled with CSS [CSS2]:

CSS is a widely implemented declarative language for assigning styling properties to XML content, including
SVG. It represents a combination of features, simplicity and compactness that makes it very suitable for many
applications of SVG. SVG Tiny 1.2 does not require support for CSS selectors applied to SVG content. Authors
must not rely on external, author stylesheets to style documents that are intended to be used with SVG Tiny 1.2
user agents.

6.3 Specifying properties using the presentation attributes

For each styling property defined in this specification (see Property Index), there is a corresponding XML attribute
(the presentation attribute) with the same name that is available on all relevant SVG elements. For example, SVG has
a 'fill' property that defines how to paint the interior of a shape. There is a corresponding presentation attribute with
the same name (i.e., 'fill') that can be used to specify a value for the 'fill' property on a given element.

The following example shows how the 'fill' and 'stroke' properties can be assigned to a rectangle using the "fill'

and 'stroke' presentation attributes. The rectangle will be filled with red and outlined with blue:

Example: 06_01.svg

<?xml version="1.0"7>
<svg xmlns="http://www.w3.0rg/2000/svg" version="1.2" baseProfile="tiny"
viewBox="0 @ 1000 500">
<rect x="200" y="100" width="600" height="300"
fill="red" stroke="blue" stroke-width="3"/>
</svg>

57

/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/examples/06_01.svg

SVG Tiny 1.2 Specification 6 Styling

The presentation attributes offer the following advantages:

« Broad support. All versions of Conforming SVG Interpreters and Conforming SVG Viewers are required to
support the presentation attributes.

« Simplicity. Styling properties can be attached to elements by simply providing a value for the presentation
attribute on the proper elements.

+ Restyling. SVG content that uses the presentation attributes is highly compatible with downstream processing
using XSLT [XSLT] or supplemental styling by adding CSS style rules to override some of the presentation
attributes.

- Convenient generation using XSLT [XSLT]. In some cases, XSLT can be used to generate fully styled SVG
content. The presentation attributes are compatible with convenient generation of SVG from XSLT.

In some situations, SVG content that uses the presentation attributes has potential limitations versus SVG content
that is styled with a style sheet language such as CSS. In other situations, such as when an XSLT style sheet gener-
ates SVG content from semantically rich XML source files, the limitations below may not apply.

« Styling attached to content. The presentation attributes are attached directly to particular elements, thereby
diminishing potential advantages that comes from abstracting styling from content, such as the ability to restyle
documents for different uses and environments.

- Flattened data model. In and of themselves, the presentation attributes do not offer the higher level
abstractions that you get with a styling system, such as the ability to define named collections of properties
which are applied to particular categories of elements. The result is that, in many cases, important higher level
semantic information can be lost, potentially making document reuse and restyling more difficult.

- Potential increase in file size. Many types of graphics use similar styling properties across multiple elements.
For example, a company organization chart might assign one collection of styling properties to the boxes
around temporary workers (e.g., dashed outlines, red fill), and a different collection of styling properties to
permanent workers (e.g., solid outlines, blue fill). Styling systems such as CSS allow collections of properties to
be defined once in a file. With the styling attributes, it might be necessary to specify presentation attributes on
each different element.

Note: An limportant declaration ([CSS2], section 6.4.2) within a presentation attribute definition is unsupported
and causes that attribute to have an unsupported value.

Note: there are no presentation attributes for shorthand properties ([CSS2], section 1.3.3), only for the individual
properties that make up the shorthand. (In XML, attribute order is not significant.)

Note: Animation of presentation attributes and animation of properties are related, see the 'attributeType' attrib-
ute definition for more information.

6.4 Styling with XSL

XSL style sheets [XSLT] define how to transform XML content into something else, usually other XML. When XSLT is
used in conjunction with SVG, sometimes SVG content will serve as both input and output for XSL style sheets. Oth-
er times, XSL style sheets will take non-SVG content as input and generate SVG content as output.

The following example uses an external XSL style sheet to transform SVG content into modified SVG content.
The style sheet sets the 'fill' and 'stroke' properties on all rectangles to red and blue, respectively:
mystyle.xsl

Example: 06_02.xs!

<?xml version="1.0"7>

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform”
xmlns:svg="http://www.w3.0rg/2000/svg">
<xsl:output

method="xml"
encoding="utf-8"/>
<!-- Add version to topmost 'svg' element -->

<xsl:template match="/svg:svg">

58

http://www.w3.org/TR/1998/REC-CSS2-19980512/cascade.html#important-rules
http://www.w3.org/TR/1998/REC-CSS2-19980512/about.html#shorthand

SVG Tiny 1.2 Specification 6 Styling

<xsl:copy>
<xsl:copy-of select="@x"/>
<xsl:attribute name="version"”>1.2</xsl:attribute>
<xsl:apply-templates/>
</xsl:copy>
</xsl:template>
<!-- Add styling to all 'rect’' elements -->
<xsl:template match="svg:rect">
<xsl:copy>
<xsl:copy-of select="@x"/>
<xsl:attribute name="fill">red</xsl:attribute>
<xsl:attribute name="stroke">blue</xsl:attribute>
<xsl:attribute name="stroke-width"”>3</xsl:attribute>
</xsl:copy>
</xsl:template>
</xsl:stylesheet>

SVG file to be transformed by mystyle.xsl

Example: 06_03.svg

<?xml version="1.0"7>
<svg xmlns="http://www.w3.0rg/2000/svg" version="1.2" baseProfile="tiny"
width="1@cm" height="5cm"” viewBox="0 @ 100 50">
<rect x="20" y="10" width="60" height="30"/>
</svg>

SVG content after applying mystyle.xsl

Example: 06_04.svg

<?xml version="1.0" encoding="utf-8"?>
<svg xmlns="http://www.w3.0rg/2000/svg" version="1.2" baseProfile="tiny
width="10cm" height="5cm"” viewBox="0 @ 100 50">
<rect x="20" y="10" width="60" height="30" fill="red"” stroke="blue" stroke-width="3"/>
</svg>

n

6.5 Case sensitivity of property names and values

Property declarations via presentation attributes are expressed in XML, which is case-sensitive and must match the
exact property name. When using a presentation attribute to specify a value for the 'fill' property, the presentation
attribute must be specified as 'fill' and not 'FILL' or 'Fill'. Keyword values, such as "italic" in font-style="italic", are
also case-sensitive and must be specified using the exact case used in the specification which defines the given
keyword. For example, the keyword "sRGB" must have lowercase "s" and uppercase "RGB".

6.6 Facilities from CSS and XSL used by SVG

SVG shares various relevant properties and approaches common to CSS and XSL, plus the semantics of many of the
processing rules. Many of SVG's properties are shared between CSS 2, XSL and SVG. (See list of shared properties).

6.7 Property inheritance and computation

SVG supports property inheritance to child elements. In the definition of each property it is stated whether it is in-
herited or not. Inherited properties inherit the computed value, and not the specified value. For the calculation of
computed values, see the definition of each property. Note that the keyword inherit may be used to force the prop-
erty value of the parent to be used, even for non-inherited properties.

59

SVG Tiny 1.2 Specification 7 Coordinate Systems, Transformations and Units

7 Coordinate Systems, Transformations and Units

Contents
728 11 Yo [T T PR 60
4% 2 N TN 1 T4 T 1RV 1=V oo o 60
7.3 The initial coordinate SYSteMottt et ettt e e e 61
7.4 Coordinate system transformationsttt e e 62
7.5 Nested transformMatioNs.ttt e e e i, 66
7.6 The transform’ attribuUte oo e e e 67
7.6.1 The TransformList ValUeottt ettt ettt e e e e aeneanns 68
7.7 Constrained transformMations.ottt et e e 70
2 2 1 T8 Y= 1 2= 0 T o 1 TS 70
7.7.2 ViewBoX to VIeWport transformationuuuu it e e e 70
7.7 3 Element transform StacK.un it e e e e 70
7.7.4 The current transformation MatriXoirin it i e et et ettt e e et ineaans 71
7.7.5The TransformReEf ValUe i e e e e e e ettt ettt i, 71
7.8 The 'VIeWBOX attrioUte e e e e e e e e 74
7.9 The 'preserveAspectRatio’ attribULeoi i e i e e e ettt 76
7.10 Establishing @ New VieWPOrtttt et ettt 77
728 I L 2V PP 78
2% 728 = o TU T e [gV T o o) 78
7.13 0Object bouNding DOX UNItSt e e e e ettt e 81
7.14 Intrinsic sizing properties of the viewport of SVG content.o.iuiiiii it 82
7.15 Geographic COOrdiNate SYSTEMS ...ttt ettt ettt ettt et et e e e e e e e et e e eneneanas 83
7.16 The 'svgetransform' attribUte.o o o e e e e e e e e e 83

7.1 Introduction

For all media, the canvas describes "the space where the SVG content is rendered." The canvas is infinite for each di-
mension of the space, but rendering occurs relative to a finite rectangular region of the canvas. This finite rectangu-
lar region is called the SVG viewport. For visual media ([CSS2], section 7.3.1), the SVG viewport is the viewing area
where the user sees the SVG content.

The size of the SVG viewport (i.e., its width and height) is determined by a negotiation process (see Establishing
the size of the initial viewport) between the SVG document fragment and its parent (real or implicit). Once the view-
port is established, the SVG user agent must establish the initial viewport coordinate system and the initial user co-
ordinate system (see Initial coordinate system). The viewport coordinate system is also called viewport space and the
user coordinate system is also called user space.

A new user space (i.e., a new current coordinate system) can be established at any place within an SVG docu-
ment fragment by specifying transformations in the form of transformation matrices or simple transformation oper-
ations such as rotation, skewing, scaling and translation (see Coordinate system transformations). Establishing new
user spaces via coordinate system transformations are fundamental operations to 2D graphics and represent the
usual method of controlling the size, position, rotation and skew of graphic objects.

New viewports also can be established. By establishing a new viewport, one can provide a new reference rect-
angle for "fitting" a graphic into a particular rectangular area. ("Fit" means that a given graphic is transformed in
such a way that its bounding box in user space aligns exactly with the edges of a given viewport.)

7.2 The initial viewport

The SVG user agent negotiates with its parent user agent to determine the viewport into which the SVG user agent
can render the document. In some circumstances, SVG content will be embedded (by reference or inline) within a
containing document. This containing document might include attributes, properties and/or other parameters
(explicit or implicit) which specify or provide hints about the dimensions of the viewport for the SVG content. SVG
content itself optionally can provide information about the appropriate viewport region for the content via the

60

http://www.w3.org/TR/1998/REC-CSS2-19980512/media.html#visual-media-group

SVG Tiny 1.2 Specification 7 Coordinate Systems, Transformations and Units

'width' and 'height' XML attributes on the 'svg' element. The negotiation process uses any information provided by
the containing document and the SVG content itself to choose the viewport location and size.

If the parent document format defines rules for referenced or embedded graphics content, then the negotiation
process is determined by the parent document format specification. If the parent document is styled with CSS, then
the negotiation process must follow the CSS rules for replaced elements. If there are CSS width and height proper-
ties (or corresponding XSL properties) on the referencing element (or rootmost 'svg' element for inline SVG content)
that are sufficient to establish the width and height of the viewport, then these positioning properties establish the
viewport's width, height, and aspect ratio.

If there is no parent document, the SVG user agent must use the 'width' and 'height' attributes on the rootmost
'svg' element element as the width and height for the viewport.

Note that the time at which the viewport size negotiation is finalized is implementation-specific. Authors who
need to be sure of the dimensions of the viewport should do so with load-event or resize-event handlers.

7.3 The initial coordinate system

For the 'svg' element, the SVG user agent must establish an initial viewport coordinate system and an initial user co-
ordinate system such that the two coordinates systems are identical. The origin of both coordinate systems must be
at the origin of the viewport, and one unit in the initial coordinate system must equal one "pixel” (i.e., a px unit as
defined in CSS ([CSS2], section 4.3.2)) in the viewport. In most cases, such as stand-alone SVG documents or SVG
document fragments embedded (by reference or inline) within XML parent documents where the parent's layout is
determined by CSS [CSS2] or XSL [XSL], the SVG user agent must establish the initial viewport coordinate system
(and therefore the initial user coordinate system) such that its origin is at the top/left of the viewport, with the
positive x-axis pointing towards the right, the positive y-axis pointing down, and text rendered with an "upright”
orientation, which means glyphs are oriented such that Roman characters and full-size ideographic characters for
Asian scripts have the top edge of the corresponding glyphs oriented upwards and the right edge of the corres-
ponding glyphs oriented to the right.

If the SVG implementation is part of a user agent which supports styling XML documents using CSS2-compatible
px units, then the SVG user agent should get its initial value for the size of a px unit in real world units to match the
value used for other XML styling operations; otherwise, if the user agent can determine the size of a px unit from its
environment, it should use that value; otherwise, it should choose an appropriate size for one px unit. In all cases,
the size of a px must be in conformance with the rules described in CSS ([CSS2], section 4.3.2).

Example 07_02 below shows that the initial coordinate system has the origin at the top/left with the x-axis
pointing to the right and the y-axis pointing down. The initial user coordinate system has one user unit equal to the

parent (implicit or explicit) user agent's "pixel".

Example: 07_02.svg

<?xml version="1.0"7>
<svg xmlns="http://www.w3.0rg/2000/svg"” version="1.2" baseProfile="tiny"
width="300px" height="100px">

<desc>Example InitialCoords - SVG's initial coordinate system</desc>

<g fill="none" stroke="black"” stroke-width="3">
<line x1="@" yl="1.5" x2="300" y2="1.5"/>
<line x1="1.5" y1="0" x2="1.5" y2="100"/>

</g>

<g fill="red" stroke="none">
<rect x="0" y="0" width="3" height="3"/>
<rect x="297" y="0" width="3" height="3"/>
<rect x="0" y="97" width="3" height="3"/>

</g>

<g font-size="14" font-family="Verdana">
<text x="10" y="20">(0,0)</text>
<text x="240" y="20">(300,0)</text>
<text x="10" y="90">(0,100)</text>

</g>

</svg>

61

http://www.w3.org/TR/1998/REC-CSS2-19980512/syndata.html#length-units
http://www.w3.org/TR/1998/REC-CSS2-19980512/syndata.html#length-units
http://www.w3.org/TR/1998/REC-CSS2-19980512/syndata.html#length-units
/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/examples/07_02.svg

SVG Tiny 1.2 Specification 7 Coordinate Systems, Transformations and Units

(0,0) (300,0)

(0,100)

7.4 Coordinate system transformations

A new user space (i.e., a new current coordinate system) can be established by specifying transformations in the
form of a 'transform' attribute on a container or graphics element, or a 'viewBox' attribute on the 'svg' element. The
‘transform' and 'viewBox' attributes transform user space coordinates and lengths on sibling attributes on the given
element (see effect of the 'transform' attribute on sibling attributes and effect of the 'viewBox' attribute on sibling at-
tributes) and all of its descendants. Transformations can be nested, in which case the effect of the transformations
are cumulative.

Example 07_03 below shows a document without transformations. The text string is specified in the initial co-
ordinate system.

Example: 07_03.svg

<?xml version="1.0"7>
<svg xmlns="http://www.w3.0rg/2000/svg" version="1.2" baseProfile="tiny"
width="400px" height="150px">

<desc>Example OrigCoordSys - Simple transformations: original picture</desc>

<g fill="none" stroke="black” stroke-width="3">
<!-- Draw the axes of the original coordinate system -->
<line x1="0" yl1="1.5" x2="400" y2="1.5"/>
<line x1="1.5" y1="Q" x2="1.5" y2="150"/>

</g>

<g>
<text x="30" y="30" font-size="20" font-family="Verdana">

ABC (orig coord system)

</text>

</g>

</svg>

ABC (orig coord system)

Example 07_04 establishes a new user coordinate system by specifying transform="translate(50,50)" on the third 'g'
element below. The new user coordinate system has its origin at location (50,50) in the original coordinate system.
The result of this transformation is that the coordinate (30,30) in the new user coordinate system gets mapped to
coordinate (80,80) in the original coordinate system (i.e., the coordinates have been translated by 50 units in x and
50 unitsiny).

Example: 07_04.svg

<?xml version="1.0"7>
<svg xmlns="http://www.w3.0rg/2000/svg" version="1.2" baseProfile="tiny"
width="400px" height="150px">

62

/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/examples/07_03.svg
/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/examples/07_04.svg

SVG Tiny 1.2 Specification 7 Coordinate Systems, Transformations and Units

<desc>Example NewCoordSys - New user coordinate system</desc>

<g fill="none" stroke="black"” stroke-width="3">
<!-- Draw the axes of the original coordinate system -->
<line x1="0" y1="1.5" x2="400" y2="1.5"/>
<line x1="1.5" y1="0" x2="1.5" y2="150"/>
</g>
<g>
<text x="30" y="30" font-size="20" font-family="Verdana">
ABC (orig coord system)
</text>
</g>
<!-- Establish a new coordinate system, which is
shifted (i.e., translated) from the initial coordinate
system by 50 user units along each axis. -->
<g transform="translate(50,50)">
<g fill="none" stroke="red" stroke-width="3">
<!-- Draw lines of length 50 user units along
the axes of the new coordinate system -->
<line x1="0" y1="@" x2="50" y2="0" stroke="red"/>
<line x1="0" y1="0" x2="0" y2="50"/>
</g>
<text x="30" y="30" font-size="20" font-family="Verdana">
ABC (translated coord system)
</text>
</g>
</svg>

ABC (orig coord system)

ABC (translated coord system)

Example 07_05 illustrates simple rotate and scale transformations. The example defines two new coordinate
systems:
+ one which is the result of a translation by 50 units in x and 30 units in y, followed by a rotation of 30 degrees
+ another which is the result of a translation by 200 units in x and 40 units in y, followed by a scale transformation
of 1.5.

Example: 07_05.svg

<?xml version="1.0"7>
<svg xmlns="http://www.w3.0rg/2000/svg" version="1.2" baseProfile="tiny"
width="400px" height="120px">

<desc>Example RotateScale - Rotate and scale transforms</desc>

<g fill="none" stroke="black” stroke-width="3">
<!-- Draw the axes of the original coordinate system -->
<line x1="0@" y1="1.5" x2="400" y2="1.5"/>
<line x1="1.5" y1="0" x2="1.5" y2="120"/>
</g>
<!-- Establish a new coordinate system whose origin is at (50,30)
in the initial coord. system and which is rotated by 30 degrees. -->
<g transform="translate(50,30)">
<g transform="rotate(30)">
<g fill="none" stroke="red" stroke-width="3">
<line x1="0" y1="0" x2="50" y2="0"/>
<line x1="0" y1="0" x2="0" y2="50"/>
</g>
<text x="0" y="0" font-size="20" font-family="Verdana"” fill="blue">

63

/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/examples/07_05.svg

SVG Tiny 1.2 Specification 7 Coordinate Systems, Transformations and Units

ABC (rotate)

</text>
</g>
</g>
<!-- Establish a new coordinate system whose origin is at (200,40)
in the initial coord. system and which is scaled by 1.5. -->

<g transform="translate(200,40)">
<g transform="scale(1.5)">
<g fill="none"” stroke="red"” stroke-width="3">
<line x1="0" y1="0" x2="50" y2="0"/>
<line x1="0" y1="0" x2="0" y2="50"/>
</g>
<text x="0" y="0" font-size="20" font-family="Verdana" fill="blue">
ABC (scale)
</text>
</g>
</g>
</svg>

scale)
rog%?)

Example 07_06 defines two coordinate systems which are skewed relative to the origin coordinate system.

Example: 07_06.svg

<?xml version="1.0"7>
<svg xmlns="http://www.w3.0rg/2000/svg" version="1.2" baseProfile="tiny"
width="400px" height="120px">

<desc>Example Skew - Show effects of skewX and skewY</desc>

<g fill="none" stroke="black” stroke-width="3">
<!-- Draw the axes of the original coordinate system -->
<line x1="0@" y1="1.5" x2="400" y2="1.5"/>
<line x1="1.5" y1="Q" x2="1.5" y2="120"/>
</g>
<!-- Establish a new coordinate system whose origin is at (30,30)
in the initial coord. system and which is skewed in X by 30 degrees. -->
<g transform="translate(30,30)">
<g transform="skewX(30)">
<g fill="none" stroke="red" stroke-width="3">
<line x1="0" y1="0" x2="50" y2="0"/>
<line x1="0" y1="0" x2="0" y2="50"/>
</g>
<text x="0" y="0" font-size="20" font-family="Verdana” fill="blue">
ABC (skewX)

</text>
</g>
</g>
<!-- Establish a new coordinate system whose origin is at (200,30)
in the initial coord. system and which is skewed in Y by 30 degrees. -->

<g transform="translate(200,30)">
<g transform="skewY(30)">
<g fill="none" stroke="red" stroke-width="3">
<line x1="0" y1="0" x2="50" y2="0"/>
<line x1="0" y1="0" x2="0" y2="50"/>
</g>
<text x="0" y="0" font-size="20" font-family="Verdana” fill="blue">
ABC (skewY)
</text>
</g>

64

/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/examples/07_06.svg

SVG Tiny 1.2 Specification 7 Coordinate Systems, Transformations and Units

</g>
</svg>

SNENTRY

Sk%w\(}

Mathematically, all transformations can be represented as 3x3 transformation matrices of the following form:

a c e
b d f
0 0 1

Since only six values are used in the above 3x3 matrix, a transformation matrix is also expressed as a vector:
[abcdefl
Transformations map coordinates and lengths from a new coordinate system into a previous coordinate system:

xprEvC-:-c-r-:I S5 4 € € . xnewCI}or\dS-,-s
':"IprE'vCDDrdS'ﬁ — b d f ?new[mrd‘i-,rs
1 0D 0 1

Simple transformations are represented in matrix form as follows:
+ Translation is equivalent to the matrix:

1 0 tx
0 1 ty
0 0 1

or[100 1 tx ty], where tx and ty are the distances to translate coordinates in x and y, respectively.
+ Scaling is equivalent to the matrix:

sx 0 0
0 sy O
00 1

or [sx 0 0 sy 0 0]. One unit in the x and y directions in the new coordinate system equals sx and sy units in the
previous coordinate system, respectively.
+ Rotation about the origin is equivalent to the matrix:

_cns(aj -sin(a) 0
sin(a) cos(a) 0O
0 0 1

or [cos(a) sin(a) -sin(a) cos(a) 0 0], which has the effect of rotating the coordinate system axes by angle a.
« A skew transformation along the x-axis is equivalent to the matrix:

1 tan(a) 0
0o 1 0
o 0 1

or [1 0 tan(a) 1 0 0], which has the effect of skewing x coordinates by angle a.
+ A skew transformation along the y-axis is equivalent to the matrix:

65

SVG Tiny 1.2 Specification 7 Coordinate Systems, Transformations and Units

1 0 0
tanfa) 1 0
0 0 1

or [1 tan(a) 0 1 0 0], which has the effect of skewing y coordinates by angle a.

7.5 Nested transformations

Transformations can be nested to any level. The effect of nested transformations is to post-multiply (i.e., concaten-
ate) the subsequent transformation matrices onto previously defined transformations:

4161 € dzCz2€; Xeurr
'il'preu bydyify P ¢ badafa | * | Yeurr
001 001 1

For each given element, the accumulation of all transformations that have been defined on the given element and
all of its ancestors up to and including the element that established the current viewport (usually, the 'svg' element
which is the most immediate ancestor to the given element) is called the current transformation matrix or CTM. The
CTM thus represents the mapping of current user coordinates to viewport coordinates:

. a+t:1~s=1 a,C; e,
CT™ = [aas]-[2a2]- -

1
01 001 ves

n

C!CTDJ

Cl'l
nGnfn
0

=D

Xviewport Xuserspace
Yviewport ’h"'uﬁer-space
1

Example 07_07 illustrates nested transformations.

Example: 07_07.svg

<?xml version="1.0"7>
<svg width="400px" height="150px" version="1.2" baseProfile="tiny"
xmlns="http://www.w3.0rg/2000/svg">
<desc>Example Nested - Nested transformations</desc>
<g fill="none" stroke="black” stroke-width="3" >
<!-- Draw the axes of the original coordinate system -->
<line x1="0" yl1="1.5" x2="400" y2="1.5" />
<line x1="1.5" y1="0Q" x2="1.5" y2="150" />
</g>
<!-- First, a translate -->
<g transform="translate(50,90)">
<g fill="none" stroke="red"” stroke-width="3" >
<line x1="0" yl1="0" x2="50" y2="0" />
<line x1="0" yl1="0" x2="0" y2="50" />

</g>

<text x="0" y="0" font-size="16" font-family="Verdana” >
..Translate(1)

</text>

<!-- Second, a rotate -->

<g transform="rotate(-45)">
<g fill="none" stroke="green" stroke-width="3" >
<line x1="0" yl1="0" x2="50" y2="@" />
<line x1="0" yl1="0" x2="0" y2="50" />
</g>
<text x="0" y="0" font-size="16" font-family="Verdana"” >
. .Rotate(2)
</text>
<!-- Third, another translate -->
<g transform="translate(130,160)">
<g fill="none" stroke="blue" stroke-width="3" >
<line x1="0" yl1="0" x2="50" y2="0" />

66

/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/examples/07_07.svg

SVG Tiny 1.2 Specification 7 Coordinate Systems, Transformations and Units

<line x1="0" y1="@" x2="0" y2="50" />
</g>
<text x="0" y="0" font-size="16" font-family="Verdana" >
..Translate(3)
</text>
</g>
</g>
</g>
</svg>

2 >
o
o

slate(1)

In the example above, the CTM within the third nested transformation (i.e., the transform="translate(130,160)") con-
sists of the concatenation of the three transformations, as follows:

CTM — translate(50,90), rotate(-45), translate(130,160)

_[1 o050 707 .707 0 0
— 01 Qﬂ -?ﬂ? ?ﬂ? C' 1
(00 0
__ [707 707 255.03
= |-.707 707 111.21
o o0 1

Xinitial — Xuserspace
Yinitial — * 1 Yuserspace
1 1

7.6 The 'transform' attribute

Attribute definition:

transform = "<transform-list>" | "<transform-ref>" | "none"
This attribute specifies a coordinate system transformation to apply to the element it appears on. The value of

this attribute takes one of three forms:

<transform-list>
Specifies a list of affine transformations. See the definition in The TransformList value section below for

details.

<transform-ref>
Specifies a constrained transformation. See the definition in The TransformRef value section below for

details.

67

SVG Tiny 1.2 Specification 7 Coordinate Systems, Transformations and Units

none
Specifies the identity transformation. Using this value has the same effect on the element's CTM as using
the identity matrix (transform="matrix(1 0 0 1 0 0)") or not specifying the 'transform’ attribute at all. This is
the lacuna value.

Animatable: yes.

If the 'transform' attribute cannot be parsed according to the syntaxes above, then it has an unsupported value. In
this case, as with any instance of an unsupported value, the SVG user agent must process the element as if the
'transform' attribute had not been specified, which will result in the element’s transformation being the identity
transformation.

7.6.1 The TransformList value

A <transform-list> is defined as a list of transform definitions, which are applied in the order provided. The individual
transform definitions are separated by white space and/or a comma. The available types of transform definitions are
as follows:
« matrix(<a> <c> <d> <e> <f>), which specifies a transformation in the form of a transformation matrix of six
values. matrix(a,b,c,d,e,f) is equivalent to applying the transformation matrix [ab cd e f].
- translate(<tx> [<ty>]), which specifies a translation by tx and ty. If <ty> is not provided, it is assumed to be zero.
+ scale(<sx> [<sy>]), which specifies a scale operation by sx and sy. If <sy> is not provided, it is assumed to be equal
to <sx>.
+ rotate(<rotate-angle> [<cx> <cy>]), which specifies a rotation by <rotate-angle> degrees about a given point.

If optional parameters <ex> and <cy> are not supplied, the rotation is about the origin of the current user
coordinate system. The operation corresponds to the matrix [cos(a) sin(a) -sin(a) cos(a) 0 0].

If optional parameters <ex> and <cy> are supplied, the rotation is about the point (cx, cy). The operation
represents the equivalent of the following specification: translate(<cx>, <cy>) rotate(<rotate-angle>) translate(-
<ex>, -<cy>).

« skewX(<skew-angle>), which specifies a skew transformation along the x-axis.
- skewY(<skew-angle>), which specifies a skew transformation along the y-axis.
All numeric values are real <number>s.
If the list of transforms includes a matrix with all values set to zero (that is, 'matrix(0,0,0,0,0,0)"), then rendering of
the element is disabled. Such a value is not an unsupported value.
If a list of transforms includes more than one transform definition, then the net effect is as if each transform had
been specified separately in the order provided. For example,

Example: 07_08.svg

<g transform="translate(-10,-20) scale(2) rotate(45) translate(5,10)">
<!-- graphics elements go here -->
</g>

will have the same rendering as:

Example: 07_09.svg

<g transform="translate(-10,-20)">
<g transform="scale(2)">
<g transform="rotate(45)">
<g transform="translate(5,10)">
<!-- graphics elements go here -->
</g>
</g>
</g>
</g>

The "transform' attribute is applied to an element before processing any other coordinate or length values supplied
for that element. In the element

68

SVG Tiny 1.2 Specification 7 Coordinate Systems, Transformations and Units

Example: 07_10.svg

<rect x="10" y="10" width="20" height="20" transform="scale(2)"/>

the 'x', 'y', 'width' and 'height’, values are processed after the current coordinate system has been scaled uniformly by
a factor of 2 by the 'transform’ attribute. Attributes 'x', 'y, 'width' and 'height' (and any other attributes or properties)
are treated as values in the new user coordinate system, not the previous user coordinate system. Thus, the above
'rect' element is functionally equivalent to:

Example: 07_11.svg

<g transform="scale(2)">
<rect x="10" y="10" width="20" height="20"/>
</g>

The following is an EBNF grammar for <transform-list> values [EBNF]:

transform-list ::=
wsp* transforms? wspx
transforms ::=
transform
| transform comma-wsp+ transforms
transform ::=
matrix
translate
scale
rotate
skewX
| skewY
matrix ::=
"matrix" wsp* " (" wsp*
number comma-wsp
number comma-wsp
number comma-wsp
number comma-wsp
number comma-wsp
number wspx ")"

translate ::=

"translate” wsp* "(” wsp* number (comma-wsp number)? wspx ")"
scale ::=

"scale” wsp* "(" wsp* number (comma-wsp number)? wsp* ")"
rotate ::=

"rotate” wsp* "(" wsp* number (comma-wsp number comma-wsp number)? wspx ")"
skewX ::=

"skewX" wsp* "(" wspx number wspx ")"
skewY ::=

"skewY" wsp* "(" wsp* number wspx ")"
number ::=

sign? integer-constant

| sign? floating-point-constant
comma-wsp ::=

(wspt+ comma? wsp*) | (comma wspx)
comma ::=

non
)

integer-constant ::=
digit-sequence
floating-point-constant ::=
fractional-constant exponent?
| digit-sequence exponent
fractional-constant ::=
digit-sequence? "." digit-sequence
| digit-sequence "."
exponent ::=
("e" | "E") sign? digit-sequence
sign ::=
o mn
digit-sequence ::=
digit
| digit digit-sequence
digit ::=

69

SVG Tiny 1.2 Specification 7 Coordinate Systems, Transformations and Units

QM | M1M | M2" | M3" | M4" | "5" | "6" | "7" | "8" | "9"
wsp ::=
(#x20 | #x9 | #xD | #xA)

7.7 Constrained transformations

SVG 1.2 extends the coordinate system transformations allowed on container elements and graphics element to
provide a method by which graphical objects can remain fixed in the viewport without being scaled or rotated. Use
cases include thin lines that do not become fatter on zooming in, map symbols or icons of a constant size, and so
forth.

The following summarizes the different transforms that are applied to a graphical object as it is rendered.

7.7.1 The user transform

The user transform is the transformation that the SVG user agent positioning controls apply to the viewport co-
ordinate system. This transform can be considered to be applied to a group that surrounds the 'svg' element of the
document.

The SVG user agent positioning controls consist of a translation (commonly referred to as the "pan"), a scale
(commonly referred to as the "zoom") and a rotate.

US = Matrix corresponding to the user scale (currentScale on SVGSVGElement)
UP = Matrix corresponding to the user pan (currentTranslate on SVGSVGElement)
UR = Matrix corresponding to the user rotate (currentRotate on SVGSVGElement)

The user transform is the product of these component transformations.

U = User transform

UP . US . UR

7.7.2 ViewBox to viewport transformation

Some SVG elements, such as the rootmost 'svg' element, create their own viewport. The 'viewBox' to viewport trans-
formation is the transformation on an 'svg' element that adjusts the coordinate system to take the 'viewBox' and
'preserveAspectRatio’ attributes into account.

We use the following notation for a 'viewBox' to viewport transformation:

VB(svgld)
The svgld parameter is the value of the 'id' or 'xml:id' attribute on a given 'svg' element.

7.7.3 Element transform stack

All elements in an SVG document have a transform stack. This is the list of transforms that manipulate the coordin-
ate system between the element and its nearest ancestor 'svg' element, i.e. in this specification, the root element.
We use the following notation for the element transform stack on a given element:

TS(id)

The id parameter is the value of the 'id' or 'xml:id' attribute on a given element.
Similarly, we use the following notation for the transform defined by the 'transform' attribute on the given ele-
ment with identifier id:

Txf(id)

With the above definition, the transformation TS of an element is equal to the product of all the transformations Txf
from that element to its nearest ancestor 'svg'.

TS(id) = Txf(id.nearestViewportElement) . [...] . Txf(id.parentElement) . Txf(id)

Example: Element transform stack

<svg xml:id="root"” version="1.2" baseProfile="tiny">

non

<g xml:id="g" transform="scale(2)">
<rect xml:id="r" transform="scale(4)"/>
<g xml:id="g2">
<rect xml:id="r2" transform="scale(0.5)"/>
</g>

70

SVG Tiny 1.2 Specification 7 Coordinate Systems, Transformations and Units

</g>
</svg>

In this example, the transforms are:

TS(g) = scale(2)

TS(r) = TS(g) . scale(4) = scale(8)

TS(g2) = TS(g) . I = scale(2) (where I is the identity matrix)
TS(r2) = TS(g) . scale(0.5) = scale(1l)

7.7.4 The current transformation matrix

Each element in the rendering tree has the concept of a current transformation matrix or CTM. This is the product of
all coordinate system transformations that apply to an element, effectively mapping the element into a coordinate
system that is then transformed into device units by the SVG user agent.

Consider the following example, with a rectangle having a set of ancestor 'g' elements with IDs "g-0" to "g-n".

Example: Current transformation matrix

<svg xml:id="root" version="1.2" baseProfile="tiny">
<g xml:id="g-n">
<g xml:id="g-2">
<g xml:id="g-1">
<g xml:id="g-0">
<rect xml:id="elt"” .../>
</g>
</g>
</g>

</g>
</svg>

With the above definitions for U, VB, and TS, the CTM for the rectangle with xml:id="elt" is computed as follows:

CTM(elt) = U . VB(root) . TS(elt)
= U . VB(root) . Txf(g-n) . [...]1 . Txf(g-0) . Txf(elt)

Example: Current transformation matrix, n=2

<svg xml:id="root" version="1.2" baseProfile="tiny">
;é.xmlzid:”g—1“>
;é.xmlzid:”g—0”>
;;éct xml:id="elt"” .../>
</g>

</g>
</svg>

This produces the following transformations:
CTM(elt) = U . VB(root) . Txf(g-1) . Txf(g-0) . Txf(elt)

Note the important relationship between an element's CTM and its parent CTM, for elements which do not define a
viewport:

CTM(elt) = CTM(elt.parentElement) . Txf(elt)

7.7.5 The TransformRef value

By using the 'ref(..)' attribute value on the 'transform' attribute it is possible to specify simple constrained
transformations.

71

SVG Tiny 1.2 Specification 7 Coordinate Systems, Transformations and Units

The 'ref(svg, x, y)' transform evaluates to the inverse of the element's parent's CTM multiplied by the rootmost
'svg' element's CTM but exclusive of that 'svg' element's zoom/pan/rotate user transform, if any.

Note that the inverse of the parent element's CTM may not always exist. In such cases, the user agent can in-
stead calculate the CTM of the element with the constrained transformation by looking up the CTM of the rootmost
'svg' element directly. The 'ref(...)" value in this case is not an unsupported value.

The x and y parameters are optional. If they are specified, an additional translation is appended to the transform
so that (0, 0) in the element's user space maps to (x, y) in the 'svg' element's user space. If no x and y parameters are
specified, no additional translation is applied.

Using the definitions provided above, and using "svg[0]" to denote the rootmost 'svg' element:

Inverse of the parent’'s CTM: inv(CTM(elt.parentElement))
The svg element's user transform, exclusive of zoom,
pan and rotate transforms:

CTM(svgl[@].parentElement) . VB(svg[0])

CTM(svgl[@].parentElement) evaluates to Identity since there
is no svg[@].parentElement element.

In addition, the T(x, y) translation is such that:

CTM(elt) . (@, @) = CTM(svg[@l) . (x, y)
So the transform evaluates to:

Txf(elt) = inv(CTM(elt.parentElement)) . CTM(svg[@].parentElement) . VB(svg[0l) . T(X, y)
Thus, the element's CTM is:

CTM(elt) CTM(elt.parentElement) . Txf(elt)

CTM(svgl@].parentElement) . VB(svgl@l) . T(x,y)

Example: ref() transform
A small rectangle initially marks the middle of a line. The SVG user agent viewport is a square with sides of 200
units.

<svg xml:id="root" version="1.2" baseProfile="tiny"” viewBox="0 @ 100 100">
<line x1="0" x2="100" yl1="0" y2="100"/>
<rect xml:id="r" transform="ref(svg)"
x="45" y="45" width="10" height="10"/>

</svg>

In this case:
Txf(r) = inv(CTM(r.parent)) . CTM(root.parentElement) . VB(root) . T(x, y)
CTM(root.parentElement) evaluates to Identity.

T(x, y) evaluates to Identity because (x, y) is not specified

CTM(r) = CTM(r.parent) . Txf(r)
= CTM(r.parent) . inv(CTM(r.parent)) . VB(root)
= VB(root)
= scale(2)

Consequently, regardless of the user transform (due to currentTranslate, currentScale and currentRotate) the
rectangle's coordinates in viewport space will always be: (45,45, 10, 10) * scale(2) = (90, 90, 20, 20). Initially, the line
is from (0, 0) to (200, 200) in the viewport coordinate system. If we apply a user agent zoom of 3 (currentscale = 3),
the rectangle is still (90, 90, 20, 20) but the line is (0, 0, 600, 600) and the marker no longer marks the middle of the
line.

72

SVG Tiny 1.2 Specification 7 Coordinate Systems, Transformations and Units

Example: ref() transform

A small rectangle always marks the middle of a line. Again, the SVG user agent viewport is a square with sides
of 200 units.

<svg xml:id="root" version="1.2" baseProfile="tiny"” viewBox="0 @ 100 100">
<line x1="0" x2="100" yl1="0" y2="100"/>
<g xml:id="g" transform="ref(svg, 50, 50)">
<rect xml:id="r" x="-5" y="-5" width="10" height="10"/>
</g>
</svg>

In this case:

Txf(g) = inv(CTM(g.parent)) . CTM(root.parentElement) . VB(root) . T(x,y)
CTM(root.parentElement) evaluates to Identity.

CTM(g) = CTM(g.parent) . Txf(r)
= CTM(g.parent) . inv(CTM(g.parent)) . VB(root) . T(x,y)
= VB(root) . T(x,y)
= scale(2) . T(x,y)

Initially, (50, 50) in the 'svg' user space is (100, 100) in viewport space. Therefore:
CTM(g) . [0, @] = CTM(root) . [50, 50]

scale(2) . [50, 50]
[100, 100]

and
scale(2) . T(x,y) = [100, 100]
T(x,y) = translate(50, 50)

If the SVG user agent pan was (50, 80) (modifying currentTranslate) then we now have (50, 50) in the 'svg' element's
user space located at (150, 180) in viewport space. This produces:

CTM(g) . [0, @] = CTM(root) . [50, 50]
= translate(50, 80) . scale(2) . [50, 50]
[150, 180]

and
scale(2) . T(x,y) = [150, 180]
T(x, y) = translate(75, 990)

Therefore, regardless of the user transform, the rectangle will always overlap the middle of the line. Note that the
rectangle will not rotate with the line (e.g., if currentRotate is set) and it will not scale either.
The following is an EBNF grammar for <transform-ref> values [EBNF]:

transform-ref ::=

wspx ref wsp*
ref ::=

"ref” wspx " (" wsp* "svg" wspx ")"

| "ref” wsp*x "(" wspx "svg"” comma-wsp number comma-wsp number wspx ")"
number ::=

sign? integer-constant

| sign? floating-point-constant
comma-wsp ::=

(wspt+ comma? wspx) | (comma wspx)
comma ::=

non
)

integer-constant ::=
digit-sequence
floating-point-constant ::=
fractional-constant exponent?
| digit-sequence exponent
fractional-constant ::=
digit-sequence? "." digit-sequence
| digit-sequence "."

73

SVG Tiny 1.2 Specification 7 Coordinate Systems, Transformations and Units

exponent ::=

("e" | "E") sign? digit-sequence
sign ::=

men | mon
digit-sequence ::=

digit

| digit digit-sequence
digit ::=

QM | 1M | M2m | "3 | "4" | "5 | "e" | "7" | "8" | "9"
wsp ::=
(#x20 | #x9 | #xD | #xA)

7.8 The 'viewBox' attribute

It is often desirable to specify that a given set of graphics stretch to fit a particular container element. The 'viewBox'
attribute provides this capability. All elements that establish a new viewport (see elements that establish viewports)
can have the 'viewBox' attribute specified on them.

Attribute definition:

viewBox = "<list-of-numbers>" | "none"
Specifies a rectangular region into which child graphical content must be fit. The value of this attribute takes
one of two forms:

<list-of-numbers>
A list of four <number>s (<min-x>, <min-y>, <width> and <height>), separated by white space and/or a
comma, which specify a rectangle in viewport space which must be mapped to the bounds of the
viewport established by the given element, taking into account the 'preserveAspectRatio’ attribute. If
specified, an additional transformation is applied to all descendants of the given element to achieve the
specified effect.

none
Specifying a value of "none" indicates that a supplemental transformation due to the 'viewBox' attribute
must not be used. Using this value will have the same affect on child content as not specifying the
‘'viewBox' attribute at all. This is the lacuna value.

Animatable: yes.

A negative value for <width> or <height> is unsupported. A value of zero for either of these two parameters disables
rendering of the element.

Example 07_12 illustrates the use of the 'viewBox' attribute on the 'svg' element to specify that the SVG content
must stretch to fit the bounds of the viewport.

Example: 07_12.svg

<?xml version="1.0"7>

<svg xmlns="http://www.w3.0rg/2000/svg" version="1.2" baseProfile="tiny"
width="300px" height="200px" viewBox="0 @ 1500 1000"
preserveAspectRatio="none">

<desc>
Example ViewBox - uses the viewBox attribute to automatically create an
initial user coordinate system which causes the graphic to scale to fit
into the viewport no matter what size the viewport is.

</desc>

<!-- This rectangle goes from (0,0) to (1500,1000) in user space.
Because of the viewBox attribute above,
the rectangle will end up filling the entire area
reserved for the SVG content. -->
<rect x="0" y="0" width="1500" height="1000"
fill="yellow" stroke="blue" stroke-width="12"/>

<!-- A large, red triangle -->
<path fill="red” d="M 750,100 L 250,900 L 1250,900 z"/>

<!-- A text string that spans most of the viewport -->

74

/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/examples/07_12.svg

SVG Tiny 1.2 Specification 7 Coordinate Systems, Transformations and Units

<text x="100" y="600" font-size="200" font-family="Verdana">
Stretch to fit
</text>
</svg>

Str It Str

Rendered into viewport with width=150px,
width=300px, height=200px height=200px

The effect of the 'viewBox' attribute is that the SVG user agent automatically supplies the appropriate transforma-
tion matrix to map the specified rectangle in user space to the bounds of a designated region (often, the viewport).
To achieve the effect of the example on the left, with viewport dimensions of 300 by 200 pixels, the SVG user agent
needs to automatically insert a transformation which scales both x and y by 0.2. The effect is equivalent to having a
viewport of size 300px by 200px and the following supplemental transformation in the document, as follows:
<svg xmlns="http://www.w3.0rg/2000/svg" version="1.2" baseProfile="tiny"
width="300px" height="200px">
<g transform="scale(0.2)">
<!-- Rest of document goes here -->
</g>
</svg>

To achieve the effect of the example on the right, with viewport dimensions of 150 by 200 pixels, the SVG user
agent needs to automatically insert a transformation which scales x by 0.1 and y by 0.2. The effect is equivalent to
having a viewport of size 150px by 200px and the following supplemental transformation in the document, as
follows:

<svg xmlns="http://www.w3.0rg/2000/svg" version="1.2" baseProfile="tiny"
width="150px" height="200px">
<g transform="scale(0.1 0.2)">
<!-- Rest of document goes here -->
</g>
</svg>

(Note: in some cases the SVG user agent will need to supply a translate transformation in addition to a scale trans-
formation. For example, on an 'svg' element, a translate transformation will be needed if the 'viewBox' attribute
specifies values other than zero for <min-x> or <min-y>.)

Unlike the 'transform' attribute (see effect of the 'transform' attribute on sibling attributes), the automatic trans-
formation that is created due to a 'viewBox' does not affect the 'x', 'y, 'width' and 'height' attributes on the element
with the 'viewBox' attribute. Thus, in the example above which shows an 'svg' element which has attributes 'width’,
'height' and 'viewBox', the 'width' and 'height' attributes represent values in the coordinate system that exists before
the 'viewBox' transformation is applied. On the other hand, like the 'transform' attribute, it does establish a new co-
ordinate system for all other attributes and for descendant elements.

The following is an EBNF grammar for values of the 'viewBox' attribute [EBNF]:

viewbox ::=
wsp* viewboxSpec wsp*

viewboxSpec ::=
number comma-wsp number comma-wsp number comma-wsp number
| "none”

75

SVG Tiny 1.2 Specification 7 Coordinate Systems, Transformations and Units

number ::=

sign? integer-constant

| sign? floating-point-constant
comma-wsp ::=

(wsp+ comma? wspx) | (comma wspx)
comma ::=

non
)

integer-constant ::=
digit-sequence

floating-point-constant ::=
fractional-constant exponent?
| digit-sequence exponent

fractional-constant ::=

digit-sequence? "." digit-sequence
| digit-sequence "."

exponent ::=
("e" | "E") sign? digit-sequence

sign ::=
men | mon
digit-sequence ::=
digit
| digit digit-sequence
digit ::=
QM | "1 | 2™ | "3 | "4" | "5" | "e" | 7" | "8" | "9"
wsp ::=
(#x20 | #x9 | #xD | #xA)

7.9 The 'preserveAspectRatio' attribute

In some cases, typically when using the 'viewBox' attribute, it is desirable that the graphics stretch to fit non-uni-
formly to take up the entire viewport. In other cases, it is desirable that uniform scaling be used for the purposes of
preserving the aspect ratio of the graphics.

'preserveAspectRatio’ is available for all elements that establish a new viewport (see elements that establish
viewports), indicates whether or not to force uniform scaling.

'preserveAspectRatio’ only applies when a value has been provided for 'viewBox' on the same element. Or, in
some cases, if an implicit 'viewBox' value can be established for the element (see each element description for de-
tails on this). If a 'viewBox' value can not be determined then 'preserveAspectRatio’ is ignored.

Attribute definition:
preserveAspectRatio = ["defer"] <align> [<meet>]
defer
If the value of 'preserveAspectRatio’' on an element that references data ('image’, 'animation' and 'video')
starts with defer then the value of the 'preserveAspectRatio’ attribute on the referenced content if present
must be used. If the referenced content lacks a value for 'preserveAspectRatio’ then the
'preserveAspectRatio’ attribute must be processed as normal (ignoring defer). For 'preserveAspectRatio’
on all other elements the defer portion of the attribute is ignored.
<align>
Indicates whether to force uniform scaling and, if so, the alignment method to use in case the aspect
ratio of the 'viewBox' doesn't match the aspect ratio of the viewport. The <align> parameter must be one
of the following strings:
+ none - Do not force uniform scaling. Scale the graphic content of the given element non-uniformly if
necessary such that the element's bounding box exactly matches the viewport rectangle.
« xMinYMin - Force uniform scaling.
Align the <min-x> of the element's 'viewBox' with the smallest X value of the viewport.
Align the <min-y> of the element's 'viewBox' with the smallest Y value of the viewport.
+ xMidYMin - Force uniform scaling.
Align the midpoint X value of the element's 'viewBox' with the midpoint X value of the viewport.
Align the <min-y> of the element's 'viewBox' with the smallest Y value of the viewport.
+ xMaxYMin - Force uniform scaling.
Align the <min-x>+<width> of the element's 'viewBox' with the maximum X value of the viewport.
Align the <min-y> of the element's 'viewBox' with the smallest Y value of the viewport.
+ xMinYMid - Force uniform scaling.
Align the <min-x> of the element's 'viewBox' with the smallest X value of the viewport.
Align the midpoint Y value of the element's 'viewBox' with the midpoint Y value of the viewport.

76

SVG Tiny 1.2 Specification 7 Coordinate Systems, Transformations and Units

« xMidYMid (the lacuna value) - Force uniform scaling.
Align the midpoint X value of the element's 'viewBox' with the midpoint X value of the viewport.
Align the midpoint Y value of the element's 'viewBox' with the midpoint Y value of the viewport.
« xMaxYMid - Force uniform scaling.
Align the <min-x>+<width> of the element's 'viewBox' with the maximum X value of the viewport.
Align the midpoint Y value of the element's 'viewBox' with the midpoint Y value of the viewport.
+ xMinYMax - Force uniform scaling.
Align the <min-x> of the element's 'viewBox' with the smallest X value of the viewport.
Align the <min-y>+<height> of the element's 'viewBox' with the maximum Y value of the viewport.
+ xMidYMax - Force uniform scaling.
Align the midpoint X value of the element's 'viewBox' with the midpoint X value of the viewport.
Align the <min-y>+<height> of the element'’s 'viewBox' with the maximum Y value of the viewport.
« xMaxYMax - Force uniform scaling.
Align the <min-x>+<width> of the element's 'viewBox' with the maximum X value of the viewport.
Align the <min-y>+<height> of the element's 'viewBox' with the maximum Y value of the viewport.
<meet>
Optional and only available due to historical reasons. The <meet> is separated from the <align> value by
one or more spaces and must equal the string meet.

meet indicates to scale the graphic such that:

- aspect ratio is preserved

+ the entire 'viewBox' is visible within the viewport

+ the'viewBox' is scaled up as much as possible, while still meeting the other criteria
In this case, if the aspect ratio of the graphic does not match the viewport, some of the viewport will
extend beyond the bounds of the 'viewBox' (i.e., the area into which the 'viewBox' will draw will be
smaller than the viewport).

Animatable: yes.

Example PreserveAspectRatio illustrates the various options on 'preserveAspectRatio’. The example creates several
new viewports by including 'animation’ elements (see Establishing a new viewport).

Example PreserveAspectRatio

SWG o fit
E ahdin” alled” =¥ M “iMad “i e
mewm 1 E E E
afda*
Viewport 2

7.10 Establishing a new viewport

Some elements establish a new viewport. By establishing a new viewport, you implicitly establish a new viewport
coordinate system and a new user coordinate system. Additionally, there is a new meaning for percentage units
defined to be relative to the current viewport since a new viewport has been established (see Units).

77

SVG Tiny 1.2 Specification 7 Coordinate Systems, Transformations and Units

‘viewport-fill' and 'viewport-fill-opacity' properties can be applied on the new viewport.

The bounds of the new viewport are defined by the 'x', 'y, 'width' and 'height' attributes on the element estab-
lishing the new viewport, such as an 'animation’' element. Both the new viewport coordinate system and the new
user coordinate system have their origins at (x, y), where x and y represent the value of the corresponding attributes
on the element establishing the viewport. The orientation of the new viewport coordinate system and the new user
coordinate system correspond to the orientation of the current user coordinate system for the element establishing
the viewport. A single unit in the new viewport coordinate system and the new user coordinate system are the
same size as a single unit in the current user coordinate system for the element establishing the viewport.

For an extensive example of creating new viewports, see Example PreserveAspectRatio.

The following elements establish new viewports:

« The'svg' element establishes the root viewport for the document.
« The'animation' element.
« The'image' element.
+ The'video' element.
« The 'foreignObject' element.
The following paragraph is informative.

Note that no clipping of overflow is performed, but that such clipping will take place if the content is viewed in
an SVG user agent that supports clipping (e.g. a user agent that supports SVG 1.1 Full [SVG11]), since the initial value
for the 'overflow' property is hidden for non-root elements that establish viewports ([SVG11], section 14.3.3). Con-
tent authors that want content to be fully forward compatible are advised to either specify the 'overflow' property or
to make sure that content that shouldn't be clipped is inside of the established viewport.

7.11 Units

Besides the exceptions listed below all coordinates and lengths in SVG must be specified in user units, which means
that unit identifiers are not allowed.
Two exceptions exist:
- Unit identifiers are allowed on the 'width' and 'height' XML attributes on the 'svg' element.
+ Object bounding box units are allowed on 'linearGradient' and 'radialGradient' elements.
A user unit is a value in the current user coordinate system. For example:

Example: 07_17.svg

<text font-size="50">Text size is 50 user units</text>

For the 'svg' element's 'width' and 'height' attributes a coordinate or length value can be expressed as a number fol-
lowing by a unit identifier (e.g., '25e¢m' or '"100%"). The list of unit identifiers in SVG are: in, cm, mm, pt, pc, px and per-
centages (%). These values on 'width' and 'height' contribute towards the calculation of the initial viewport.

Using percentage values on 'width' and 'height' attributes mandates how much space the SVG viewport must
take of the available initial viewport. In particular:

« For any width value expressed as a percentage of the viewport, the value to use is the specified percentage of
the actual-width in user units for the nearest containing viewport, where actual-width is the width dimension of
the viewport element within the user coordinate system for the viewport element.

« For any height value expressed as a percentage of the viewport, the value to use is the specified percentage of
the actual-height in user units for the nearest containing viewport, where actual-height is the height dimension
of the viewport element within the user coordinate system for the viewport element.

See the discussion on the initial viewport for more details.

7.12 Bounding box

The bounding box (or "bbox") of an element is the tightest fitting rectangle aligned with the axes of that element's
user coordinate system that entirely encloses it and its descendants. The bounding box must be computed exclus-
ive of any values for the fill related properties, the stroke related properties, the opacity related properties or the vis-
ibility property. For curved shapes, the bounding box must enclose all portions of the shape along the edge, not
just end points. Note that control points for a curve which are not defined as lying along the line of the resulting
curve (e.g., the second coordinate pair of a Cubic Bézier command) must not contribute to the dimensions of the
bounding box (though those points may fall within the area of the bounding box, if they lie within the shape itself,

78

http://www.w3.org/TR/SVG11/
http://www.w3.org/TR/2003/REC-SVG11-20030114/masking.html#OverflowProperty
http://www.w3.org/TR/2003/REC-SVG11-20030114/masking.html#OverflowProperty

SVG Tiny 1.2 Specification 7 Coordinate Systems, Transformations and Units

or along or close to the curve). For example, control points of a curve that are at a further distance than the curve

edge, from the non-enclosing side of the curve edge, must be excluded from the bounding box.

Example bbox01 shows one shape (a 'path’ element with a quadratic Bézier curve) with three possible bounding

boxes, only the leftmost of which is correct.

Example: bbox01.svg

<svg xmlns='http://www.w3.0rg/2000/svg’
xmlns:xlink="http://www.w3.0rg/1999/x1link’
version='1.1" width="380px’' height='120px' viewBox='0 @ 380 120'>

<title>Bounding Box of a Path</title>

<desc>
Illustration of one shape (a 'path’ element with a quadratic Bézier) with
three bounding boxes, only one of which is correct.

</desc>

<defs>
<g id='shape'>
<line x1='120' y1='50' x2="70' y2='10' stroke='#888"'/>
<line x1='20' y1='50' x2='70' y2='10' stroke='#888"'/>
<path stroke-width='2" fill='rgb(173, 216, 230)' stroke='none' fill-rule='evenodd’
d="M20,50
135,100
H120
V50
Q70,10 20,50'/>
<circle cx='120' cy='50"' r='3"' fill="none' stroke='#888'/>
<circle cx='20" cy='50" r='3" fill="none' stroke='#888"/>
<circle cx='70' cy="10" r='3"' fill="#888' stroke='none'/>
</g>
</defs>

<g text-anchor='middle’'>

<g>
<title>Correct Bounding Box</title>
<use xlink:href="#shape'/>
<rect x='20' y='30' width="100' height='70’

fill="none' stroke='green' stroke-dasharray='2" stroke-linecap='round’/>

<text x='70' y='115">Correct</text>

</g>

<g transform='translate(120)'>
<title>Incorrect Bounding Box</title>
<desc>Bounding box does not encompass entire shape.</desc>
<use xlink:href="#shape'/>
<rect x='20' y='50' width="100' height='50"'

fill="none' stroke='red' stroke-dasharray='2

<text x='70' y='115'>Incorrect</text>

</g>

i

stroke-linecap="round’'/>

<g transform='translate(240)'>
<title>Incorrect Bounding Box</title>
<desc>Bounding box includes control points outside shape.</desc>
<use xlink:href="#shape'/>
<rect x='20' y='10' width="100' height='90'
fill="none' stroke='red' stroke-dasharray='2
<text x='70' y='115'>Incorrect</text>
</g>
</g>
</svg>

i

stroke-linecap="round’'/>

79

/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/examples/bbox01.svg

SVG Tiny 1.2 Specification 7 Coordinate Systems, Transformations and Units

Cormrect Incorrect Incorrect

The bounding box must be applicable for any rendering element with positive 'width' or 'height' attributes and with
a 'display' property other than none, as well as for any container element that may contain such elements. Elements
which do not partake in the rendering tree (e.g. elements in a 'defs' element, elements whose 'display’ is none, etc.),
and which have no child elements that partake in the rendering tree (e.g. 'g' elements with no children), shall not
contribute to the bounding box of the parent element. Elements that do not contribute to the bounding box of a
parent element must still return their own bounding box value when required.

To illustrate, example bbox-calc below shows a set of elements. Given this example, the following results shall
be calculated for each of the elements.

Example: bbox-calc.svg

<svg xmlns="http://www.w3.0rg/2000/svg"
xmlns:xlink="http://www.w3.0rg/1999/x1link">

<title>Bounding Box Calculation</title>
<desc>Examples of elements with different bounding box results based on context.</desc>

<defs id="defs-1">
<rect id="rect-1" x="20" y="20" width="40" height="40" fill="blue" />
</defs>

<g id="group-1">
<use id="use-1" xlink:href="#rect-1" x="10" y="10" />

<g id="group-2" display="none">
<rect id="rect-2" x="10" y="10" width="100" height="100" fill="red"” />
</g>
</g>
</svg>

Element ID | Bounding Box Result

"defs-1" {0,0,0,0}
"rect-1" {20, 20, 40, 40}
"group-1" {30, 30, 40, 40}
"use-1" {30, 30, 40, 40}
"group-2" {10, 10, 100, 100}
"rect-2" {10, 10, 100, 100}

Elements and document fragments which derive from svcLocatable but are not in the rendering tree, such as those in
a 'defs' element or those which have been been created but not yet inserted into the DOM, must still have a bound-
ing box. The geometry of elements outside the rendering tree must take into account only those properties and val-
ues (such as 'font-size') which are specified within that element or document fragment, or which have a lacuna value
or an implementation-defined value.

For text content elements, for the purposes of the bounding box calculation, each glyph must be treated as a
separate graphics element. The calculations must assume that all glyphs occupy the full glyph cell. For example, for
horizontal text, the calculations must assume that each glyph extends vertically to the full ascent and descent

80

/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/examples/bbox-calc.svg

SVG Tiny 1.2 Specification 7 Coordinate Systems, Transformations and Units

values for the font. An exception to this is the 'textArea', which uses that element's geometry for the bounding box
calculation.

Because declarative or scripted animation can change the shape, size, and position of an element, the bounding
box is mutable. Thus, the bounding box for an element shall reflect the current values for the element at the snap-
shot in time at which the bounding box is requested, whether through a script call or as part of a declarative or link-
ing syntax.

Note that an element which has either or both of 'width' and 'height' of '0' (such as a vertical or horizontal line, or
a 'rect' element with an unspecified 'width' or 'height) still has a bounding box, with a positive value for the positive
dimension, or with '0' for both 'width' and 'height' if no positive dimension is specified. Similarly, subpaths segments
of a 'path' element with '0" 'width' and 'height' must be included in that element's geometry for the sake of the
bounding box. Note also that elements which do not derive from svGLocatable (such as gradient elements) do not
have a bounding box, thus have no interface to request a bounding box.

Elements in the rendering tree which reference unresolved resources shall still have a bounding box, defined by
the position and dimensions specified in their attributes, or by the lacuna value for those attributes if no values are
supplied. For example, the element <use xlink:href="#bad" x="10" y="10"/>would have a bounding box with an 'x' and
'y' of '10' and a 'width' and 'height' of '0".

For a formal definition of bounding boxes, see [FOLEY-VANDAM], section 15.2.3, Extents and Bounding Volumes.
For further details, see bounding box calculations, the effects of visibility on bounding box, object bounding box
units and text elements, and fragment identifiers.

7.13 Object bounding box units

The following elements offer the option of expressing coordinate values and lengths as fractions of the bounding
box (via keyword 'objectBoundingBox') on a given element:

Element Attribute Effect

'linearGradient' | gradientUnits="objectBoundingBox" | Indicates that the attributes which specify the gradient
vector ('x1','y1', 'x2', 'y2") represent fractions of the bound-
ing box of the element to which the gradient is applied.

'radialGradient' | gradientUnits="objectBoundingBox" | Indicates that the attributes which specify the center (‘ex',
'cy') and the radius ('r') represent fractions of the bounding
box of the element to which the gradient is applied.

In the discussion that follows, the term applicable element is the element to which the given effect applies. For
gradients the applicable element is the graphics element which has its 'fill' or 'stroke’ property referencing the given
gradient. (See Inheritance of painting properties. For special rules concerning text elements, see the discussion of
object bounding box units and text elements.)

When keyword 'objectBoundingBox' is used, then the effect is as if a supplemental transformation matrix were
inserted into the list of nested transformation matrices to create a new user coordinate system.

First, the (minx, miny) and (maxx, maxy) coordinates are determined for the applicable element and all of its des-
cendants. The values minx, miny, maxx and maxy are determined by computing the maximum extent of the shape
of the element in x and y with respect to the user coordinate system for the applicable element.

Then, coordinate (0, 0) in the new user coordinate system is mapped to the (minx, miny) corner of the tight
bounding box within the user coordinate system of the applicable element and coordinate (1, 1) in the new user co-
ordinate system is mapped to the (maxx, maxy) corner of the tight bounding box of the applicable element. In most
situations, the following transformation matrix produces the correct effect:

[(maxx-minx) @ @ (maxy-miny) minx miny]

Any numeric value can be specified for values expressed as a fraction of object bounding box units. In particular,
fractions less are zero or greater than one can be specified.

Keyword 'objectBoundingBox' should not be used when the geometry of the applicable element has no width or
no height, such as the case of a horizontal or vertical line, even when the line has actual thickness when viewed due
to having a non-zero stroke width since stroke width is ignored for bounding box calculations. When the geometry
of the applicable element has no width or height and 'objectBoundingBox' is specified, then the given effect (e.g., a
gradient) will be ignored.

81

SVG Tiny 1.2 Specification 7 Coordinate Systems, Transformations and Units

7.14 Intrinsic sizing properties of the viewport of SVG content

SVG needs to specify how to calculate some intrinsic sizing properties to enable inclusion within other languages.
The intrinsic width and height of the viewport of SVG content must be determined from the 'width' and 'height' at-
tributes. If either of these are not specified, the lacuna value of '100%' must be used. Note: the 'width' and 'height' at-
tributes are not the same as the CSS width and height properties. Specifically, percentage values do not provide an
intrinsic width or height, and do not indicate a percentage of the containing block. Rather, they indicate the portion
of the viewport that is actually covered by image data.

The intrinsic aspect ratio of the viewport of SVG content is necessary for example, when including SVG from an
object element in XHTML styled with CSS. It is possible (indeed, common) for an SVG graphic to have an intrinsic as-
pect ratio but not to have an intrinsic width or height. The intrinsic aspect ratio must be calculated based upon the
following rules:

« The aspect ratio is calculated by dividing a width by a height.

« If the 'width' and 'height' of the rootmost 'svg' element are both specified with unit identifiers (in, mm, cm, pt, pc,
pX, em, ex) or in user units, then the aspect ratio is calculated from the 'width' and 'height' attributes after
resolving both values to user units.

« If either/both of the 'width' and 'height' of the rootmost 'svg' element are in percentage units (or omitted), the
aspect ratio is calculated from the width and height values of the 'viewBox' specified for the current SVG
document fragment. If the 'viewBox' is not correctly specified, or set to 'none’, the intrinsic aspect ratio cannot be
calculated and is considered unspecified.

Examples:

Example: Intrinsic Aspect Ratio 1

<svg xmlns="http://www.w3.0rg/2000/svg" version="1.2" baseProfile="tiny"
width="10cm" height="5cm">

</svg>

In this example the intrinsic aspect ratio of the viewport is 2:1. The intrinsic width is 10cm and the intrinsic height is
5cm.

Example: Intrinsic Aspect Ratio 2

<svg xmlns="http://www.w3.0rg/2000/svg" version="1.2" baseProfile="tiny"
width="100%" height="50%" viewBox="0 @ 200 200">

</svg>

In this example the intrinsic aspect ratio of the rootmost viewport is 1:1. An aspect ratio calculation in this case al-
lows embedding in an object within a containing block that is only constrained in one direction.

Example: Intrinsic Aspect Ratio 3

<svg xmlns="http://www.w3.0rg/2000/svg" version="1.2" baseProfile="tiny"
width="10cm" viewBox="0 @ 200 200">

</svg>
In this case the intrinsic aspect ratio is 1:1.

Example: Intrinsic Aspect Ratio 4

<svg xmlns="http://www.w3.0rg/2000/svg"” version="1.2" baseProfile="tiny"
width="75%" height="10cm" viewBox="0 @ 200 200">

</svg>

In this example, the intrinsic aspect ratio is 1:1.

82

SVG Tiny 1.2 Specification 7 Coordinate Systems, Transformations and Units

7.15 Geographic coordinate systems

In order to allow interoperability between SVG content generators and SVG user agents dealing with maps encoded
in SVG, the use of a common metadata definition for describing the coordinate system used to generate SVG docu-
ments is encouraged.

Such metadata must be added under the 'metadata’ element of the topmost 'svg' element describing the map,
consisting of an RDF description of the Coordinate Reference System definition used to generate the SVG map
[RDF]. Note that the presence of this metadata does not affect the rendering of the SVG in any way; it merely
provides added semantic value for applications that make use of combined maps.

The definition must be conformant to the XML grammar described in GML 3.2.1, an OpenGiIS Standard for en-
coding common CRS data types in XML [GML]. In order to correctly map the 2-dimensional data used by SVG, the
CRS must be of subtype ProjectedCRS or Geographic2dCRS. The first axis of the described CRS maps the SVG x-ax-
is and the second axis maps the SVG y-axis.

The main purpose of such metadata is to indicate to the user agent that two or more SVG documents can be
overlayed or merged into a single document. Obviously, if two maps reference the same Coordinate Reference Sys-
tem definition and have the same SVG 'transform' attribute value then they can be overlayed without reprojecting
the data. If the maps reference different Coordinate Reference Systems and/or have different SVG ‘transform’ attrib-
ute values, then a specialized cartographic user agent may choose to transform the coordinate data to overlay the
data. However, typical SVG user agents are not required to perform these types of transformations, or even recog-
nize the metadata. It is described in this specification so that the connection between geographic coordinate sys-
tems and the SVG coordinate system is clear.

7.16 The 'svg:transform' attribute

Attribute definition:
svg:transform="<transform>" | "none"

<transform>
Specifies the affine transformation that has been applied to the map data. The syntax is identical to that
described in The 'transform’ attribute section.

none
Specifies that no supplemental affine transformation has been applied to the map data. Using this value
has the same meaning as specifying the identity matrix, which in turn is just the same as not specifying
the 'svg:transform' the attribute at all.

Animatable: no.

This attribute describes an optional additional affine transformation that may have been applied during this map-
ping. This attribute may be added to the OpenGlIS 'CoordinateReferenceSystem' element. Note that, unlike the
'transform' attribute, it does not indicate that a transformation is to be applied to the data within the file. Instead, it
simply describes the transformation that was already applied to the data when being encoded in SVG.

There are three typical uses for the 'svg:transform' global attribute. These are described below and used in the
examples.

+ Most ProjectedCRS have the north direction represented by positive values of the second axis and conversely
SVG has a y-down coordinate system. That's why, in order to follow the usual way to represent a map with the
north at its top, it is recommended for that kind of ProjectedCRS to use the 'svg:transform' global attribute with a
'scale(1,-1)' value as in the third example below.

+ Most Geographic2dCRS have the latitude as their first axis rather than the longitude, which means that the
south-north axis would be represented by the x-axis in SVG instead of the usual y-axis. That's why, in order to
follow the usual way to represent a map with the north at its top, it is recommended for that kind of
Geographic2dCRS to use the 'svg:transform' global attribute with a 'rotate(-90)' value as in the first example
(while also adding the 'scale(1, -1)' as for ProjectedCRS).

« Inaddition, when converting for profiles which place restrictions on precision of real number values, it may be
useful to add an additional scaling factor to retain good precision for a specific area. When generating an SVG
document from WGS84 geographic coordinates (EPGS 4326), we recommend the use of an additional 100 times
scaling factor corresponding to an 'svg:transform' global attribute with a 'rotate(-90) scale(100)' value (shown in
the second example). Different scaling values may be required depending on the particular CRS.

83

http://portal.opengeospatial.org/files/?artifact_id=20509

SVG Tiny 1.2 Specification 7 Coordinate Systems, Transformations and Units

Below is a simple example of the coordinate metadata, which describes the coordinate system used by the docu-
ment via a URI.

Example: 07_19.svg

<?xml version="1.0"7>
<svg xmlns="http://www.w3.0rg/2000/svg" version="1.2" baseProfile="tiny"
width="100" height="100" viewBox="0 @ 1000 1000">

<desc>An example that references coordinate data.</desc>

<metadata>
<rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:crs="http://www.ogc.org/crs”
xmlns:svg="http://wwww.w3.0rg/2000/svg">
<rdf:Description rdf:about="">
<!-- The Coordinate Reference System is described
through a URI. -->
<crs:CoordinateReferenceSystem
svg:transform="rotate(-90)"
rdf:resource="http://www.example.org/srs/epsg.xml#4326"/>
</rdf:Description>
</rdf:RDF>
</metadata>

<!-- The actual map content -->
</svg>

The second example uses a well-known identifier to describe the coordinate system. Note that the coordinates used
in the document have had the supplied transform applied.

Example: 07_20.svg

<?xml version="1.0"7>
<svg xmlns="http://www.w3.0rg/2000/svg" version="1.2" baseProfile="tiny"
width="100" height="100" viewBox="0 0 1000 1000">

<desc>Example using a well known coordinate system.</desc>

<metadata>
<rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:crs="http://www.ogc.org/crs”
xmlns:svg="http://wwww.w3.0rg/2000/svg">
<rdf:Description rdf:about="">
<!-- In case of a well-known Coordinate Reference System
an 'Identifier’ is enough to describe the CRS -->
<crs:CoordinateReferenceSystem svg:transform="rotate(-90) scale(100, 100)">
<crs:Identifier>
<crs:code>4326</crs:code>
<crs:codeSpace>EPSG</crs:codeSpace>
<crs:edition>5.2</crs:edition>
</crs:Identifier>
</crs:CoordinateReferenceSystem>
</rdf:Description>
</rdf:RDF>
</metadata>

<!-- The actual map content -->
</svg>

The third example defines the coordinate system completely within the SVG document.

Example: 07_21.svg

<?xml version="1.0"7>
<svg xmlns="http://www.w3.0rg/2000/svg" version="1.2" baseProfile="tiny"
width="100" height="100" viewBox="0 0 1000 1000">

<desc>Coordinate metadata defined within the SVG document</desc>

84

SVG Tiny 1.2 Specification 7 Coordinate Systems, Transformations and Units

<metadata>
<rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:crs="http://www.ogc.org/crs”
xmlns:svg="http://wwww.w3.0rg/2000/svg">
<rdf:Description rdf:about="">
<!-- For other CRS it should be entirely defined -->
<crs:CoordinateReferenceSystem svg:transform="scale(1,-1)">
<crs:NameSet>
<crs:name>Mercator projection of WGS84</crs:name>
</crs:NameSet>
<crs:ProjectedCRS>
<!-- The actual definition of the CRS -->
<crs:CartesianCoordinateSystem>
<crs:dimension>2</crs:dimension>
<crs:CoordinateAxis>
<crs:axisDirection>north</crs:axisDirection>
<crs:AngularUnit>
<crs:Identifier>
<crs:code>9108</crs:code>
<crs:codeSpace>EPSG</crs:codeSpace>
<crs:edition>5.2</crs:edition>
</crs:Identifier>
</crs:AngularUnit>
</crs:CoordinateAxis>
<crs:CoordinateAxis>
<crs:axisDirection>east</crs:axisDirection>
<crs:AngularUnit>
<crs:Identifier>
<crs:code>9108</crs:code>
<crs:codeSpace>EPSG</crs:codeSpace>
<crs:edition>5.2</crs:edition>
</crs:Identifier>
</crs:AngularUnit>
</crs:CoordinateAxis>
</crs:CartesianCoordinateSystem>
<crs:CoordinateReferenceSystem>
<!-- the reference system of that projected system is
WGS84 which is EPSG 4326 in EPSG codeSpace -->
<crs:NameSet>
<crs:name>WGS 84</crs:name>
</crs:NameSet>
<crs:Identifier>
<crs:code>4326</crs:code>
<crs:codeSpace>EPSG</crs:codeSpace>
<crs:edition>5.2</crs:edition>
</crs:Identifier>
</crs:CoordinateReferenceSystem>
<crs:CoordinateTransformationDefinition>
<crs:sourceDimensions>2</crs:sourceDimensions>
<crs:targetDimensions>2</crs:targetDimensions>
<crs:ParameterizedTransformation>
<crs:TransformationMethod>
<!-- the projection is a Mercator projection which is
EPSG 9805 in EPSG codeSpace -->
<crs:NameSet>
<crs:name>Mercator</crs:name>
</crs:NameSet>
<crs:Identifier>
<crs:code>9805</crs:code>
<crs:codeSpace>EPSG</crs:codeSpace>
<crs:edition>5.2</crs:edition>
</crs:Identifier>
<crs:description>Mercator (2SP)</crs:description>
</crs:TransformationMethod>
<crs:Parameter>
<crs:NameSet>
<crs:name>Latitude of 1st standart parallel</crs:name>
</crs:NameSet>
<crs:Identifier>
<crs:code>8823</crs:code>
<crs:codeSpace>EPSG</crs:codeSpace>
<crs:edition>5.2</crs:edition>
</crs:Identifier>

85

SVG Tiny 1.2 Specification 7 Coordinate Systems, Transformations and Units

<crs:value>@</crs:value>
</crs:Parameter>
<crs:Parameter>
<crs:NameSet>
<crs:name>Longitude of natural origin</crs:name>
</crs:NameSet>
<crs:Identifier>
<crs:code>8802</crs:code>
<crs:codeSpace>EPSG</crs:codeSpace>
<crs:edition>5.2</crs:edition>
</crs:Identifier>
<crs:value>@</crs:value>
</crs:Parameter>
<crs:Parameter>
<crs:NameSet>
<crs:name>False Easting</crs:name>
</crs:NameSet>
<crs:Identifier>
<crs:code>8806</crs:code>
<crs:codeSpace>EPSG</crs:codeSpace>
<crs:edition>5.2</crs:edition>
</crs:Identifier>
<crs:value>@</crs:value>
</crs:Parameter>
<crs:Parameter>
<crs:NameSet>
<crs:name>False Northing</crs:name>
</crs:NameSet>
<crs:Identifier>
<crs:code>8807</crs:code>
<crs:codeSpace>EPSG</crs:codeSpace>
<crs:edition>5.2</crs:edition>
</crs:Identifier>
<crs:value>@</crs:value>
</crs:Parameter>
</crs:ParameterizedTransformation>
</crs:CoordinateTransformationDefinition>
</crs:ProjectedCRS>
</crs:CoordinateReferenceSystem>
</rdf:Description>
</rdf:RDF>
</metadata>

<!-- the actual map content -->
</svg>

86

SVG Tiny 1.2 Specification 8 Paths

8 Paths

Contents

S 200 I 10 Yo [Tt o 1A 87

S0 I T o - 4 = 170 V=T o 87
8.2.T Animating Path datao e e e e e e e 88

SR 3 - 14 1 - | - 1S 88
8.3.1 General information about path data ... 88
8.3.2 The "MOVETO" COMMANGS. . .\ttt ittt ettt ettt ettt ettt ettt ettt eteaeaneanann, 89
8.3.3 The "closepath” COMMANG.ttt i e e et e ettt ettt i, 89
8.3.4 The "INet0" COMMIANGS. ...\ttt ittt e ettt et e ettt i et ieaeanns 20
8.3.5 The CUIVE COMMANAS ..ottt ettt ettt ettt ettt ettt et et e e et e e e et ettt eieaneanennannanns 920
8.3.6 The Cubic Bézier CUIVE COMMANAS. . ..ottt et e e e e e i ettt aeananns 920
8.3.7 The Quadratic Bzier CUrVE COMMANAS.ttt ettt e ettt e ettt aeaneananns 92
8.3.8Thegrammarfor path data.ouiu it e ettt 93

8.4 DistanCe aloNg @ Path ... u it e e e 95

8.1 Introduction

Paths represent the outline of a shape which can be filled or stroked. (See Filling, Stroking and Paint Servers.)

A path is described using the concept of a current point. In an analogy with drawing on paper, the current point
can be thought of as the location of the pen. The position of the pen can be changed, and the outline of a shape
(open or closed) can be traced by dragging the pen in either straight lines or curves.

Paths represent the geometry of the outline of an object, defined in terms of moveto (set a new current point),
lineto (draw a straight line), curveto (draw a curve using a cubic Bézier) and closepath (close the current shape by
drawing a line to the last moveto) elements. Compound paths (i.e., a path with multiple subpaths) are possible to al-
low effects such as "donut holes" in objects.

This chapter describes the syntax and behavior for SVG paths. Various implementation notes for SVG paths can
be found in 'path' element implementation notes.

A path is defined in SVG using the 'path' element.

8.2 The 'path' element

Schema: path

<define name='path’'>
<element name='path'>
<ref name='path.AT'/>
<zeroOrMore><ref name='shapeCommon.CM'/></zeroOrMore>
</element>
</define>

<define name='path.AT' combine='interleave'>
<ref name='svg.ShapeCommon.attr'/>
<ref name='svg.D.attr'/>
<optional>
<attribute name='pathLength' svg:animatable='true' svg:inheritable='false'>
<ref name='Number.datatype'/>
</attribute>
</optional>
</define>

Attribute definitions:

d ="<path-data>"
The definition of the outline of a shape. See Path data. An empty attribute value (d="") disables rendering of
the element. The lacuna value is the empty string.
Animatable: yes, but see restrictions described in Animating path data.

87

SVG Tiny 1.2 Specification 8 Paths

pathLength ="<number>"
The authoring length of the path, in user units. This value is used to calibrate the user agent's own distance-
along-a-path calculations with that of the author. The user agent shall scale all distance-along-a-path
computations by the ratio of 'pathLength’ to the user agent's own computed value for total path length.
'pathLength’ potentially affects calculations for motion animation and various stroke operations.
A negative value is an unsupported value.
Animatable: yes.

focusable = "true" | "false" | "auto"
See attribute definition for description.
Animatable: yes.

Navigation Attributes
See definition.

8.2.1 Animating path data

Interpolated path data animation is only possible when each normalized path data specification within an anima-

tion specification has exactly the same list of path data commands as the 'd' attribute after normalization. This

means that each path data specification and the 'd' attribute would have the exact same list of commands if normal-

ized as defined in Path Normalization. If an animation is specified and the list of path data commands is not the

same, then the animation specification must be ignored as unsupported. The animation engine shall interpolate

each parameter to each path data command separately based upon the attributes on the given animation element.
Non-interpolated (i.e. calcMode="discrete") path data animation is always possible.

8.3 Path data

8.3.1 General information about path data
A path is defined by including a 'path' element which contains a 'd' attribute, where the 'd" attribute contains the
moveto, line, curve (both cubic and quadratic Béziers) and closepath instructions.

Example 08_01 specifies a 'path’ in the shape of a triangle. (The M indicates a moveto, the L's indicate lineto's,
and the z indicates a closepath).

Example: 08_01.svg

<?xml version="1.0"7>
<svg width="4cm” height="4cm" viewBox="0 @ 400 400"
xmlns="http://www.w3.0rg/2000/svg" version="1.2" baseProfile="tiny">
<title>Example triangle@l- simple example of a 'path'</title>
<desc>A path that draws a triangle</desc>
<rect x="1" y="1" width="398" height="398"
fill="none"” stroke="blue" />
<path d="M 100 100 L 300 100 L 200 300 z"
fill="red" stroke="blue" stroke-width="3" />
</svg>

Path data can contain newline characters and thus can be broken up into multiple lines to improve readability.

88

/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/examples/08_01.svg

SVG Tiny 1.2 Specification 8 Paths

The syntax of path data is concise in order to allow for minimal file size and efficient downloads, since many SVG
files will be dominated by their path data. Some of the ways that SVG attempts to minimize the size of path data are
as follows:

« Allinstructions are expressed as one character (e.g., a moveto is expressed as an M).

+ Superfluous white space and separators such as commas can be eliminated (e.g., 'M 100 100 L 200 200' contains
unnecessary spaces and could be expressed more compactly as 'M100 100L200 200').

« The command letter can be eliminated on subsequent commands if the same command is used multiple times
in a row (e.g., you can drop the second "L" in 'M 100 200 L 200 100 L -100 -200' and use 'M 100 200 L 200 100 -100
-200' instead).

« Relative versions of all commands are available (uppercase means absolute coordinates, lowercase means
relative coordinates).

« Alternate forms of lineto are available to optimize the special cases of horizontal and vertical lines (absolute and
relative).

- Alternate forms of curve are available to optimize the special cases where some of the control points on the
current segment can be determined automatically from the control points on the previous segment.

The path data syntax is a prefix notation (i.e., commands followed by parameters). The only allowable decimal point
is a Unicode U+002E FULL STOP (".") character (also referred to in Unicode as PERIOD, dot and decimal point)
[UNICODE] and no other delimiter characters are allowed. (For example, the following is an invalid numeric value in
path data: "13,000.56". Instead, say: "13000.56".)

For the relative versions of the commands, all coordinate values shall be relative to the current point at the start
of the command.

In the tables below, the following notation is used:

+ (): grouping of parameters

« +:1 or more of the given parameter(s) is required

« Coordinates following commands in uppercase (e.g., M) shall be treated as absolute coordinates.

« Coordinates following commands in lowercase (e.g., m) shall be treated as relative coordinates.

The following sections list the commands.

8.3.2 The "moveto" commands

The 'moveto' commands (M or m) establish a new current point. The effect is as if the "pen" were lifted and moved
to a new location. A path data segment (if there is one) must begin with a 'moveto' command. Subsequent 'moveto’
commands (i.e., when the 'moveto' is not the first command) represent the start of a new subpath:

Command H Name H Parameters H Description

M moveto || (x y)+ A new sub-path at the given (x,y) coordinate shall be started. This shall also

(absolute) establish a new current point at the given coordinate. If a relative 'moveto’

m (m) appears as the first element of the 'path’, then it shall treated as a pair

(relative) of absolute coordinates. If a 'moveto' is followed by multiple pairs of co-
ordinates, the subsequent pairs shall be treated as implicit 'lineto’
commands.

8.3.3 The "closepath" command

A straight line shall be drawn from the current point to the initial point of the current subpath, and shall end the
current subpath. If a 'closepath’ (Z or z) is followed immediately by any other command, then the next subpath
must start at the same initial point as the current subpath.

When a subpath ends in a 'closepath’, it differs in behavior from what happens when "manually" closing a sub-
path via a 'lineto' command in how 'stroke-linejoin' and 'stroke-linecap’ are implemented. With 'closepath’, the end
of the final segment of the subpath shall be "joined" with the start of the initial sesgment of the subpath using the
current value of 'stroke-linejoin'. If instead the subpath is closed "manually” via a 'lineto' command, the start of the
first segment and the end of the last segment are not joined but instead shall each be capped using the current
value of 'stroke-linecap'. At the end of the command, the new current point shall be set to the initial point of the cur-
rent subpath.

Command H Name H Parameters || Description

89

SVG Tiny 1.2 Specification

8 Paths

Zor

closepath

(none)

The current subpath shall be closed by drawing a straight line from the
current point to current subpath's initial point, which then shall become
the new current point. Since the Z and zcommands take no parameters,
they have an identical effect.

8.3.4 The "lineto" commands
The various 'lineto’ commands draw straight lines from the current point to a new point:

| Command H Name || Parameters H Description

L lineto (xy)+ A line shall be drawn from the current point to the given (x,y) coordinate,

(absolute) which then shall become the new current point. If more than one co-

I (relative) ordinate pair is specified, a polyline shall be drawn. At the end of the
command, the new current point shall be set to the final set of coordin-
ates provided.

H horizontal || x+ A horizontal line shall be drawn from the current point (cpx, cpy) to (x,

(absolute) || lineto cpy). If more than one x value is specified, multiple horizonal lines shall

h (relative) be drawn (although usually this doesn't make sense). At the end of the
command, the new current point shall be (x, cpy) for the final value of x.

\') vertical y+ A vertical line shall be drawn from the current point (cpx, cpy) to (cpx, y).

(absolute) || lineto If more than one y value is specified, multiple vertical lines shall be

v (relative) drawn (although usually this doesn't make sense). At the end of the com-
mand, the new current point shall be (cpx, y) for the final value of y.

8.3.5 The Curve commands

These groups of commands draw curves:
+ Cubic Bézier commands (C, ¢, S and s). A cubic Bézier segment is defined by a start point, an end point, and two
control points.
+ Quadratic Bézier commands (Q, q, T and t). A quadratic Bézier segment is defined by a start point, an end point,
and one control point.

8.3.6 The Cubic Bézier curve commands
The 'Cubic Bézier' commands are as follows:

Command H Name || Parameters H Description

C curveto (x1y1x2y2 || Acubic Bézier curve shall be drawn from the current point to (x,y) using

(absolute) Xy)+ (x1,y1) as the control point at the beginning of the curve and (x2,y2) as

c (relative) the control point at the end of the curve. If multiple sets of coordinates
are specified, a polybézier shall be drawn. At the end of the command,
the new current point shall be the final (x,y) coordinate pair used in the
polybézier.

S shorthand/ || (x2y2 x y)+ || A cubic Bézier curve shall be drawn from the current point to (x,y). The

(absolute) || smooth first control point shall be the reflection of the second control point on

s (relative) || curveto the previous command relative to the current point. (If there is no previ-

ous command or if the previous command was notan C, ¢, S or s, the
first control point shall be coincident with the current point.) (x2,y2)
shall be used as the second control point (i.e., the control point at the
end of the curve). If multiple sets of coordinates are specified, a poly-
bézier shall be drawn. At the end of the command, the new current
point shall be the final (x,y) coordinate pair used in the polybézier.

90

SVG Tiny 1.2 Specification 8 Paths

Example 08_02 shows some simple uses of 'Cubic Bézier' commands within a 'path'. Note that the control point for
the "S" command is computed automatically as the reflection of the control point for the previous "C" command rel-
ative to the start point of the "S" command.

Example: 08_02.svg

<?xml version="1.0"7>
<svg width="5cm” height="4cm"” viewBox="0 0 500 400"
xmlns="http://www.w3.0rg/2000/svg" version="1.2" baseProfile="tiny">
<title>Example cubic@l- cubic Bézier commands in path data</title>
<desc>Picture showing a simple example of path data
using both a "C" and an "S" command,
along with annotations showing the control points
and end points</desc>
<rect fill="none" stroke="blue" stroke-width="1" x="1" y="1" width="498" height="398" />
<polyline fill="none" stroke="#888888" stroke-width="1" points="100,200 100,100" />
<polyline fill="none" stroke="#888888" stroke-width="1" points="250,100 250,200" />
<polyline fill="none" stroke="#888888" stroke-width="1" points="250,200 250,300" />
<polyline fill="none" stroke="#888888" stroke-width="1" points="400,300 400,200" />
<path fill="none" stroke="red" stroke-width="5" d="M100,200 C100,100 250,100 250,200
S400,300 400,200" />
<circle fill="#888888" stroke="none" stroke-width="2" cx="100" cy="200" r="10" />
<circle fill="#888888" stroke="none" stroke-width="2" cx="250" cy="200" r="10" />
<circle fill="#888888" stroke="none" stroke-width="2" cx="400" cy="200" r="10" />
<circle fill="#888888" stroke="none" cx="100" cy="100" r="10" />
<circle fill="#888888" stroke="none" cx="250" cy="100" r="10" />
<circle fill="#888888" stroke="none" cx="400" cy="300" r="10" />
<circle fill="none" stroke="blue" stroke-width="4" cx="250" cy="300" r="9" />
<text font-size="22" font-family="Verdana" x="25" y="70">M100,200 C100,100 250,100 250,200</text>
<text font-size="22" font-family="Verdana” x="325" y="350"
text-anchor="middle">S400,300 400,200</text>
</svg>

M100, 200 CL00, 100 250,100 250,200
] L]

o]
5400, 300 400, 200

The following picture shows some how cubic Bézier curves change their shape depending on the position of the
control points. The first five examples illustrate a single cubic Bézier path segment. The example at the lower right
shows a "C" command followed by an "S" command.

91

/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/examples/08_02.svg

SVG Tiny 1.2 Specification 8 Paths

» . .
M10:0, 200 C100, 100 400, 100 400,200 ME&00, 200 O675,100 975,100 900,200

hf\}

M100,500 C25 400 475,400 400,500 00, 500 O500,350 900,650 900,500

[]
a] ® »
M104,800 C175,700 325,700 400,800
o »
ME00, 800 C625,700 725,700 750,800

S875,900 500,800

8.3.7 The Quadratic Bézier curve commands
The 'Quadratic Bézier' commands are as follows:

| Command H Name || Parameters H Description
Q quadratic (x1y1xy)+ || Aquadratic Bézier curve is drawn from the current point to (x,y) using
(absolute) || Bézier (x1,y1) as the control point. If multiple sets of coordinates are specified,
q (relative) || curveto a polybézier shall be drawn. At the end of the command, the new cur-
rent point shall be the final (x,y) coordinate pair used in the polybézier.
T Shorthand/ || (x y)+ A quadratic Bézier curve is drawn from the current point to (x,y). The
(absolute) || smooth control point shall be the reflection of the control point on the previous
t (relative) || quadratic command relative to the current point. (If there is no previous com-
Bézier mand or if the previous command was nota Q, g, T or t, the control
curveto point shall be current point.) If multiple sets of coordinates are spe-
cified, a polybézier shall be drawn. At the end of the command, the new
current point shall be the final (x,y) coordinate pair used in the
polybézier.

Example quad01 shows some simple uses of 'Quadratic Bézier' commands within a path. Note that the control point
for the "T" command is computed automatically as the reflection of the control point for the previous "Q" command
relative to the start point of the "T" command.

Example: 08_03.svg

<?xml version="1.0"7>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.org/Graphics/SVG/1.1/DTD/svgll.dtd">

<svg width="12cm"” height="6cm"” viewBox="0 @ 1200 600"

xmlns="http://www.w3.0rg/2000/svg"

version="1.2" baseProfile="tiny">

<title>Example quad@l - quadratic Bezier commands in path data</title>

<desc>Picture showing a "Q" a

"T" command,

along with annotations showing the control points
and end points</desc>
<rect x="1" y="1" width="1198" height="598"

fill="none"

stroke="blue"

stroke-width="1" />

<path d="M200,300 Q400,50 600,300 T1000,300"

fill="

none”

stroke="red"” stroke-width="5" />

92

/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/examples/08_03.svg

SVG Tiny 1.2 Specification

<!-- End points -->
<g fill="black" >

<circle cx="200" cy="300" r="10"/>

<circle cx="600" cy="300" r="10"/>

<circle cx="1000" cy="300" r="10"/>
</g>
<!-- Control points and lines from end points to control points -->
<g fill="#888888" >

<circle cx="400" cy="50" r="10"/>

<circle cx="800" cy="550" r="10"/>
</g>
<path d="M200,300 L400,50 L600,300

800,550 L1000,300"
fill="none" stroke="#888888" stroke-width="2" />
</svg>

8 Paths

8.3.8 The grammar for path data
The following description of the grammar for path data uses Extended Backus-Naur Form [EBNF]:

path-data ::=

wsp* moveto-drawto-command-groups? wspx
moveto-drawto-command-groups ::=

moveto-drawto-command-group

| moveto-drawto-command-group wsp* moveto-drawto-command-groups
moveto-drawto-command-group ::=

moveto wspx drawto-commands?
drawto-commands ::=

drawto-command

| drawto-command wsp* drawto-commands
drawto-command ::=

closepath
lineto
horizontal-lineto
vertical-lineto
curveto
smooth-curveto
quadratic-bezier-curveto
smooth-quadratic-bezier-curveto
moveto ::=

("M" | "m") wspx moveto-argument-sequence
moveto-argument-sequence ::=

coordinate-pair

| coordinate-pair comma-wsp? lineto-argument-sequence
closepath ::=

'z" 1 "z")
lineto ::=

C "L" | "1") wspx lineto-argument-sequence
lineto-argument-sequence ::=

coordinate-pair

| coordinate-pair comma-wsp? lineto-argument-sequence
horizontal-lineto ::=

("H" | "h") wspx horizontal-lineto-argument-sequence
horizontal-lineto-argument-sequence ::=

93

SVG Tiny 1.2 Specification 8 Paths

coordinate

| coordinate comma-wsp? horizontal-lineto-argument-sequence
vertical-lineto ::=

C"V" | "v") wspx vertical-lineto-argument-sequence
vertical-lineto-argument-sequence ::=

coordinate

| coordinate comma-wsp? vertical-lineto-argument-sequence
curveto ::=

("C" | "c") wsp* curveto-argument-sequence
curveto-argument-sequence ::=

curveto-argument

| curveto-argument comma-wsp? curveto-argument-sequence
curveto-argument ::=

coordinate-pair comma-wsp? coordinate-pair comma-wsp? coordinate-pair
smooth-curveto ::=

("S" | "s") wspx smooth-curveto-argument-sequence
smooth-curveto-argument-sequence ::=

smooth-curveto-argument

| smooth-curveto-argument comma-wsp? smooth-curveto-argument-sequence
smooth-curveto-argument ::=

coordinate-pair comma-wsp? coordinate-pair
quadratic-bezier-curveto ::=

("Q" | "g") wspx quadratic-bezier-curveto-argument-sequence
quadratic-bezier-curveto-argument-sequence ::=

quadratic-bezier-curveto-argument

| quadratic-bezier-curveto-argument comma-wsp?

quadratic-bezier-curveto-argument-sequence

quadratic-bezier-curveto-argument ::=

coordinate-pair comma-wsp? coordinate-pair
smooth-quadratic-bezier-curveto ::=

¢ "T" | "t") wspx smooth-quadratic-bezier-curveto-argument-sequence
smooth-quadratic-bezier-curveto-argument-sequence ::=

coordinate-pair

| coordinate-pair comma-wsp? smooth-quadratic-bezier-curveto-argument-sequence
coordinate-pair ::=

coordinate comma-wsp? coordinate
coordinate ::=

number
nonnegative-number ::=

integer-constant

| floating-point-constant
number ::=

sign? integer-constant

| sign? floating-point-constant

flag ::=

"or | "1n
comma-wsp ::=

(wsp+ comma? wsp*) | (comma wspx)
comma ::=

non
)

integer-constant ::=
digit-sequence

floating-point-constant ::=
fractional-constant exponent?
| digit-sequence exponent

fractional-constant ::=

digit-sequence? "." digit-sequence
| digit-sequence "."
exponent ::=
("e" | "E") sign? digit-sequence
sign ::=
U
digit-sequence ::=
digit
| digit digit-sequence
digit ::=

QR | M1M | M2" | "3" | M4" | "5" | "6" | "7" | "8" | "9"
wsp ::=
(#x20 | #x9 | #xD | #xA)

The processing of the EBNF must consume as much of a given EBNF production as possible, stopping at the point
when a character is encountered which no longer satisfies the production. Thus, in the string 'M 100-200", the first
coordinate for the "moveto" consumes the characters "100" and stops upon encountering the minus sign because

94

SVG Tiny 1.2 Specification 8 Paths

the minus sign cannot follow a digit in the production of a "coordinate". The result is that the first coordinate will be
"100" and the second coordinate will be "-200".

Similarly, for the string 'M 0.6.5', the first coordinate of the "moveto" consumes the characters "0.6" and stops
upon encountering the second decimal point because the production of a "coordinate" only allows one decimal
point. The result is that the first coordinate will be "0.6" and the second coordinate will be ".5".

Note that the EBNF allows the path 'd" attribute to be empty. This is not an error, instead it disables rendering of
the path. Values of the 'd' that do not match the EBNF are treated as unsupported.

8.4 Distance along a path

Various operations, including motion animation and some stroke operations, require that the user agent compute
the distance along the geometry of a graphics element, such as a 'path’.

To aid hand authoring by allowing convenient round numbers to be used, the 'pathLength’ attribute can be
used to provide the author's computation of the total length of the path so that the user agent can scale distance-
along-a-path computations by the ratio of 'pathLength' to the user agent's own computed value for total path
length.

A "moveto" operation within a 'path’' element is defined to have zero length. Only the various "lineto" and
"curveto"” commands contribute to path length calculations.

95

SVG Tiny 1.2 Specification 9 Basic Shapes

9 Basic Shapes

Contents
128 I 0 4o [T 4 o o TR 96
10 N T 4Tt =] =T ' 1= o P 96
0.3 The GIrCle ElEMENT . . .ottt e e et e e e e e 98
0.4 The ellipse @IEMENT. ...\ttt e e e e e e e e e 100
0. 5 The lINE ElEMENT. . . ettt et ettt e e e e 101
0.6 The 'POlYliNE lEMENT ...\ttt e e ettt e e et 102
0.7 The 'POlYgON ElEMENT . ..ttt e e e e e e e et et e e e 104
9.7.1 The grammar for points specifications in 'polyline' and 'polygon' elements...............ccoevviiin.. 105

9.1 Introduction

SVG contains the following set of basic shape elements:

- rectangles (including optional rounded corners), created with the 'rect' element,

« circles, created with the 'circle' element,

« ellipses, created with the 'ellipse' element,

- straight lines, created with the 'line' element,

+ polylines, created with the 'polyline' element, and

+ polygons, created with the 'polygon’ element.
Mathematically, these shape elements are equivalent to a 'path’ element that would construct the same shape. The
basic shapes may be stroked, and filled. All of the properties available for 'path' elements also apply to the basic
shapes.

9.2 The 'rect' element

The 'rect' element defines a rectangle which is axis-aligned with the current user coordinate system. Rounded rect-
angles can be achieved by setting appropriate values for attributes 'rx' and 'ry'.

Schema: rect

<define name='rect'>
<element name='rect'>
<ref name='rect.AT'/>
<zeroOrMore><ref name='shapeCommon.CM'/></zeroOrMore>
</element>
</define>

<define name='rect.AT' combine='interleave'>
<ref name='svg.ShapeCommon.attr'/>
<ref name='svg.XYWH.attr'/>
<ref name='svg.RxRyCommon.attr'/>
</define>

Attribute definitions:

x ="<coordinate>"
The x-axis coordinate of the side of the rectangle which has the smaller x-axis coordinate value in the current
user coordinate system. The lacuna value is'0".
Animatable: yes.

y ="<coordinate>"
The y-axis coordinate of the side of the rectangle which has the smaller y-axis coordinate value in the current
user coordinate system. The lacuna value is'0'.
Animatable: yes.

96

SVG Tiny 1.2 Specification 9 Basic Shapes

width ="<length>"
The width of the rectangle. A negative value is unsupported. A value of zero disables rendering of the element.
The lacuna value is '0".
Animatable: yes.

height = "<length>"
The height of the rectangle. A negative value is unsupported. A value of zero disables rendering of the
element. The lacuna value is '0'.
Animatable: yes.

rx = "<length>"
For rounded rectangles, the x-axis radius of the ellipse used to round off the corners of the rectangle. A
negative value is unsupported. See the notes below about what happens if the attribute is not specified.
Animatable: yes.

ry = "<length>"
For rounded rectangles, the y-axis radius of the ellipse used to round off the corners of the rectangle. A
negative value is unsupported. See the notes below about what happens if the attribute is not specified.
Animatable: yes.

focusable ="true" | "false" | "auto"
See attribute definition for description.
Animatable: yes.

Navigation Attributes
See definition.

If a properly specified value is provided for 'rx' but not for 'ry’, then the user agent must process the 'rect' element
with the effective value for 'ry' as equal to 'rx". If a properly specified value is provided for 'ry' but not for 'rx', then the
user agent must process the 'rect' element with the effective value for 'rx' as equal to 'ry'. If neither 'rx' nor 'ry' has a
properly specified value, then the user agent must process the 'rect' element as if no rounding had been specified,
resulting in square corners. If 'rx' is greater than half of the width of the rectangle, then the user agent must process
the 'rect’ element with the effective value for 'rx' as half of the width of the rectangle. If 'ry' is greater than half of the
height of the rectangle, then the user agent must process the 'rect' element with the effective value for 'ry* as half of
the height of the rectangle.

A 'rect’ element, taking its rounded corners into account, must be rendered in a way that produces the same res-
ult as if the following outline were specified instead (note: all coordinate and length values are first converted into
user space coordinates according to Units):

1. Perform an absolute moveto operation to location (x+rx,y), where x and y are the values of the 'rect’ element's 'x'
and'y' attribute converted to user space, and rx and ry are the effective values of the 'rx' and 'ry' attributes
converted to user space.

2. Perform an absolute horizontal lineto operation to location (x+width-rx,y), where width is the 'rect' element's
‘width' attribute converted to user space.

3. Perform an absolute elliptical arc operation to coordinate (x+width,y+ry), where the effective values for the 'rx'
and 'ry' attributes on the 'rect’' element converted to user space are used as the semimajor and semiminor axis,
respectively, zero x-axis-rotation, a clockwise sweep direction and choosing the smaller arc sweep.

4. Perform an absolute vertical lineto operation to location (x+width,y+height-ry), where height is the 'rect'

element's 'height' attribute converted to user space.

Perform an absolute elliptical arc operation to coordinate (x+width-rx,y+height).

Perform an absolute horizontal lineto operation to location (x+rx,y+height).

Perform an absolute elliptical arc operation to coordinate (x,y+height-ry).

Perform an absolute vertical lineto operation to location (x,y+ry).

Perform an absolute elliptical arc operation to coordinate (x+rx,y).

Perform a closepath (z) to the coordinate specified in the original moveto operation.

In case the 'rx' and 'ry' attributes are not specified or set to a value of zero, the elliptical arc commands should be

omitted.

© 0 N W

1

97

SVG Tiny 1.2 Specification 9 Basic Shapes

Example 09_01 shows a rectangle with sharp corners. The 'rect' element is filled with yellow and stroked with
navy.

Example: 09_01.svg

<?xml version="1.0"7>
<svg width="12cm" height="4cm" viewBox="0 @ 1200 400"
xmlns="http://www.w3.0rg/2000/svg" version="1.2" baseProfile="tiny">
<desc>Example rect@l - rectangle with sharp corners</desc>
<!-- Show outline of canvas using 'rect’' element -->
<rect x="1" y="1" width="1198" height="398"
fill="none" stroke="blue" stroke-width="2"/>
<rect x="400" y="100" width="400" height="200"
fill="yellow"” stroke="navy" stroke-width="10" />
</svg>

Example 09_02 shows two rounded rectangles. The 'rx' specifies how to round the corners of the rectangles. Note
that since no value has been specified for the 'ry' attribute, it will be assigned the same value as the 'rx' attribute.

Example: 09_02.svg

<?xml version="1.0"7>
<svg width="12cm" height="4cm" viewBox="0 @ 1200 400"
xmlns="http://www.w3.0rg/2000/svg" version="1.2" baseProfile="tiny">
<desc>Example rect@2 - rounded rectangles</desc>
<!-- Show outline of canvas using 'rect’' element -->
<rect x="1" y="1" width="1198" height="398"
fill="none" stroke="blue"” stroke-width="2"/>
<rect x="100" y="100" width="400" height="200" rx="50"
fill="green" />
<g transform="translate(700 210) rotate(-30)">
<rect x="0" y="0" width="400" height="200" rx="50"
fill="none" stroke="purple” stroke-width="30" />
</g>
</svg>

9.3 The 'circle' element

The 'circle’ element defines a circle based on a center point and a radius.

98

/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/examples/09_01.svg
/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/examples/09_02.svg

SVG Tiny 1.2 Specification 9 Basic Shapes

Within the current user coordinate system, stroking operations on a circle begin at the point (cx+r,cy) and then
proceed through the points (cx,cy-+r), (cx-r,cy), (cx,cy-r) and finally back to (cx+r,cy). For stroking operations, there is
only one line segment which has its beginning joined to its end.

Schema: circle

<define name='circle’'>
<element name='circle’'>
<ref name='circle.AT'/>
<zeroOrMore><ref name='shapeCommon.CM'/></zeroOrMore>
</element>
</define>

<define name='circle.AT' combine='interleave'>
<ref name='svg.ShapeCommon.attr'/>
<ref name='svg.CxCy.attr'/>
<ref name='svg.R.attr'/>

</define>

Attribute definitions:

cx ="<coordinate>"
The x-axis coordinate of the center of the circle. The lacuna value is '0'".
Animatable: yes.

cy = "<coordinate>"
The y-axis coordinate of the center of the circle. The lacuna value is '0".
Animatable: yes.

r ="<length>"
The radius of the circle. A negative value is unsupported. A value of zero disables rendering of the element.
The lacuna value is '0".
Animatable: yes.

focusable ="true" | "false" | "auto"
See attribute definition for description.
Animatable: yes.

Navigation Attributes
See definition.

Example circle01 consists of a ‘circle’ element that is filled with red and stroked with blue.

Example: 09_03.svg

<?xml version="1.0"7>
<svg width="12cm" height="4cm" viewBox="0 @ 1200 400"
xmlns="http://www.w3.0rg/2000/svg" version="1.2" baseProfile="tiny">
<desc>Example circle@l - circle filled with red and stroked with blue</desc>
<!-- Show outline of canvas using 'rect’' element -->
<rect x="1" y="1" width="1198" height="398"
fill="none"” stroke="blue" stroke-width="2"/>
<circle cx="600" cy="200" r="100"
fill="red" stroke="blue" stroke-width="10" />
</svg>

99

/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/examples/09_03.svg

SVG Tiny 1.2 Specification 9 Basic Shapes

9.4 The 'ellipse’ element
The 'ellipse’ element defines an ellipse which is axis-aligned with the current user coordinate system based on a cen-

ter point and two radii.

Within the current user coordinate system, stroking operations on a ellipse begin at the point (cx+rx,cy) and
then proceed through the points (cx,cy+ry), (cx-rx,cy), (cx,cy-ry) and finally back to (cx+rx,cy). For stroking opera-
tions, there is only one line segment which has its beginning joined to its end.

Schema: ellipse

<define name='ellipse'>
<element name='ellipse'>
<ref name='ellipse.AT'/>
<zeroOrMore><ref name='shapeCommon.CM'/></zeroOrMore>
</element>
</define>

<define name='ellipse.AT' combine='interleave'>
<ref name='svg.ShapeCommon.attr'/>
<ref name='svg.RxRyCommon.attr'/>
<ref name='svg.CxCy.attr'/>

</define>

Attribute definitions:

cx ="<coordinate>"
The x-axis coordinate of the center of the ellipse. The lacuna value is '0".

Animatable: yes.

cy = "<coordinate>"
The y-axis coordinate of the center of the ellipse. The lacuna value is '0".

Animatable: yes.

rx = "<length>"
The x-axis radius of the ellipse. A negative value is unsupported. A value of zero disables rendering of the
element. The lacuna value is '0".
Animatable: yes.

ry = "<length>"
The y-axis radius of the ellipse. A negative value is unsupported. A value of zero disables rendering of the
element. The lacuna value is '0'.
Animatable: yes.

focusable = "true" | "false" | "auto"
See attribute definition for description.
Animatable: yes.

Navigation Attributes
See definition.

100

SVG Tiny 1.2 Specification 9 Basic Shapes

Example 09_04 below specifies the coordinates of the two ellipses in the user coordinate system established by the
'viewBox' attribute on the 'svg' element and the 'transform' attribute on the 'g' and 'ellipse' elements. Both ellipses
use the lacuna value of zero for the 'ex' and 'cy' attributes (the center of the ellipse). The second ellipse is rotated.

Example: 09_04.svg

<?xml version="1.0"7>
<svg width="12cm” height="4cm"” viewBox="0 @ 1200 400"
xmlns="http://www.w3.0rg/2000/svg" version="1.2" baseProfile="tiny">
<desc>Example ellipse@l - examples of ellipses</desc>
<!-- Show outline of canvas using 'rect' element -->
<rect x="1" y="1" width="1198" height="398"
fill="none" stroke="blue" stroke-width="2" />
<g transform="translate(300 200)">
<ellipse rx="250" ry="100"
fill="red" />
</g>
<ellipse transform="translate(900 200) rotate(-30)"
rx="250" ry="100"
fill="none" stroke="blue" stroke-width="20" />
</svg>

9.5 The 'line' element

The 'line' element defines a line segment that starts at one point and ends at another.

Schema: line

<define name='line’'>
<element name='line’'>
<ref name='line.AT'/>
<zeroOrMore><ref name='shapeCommon.CM'/></zeroOrMore>
</element>
</define>

<define name='line.AT' combine='interleave'>
<ref name='svg.ShapeCommon.attr'/>
<ref name='svg.X12Y12.attr'/>

</define>

Attribute definitions:

x1 ="<coordinate>"
The x-axis coordinate of the start of the line. The lacuna value is '0".
Animatable: yes.

y1 ="<coordinate>"
The y-axis coordinate of the start of the line. The lacuna value is '0'.
Animatable: yes.

x2 ="<coordinate>"
The x-axis coordinate of the end of the line. The lacuna value is '0'.
Animatable: yes.

101

/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/examples/09_04.svg

SVG Tiny 1.2 Specification 9 Basic Shapes

y2 ="<coordinate>"
The y-axis coordinate of the end of the line. The lacuna value is '0".
Animatable: yes.

focusable = "true" | "false" | "auto"
See attribute definition for description.
Animatable: yes.

Navigation Attributes
See definition.

A 'line' element must be rendered in a way that produces the same result as if the following path were specified in-
stead (note: all coordinate and length values are first converted into user space coordinates according to Units):
1. Perform an absolute moveto operation to absolute location (x1,y7), where x7 and y1 are the values of the 'line'
element’s 'x1' and 'y1" attributes converted to user space, respectively.
2. Perform an absolute lineto operation to absolute location (x2,y2), where x2 and y2 are the values of the 'line'
element's 'x2' and 'y2' attributes converted to user space, respectively.
Because 'line' elements are single lines and thus are geometrically one-dimensional, they have no interior; thus, 'line'
elements are never filled (see the 'fill' property).
Example 09_05 below specifies the coordinates of the five lines in the user coordinate system established by the
'viewBox' attribute on the 'svg' element. The lines have different thicknesses.

Example: 09_05.svg

<?xml version="1.0"7>
<svg width="12cm"” height="4cm"” viewBox="0 @ 1200 400"
xmlns="http://www.w3.0rg/2000/svg" version="1.2" baseProfile="tiny">
<desc>Example line@l - lines expressed in user coordinates</desc>
<!-- Show outline of canvas using 'rect’' element -->
<rect x="1" y="1" width="1198" height="398"
fill="none" stroke="blue" stroke-width="2" />
<g stroke="green"” >
<line x1="100" y1="300" x2="300" y2="100"
stroke-width="5" />
<line x1="300" y1="300" x2="500" y2="100"
stroke-width="10" />
<line x1="500" y1="300" x2="700" y2="100"
stroke-width="15" />
<line x1="700" y1="300" x2="900" y2="100"
stroke-width="20" />
<line x1="900" y1="300" x2="1100" y2="100"
stroke-width="25" />

S/

9.6 The 'polyline' element

The 'polyline' element defines a set of connected straight line segments. Typically, 'polyline’ elements define open
shapes.

</g>
</svg>

102

/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/examples/09_05.svg

SVG Tiny 1.2 Specification 9 Basic Shapes

Schema: polyline

<define name='polyline'>
<element name='polyline'>
<ref name='polyCommon.AT'/>
<zeroOrMore><ref name='shapeCommon.CM'/></zeroOrMore>
</element>
</define>

<define name='polyCommon.AT' combine='interleave'>
<ref name='svg.ShapeCommon.attr'/>
<optional>
<attribute name='points' svg:animatable='true' svg:inheritable='false’'>
<ref name='Points.datatype'/>
</attribute>
</optional>
</define>

Attribute definitions:

points = "<points-data>"
The points that make up the polyline. All coordinate values are in the user coordinate system.
An empty attribute value (points="") disables rendering of the element. The lacuna value is the empty
string.
Animatable: yes.

focusable = "true" | "false" | "auto"
See attribute definition for description.
Animatable: yes.

Navigation Attributes
See definition.

If an odd number of coordinates is provided, then the element is treated as if the attribute had not been specified.

A 'polyline' element must be rendered in a way that produces the same result as if the following path were spe-
cified instead:
1. Perform an absolute moveto operation to the first coordinate pair in the list of points.
2. Foreach subsequent coordinate pair, perform an absolute lineto operation to that coordinate pair.
Example 09_06 below specifies a polyline in the user coordinate system established by the 'viewBox' attribute on
the 'svg' element.

Example: 09_06.svg

<?xml version="1.0"7>
<svg width="12cm"” height="4cm"” viewBox="0 @ 1200 400"
xmlns="http://www.w3.0rg/2000/svg" version="1.2" baseProfile="tiny">
<desc>Example polyline@l - increasingly larger bars</desc>
<!-- Show outline of canvas using 'rect' element -->
<rect x="1" y="1" width="1198" height="398"
fill="none" stroke="blue" stroke-width="2" />
<polyline fill="none" stroke="blue" stroke-width="10"
points="50,375
150,375 150,325 250,325 250,375
350,375 350,250 450,250 450,375
550,375 550,175 650,175 650,375
750,375 750,100 850,100 850,375
950,375 950,25 1050,25 1050,375
1150,375" />
</svg>

103

/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/examples/09_06.svg

SVG Tiny 1.2 Specification 9 Basic Shapes

1

9.7 The 'polygon' element

The 'polygon’ element defines a closed shape consisting of a set of connected straight line segments.

Schema: polygon

<define name='polygon'>
<element name='polygon'>
<ref name='polyCommon.AT'/>
<zeroOrMore><ref name='shapeCommon.CM'/></zeroOrMore>
</element>
</define>

Attribute definitions:

points = "<points-data>"
The points that make up the polygon. All coordinate values are in the user coordinate system.
An empty attribute value (points="") disables rendering of the element. The lacuna value is the empty
string.
Animatable: yes.

focusable = "true" | "false" | "auto"
See attribute definition for description.
Animatable: yes.

Navigation Attributes
See definition.

If an odd number of coordinates is provided in the 'points' attribute, then it is treated as an unsupported value.
A 'polygon' element must be rendered in a way that produces the same result as if the following path were spe-
cified instead:
1. Perform an absolute moveto operation to the first coordinate pair in the list of points.
2. For each subsequent coordinate pair, perform an absolute lineto operation to that coordinate pair.
3. Perform a closepath command.
Example 09_07 below specifies two polygons (a star and a hexagon) in the user coordinate system established by
the 'viewBox' attribute on the 'svg' element.

Example: 09_07.svg

<?xml version="1.0"7>
<svg width="12cm" height="4cm" viewBox="0 @ 1200 400"
xmlns="http://www.w3.0rg/2000/svg" version="1.2" baseProfile="tiny">
<desc>Example polygon@l - star and hexagon</desc>
<!-- Show outline of canvas using 'rect’' element -->
<rect x="1" y="1" width="1198" height="398"
fill="none" stroke="blue" stroke-width="2" />
<polygon fill="red" stroke="blue" stroke-width="10"
points="350,75 379,161 469,161 397,215
423,301 350,250 277,301 303,215
231,161 321,161" />

104

/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/examples/09_07.svg

SVG Tiny 1.2 Specification

<polygon fill="1lime" stroke="blue" stroke-width="10"
points="850,75 958,137.5 958,262.5
850,325 742,262.6 742,137.5" />
</svg>

9 Basic Shapes

9.7.1 The grammar for points specifications in 'polyline' and 'polygon' elements

The following is an EBNF grammar for <points-data> values on 'polyline' and 'polygon' elements [EBNF]:

points-data:

wsp* coordinate-pairs? wsp*
coordinate-pairs:

coordinate-pair

| coordinate-pair comma-wsp coordinate-pairs
coordinate-pair:

coordinate comma-wsp coordinate
coordinate:

number
number :

sign? integer-constant

| sign? floating-point-constant
comma-wsp:

(wsp+ comma? wsp*) | (comma wspx)
comma:

non
)

integer-constant:
digit-sequence
floating-point-constant:
fractional-constant exponent?
| digit-sequence exponent
fractional-constant:

digit-sequence? "." digit-sequence
| digit-sequence "."
exponent:
("e" | "E") sign? digit-sequence
sign:
g | o
digit-sequence:
digit
| digit digit-sequence
digit:
"M | M1t | "2 | "3" | 4™ | "5" | "e" | "7" | "8" | "9"
wsp:

(#x20 | #x9 | #xD | #xA)+

105

SVG Tiny 1.2 Specification 10 Text

10 Text

Contents
028 I 1 Yo [T [T 106
10.2 Characters and their corresponding glyPhst e e e et e 107
10.3 Fonts, font tables and Daselines.ttt e e e e e e 108
02 I Y= = G =] =T ' 1= o 109
10,5 The tSPaAN ElEMENT ..ttt et ettt ettt e ettt e ettt et 111
L0 I G = Yo 10 112
10.6.1 Text layout INTrOdUCHION.ttt e e e et et ettt e et a e enenenes 112
10.6.2 Relationship with bidirectionality.ot i e et i 113
10.6.3 The 'dir@CtioN' PrOPEITY ...ttt ettt ettt ettt e ettt e e e e e eaenes 115
10.6.4 The 'unicode-bidi' PrOPeItY.ttt e e e e ettt eeaes 115
OB =0 A =T T [T T o o) e =T 115
10.8 AlIGNMENT PrOPEITIES. . .« ettt ettt e ettt e e ettt et e e et e e e e e e e e e 115
10.8.1 TeXt aligNMENt PrOPEITIES . . .o\ttt ettt ettt ettt e e ettt et e et e e anenes 115
10.9 FONt SElECHiON PrOPEITIES . . .\ttt ettt ettt et e ettt ettt e ettt e ettt 116
10.10 White space handlingo .o e e e e ettt e 118
{020 I T = [0 1= = = 119
10.71.7 INtrodUCtion 0 tEXE IN AN @ra. . .ottt t ettt ettt ettt e ettt e i e ee e enenens 119
10.11. 2 The teXtArEa" EleMENT . ..ttt e e e e et ettt et ettt a e eenanes 120
10.11.3 The threak! €lementt e e e e e et e e ettt et a e 121
10.11.4 The 'line-iNCrement’ PrOPEILYttt ettt e e e ettt e et aenes 122
10.11.5 The teXt-align' PrOPeItY ...ttt e e e e et et et e i e e 122
10.11.6 The 'display-align' PropPerty ..ottt e e e e ettt e e nenes 123
10.11.7 Textin an area layOUt rULESo ettt e e e e e e et e e e e eenens 123
10.12 Editable text fleldso e e 124
10.12.1 The 'editable’ attribute.ot e e e e e e e et 124
10.13 Text selection and clipboard Operationsouiniiiinit e 126
08 1 7= Y o 127

10.1 Introduction

Text that is to be rendered as part of an SVG document fragment is specified using the text content block elements.
The characters to be drawn are expressed as XML content inside the element.

SVG's text content block elements are rendered like other graphics elements. Thus, coordinate system trans-
formations and painting features apply to text elements in the same way as they apply to shapes such as paths and
rectangles.

Each 'text' element causes a single string of text to be rendered. The 'text' element performs no automatic line
breaking or word wrapping. To achieve the effect of multiple lines of text, use one of the following methods:

+ Use the 'textArea' element to specify a rectangular area in which to flow the text.

+ Pre-compute the line breaks (which can be done by the author or authoring tool) and use individual ‘text'
elements to manually place the lines of text. (Note: this is discouraged for accessibility reasons.)

+ Express the text to be rendered in another XML namespace such as XHTML [XHTML] embedded inline within a

‘foreignObject' element. (Note: the exact semantics of this approach are not completely defined at this time.)

The text strings within 'text' elements shall be rendered in one straight line. SVG supports the following internation-
al text processing features for straight line text:
« left-to-right or bidirectional text (i.e., languages which intermix right-to-left and left-to-right text, such as Arabic
and Hebrew)
- when SVG fonts are used, automatic selection of the correct glyph corresponding to the current form for Arabic
and Han text

106

http://www.w3.org/TR/REC-xml/#NT-content

SVG Tiny 1.2 Specification 10 Text

The layout rules for straight line text are described in Text layout.
Because SVG text is packaged as XML content:
« Text data in SVG content is readily accessible to the visually impaired (see Accessibility Support)
« In many viewing scenarios, the user will be able to search for and select text strings and copy selected text
strings to the system clipboard (see Text search and Text selection and clipboard operations)
+ XML-compatible Web search engines will find text strings in SVG content with no additional effort over what
they need to do to find text strings in other XML documents
Multi-language SVG content is possible by substituting different text strings based on the user's preferred language.
For accessibility reasons, it is recommended that text which is included in a document have appropriate semant-
ic markup to indicate its function. See SVG accessibility guidelines for more information.

10.2 Characters and their corresponding glyphs

In XML [XML10, XML11], textual content is defined in terms of a sequence of XML characters, where each character is
defined by a particular Unicode code point [UNICODE]. Fonts, on the other hand, consist of a collection of glyphs
and other associated information, such as font tables. A glyph is a presentable form of one or more characters (or a
part of a character in some cases). Each glyph consists of some sort of identifier (in some cases a string, in other
cases a number) along with drawing instructions for rendering that particular glyph.

In many cases, there is a one-to-one mapping of Unicode characters (i.e., Unicode code points) to glyphs in a
font. For example, it is common for a font designed for Latin languages (where the term Latin is used for European
languages such as English with alphabets similar to or derivative to the Latin language) to contain a single glyph for
each of the standard ASCII characters (i.e., A-to-Z, a-to-z, 0-to-9, plus the various punctuation characters found in
ASCII). Thus, in most situations, the string "XML", which consists of three Unicode characters, would be rendered by
the three glyphs corresponding to "X", "M" and "L", respectively.

In various other cases, however, there is not a strict one-to-one mapping of Unicode characters to glyphs. Some
of the circumstances when the mapping is not one-to-one:

- Ligatures — For best looking typesetting, it is often desirable that particular sequences of characters are
rendered as a single glyph. An example is the word "office". Many fonts will define an "ffi" ligature. When the
word "office" is rendered, sometimes the user agent will render the glyph for the "ffi" ligature instead of
rendering distinct glyphs (i.e., "f", "f" and "i") for each of the three characters. Thus, for ligatures, multiple Unicode
characters map to a single glyph. Note that for proper rendering of many languages, ligatures are required for
certain character combinations, and are not optional typographic features. For example, this is the case for most
languages throughout South and South East Asia.

« Composite characters — In many situations, commonly used adornments such as diacritical marks will be stored
once in a font as a particular glyph and then composed with one or more other glyphs to result in the desired
character. For example, it is possible that a font engine might render the é character by first rendering the glyph
for e and then rendering the glyph for “ (the accent mark) such that the accent mark will appear over the e. In
this situation, a single Unicode character maps to multiple glyphs.

« Context-sensitive glyph positioning — In many scripts, the precise positioning of the glyph for a given character
(especially diacritics) will vary according to the visual context. For example, Thai tone marks are rendered above
the base consonant, but need to be moved upwards further if a vowel-sign also appears above the base
consonant. The same character is used in memory, but the final location of the glyph is sensitive to context.

« Complex positioning of character glyphs — In scripts such as those used for Indian languages, a combining
vowel character that appears after a base consonant in memory may be displayed to the left of the base
consonant, or on two sides of the base consonant, (i.e., the left-most glyph in rendered text may not be the first
character in a text element.) Indeed, such vowel characters may be rendered to the left of, or on more than one
side of, a cluster of consonants that ends with the character they follow in memory. On the other hand, a Hindi
RA character at the beginning of a consonant cluster in memory may be displayed over a following vowel sign to
the right of the following syllabic cluster. The location, from left to right, in which glyphs are displayed in these
scripts can differ significantly from the order of the characters in memory.

+ Glyph substitution — Many typography systems examine the nature of the textual content and utilize different
glyphs in different circumstances. For example, in Arabic, the same Unicode character might render as any of
four different glyphs, depending on such factors as whether the character appears at the start, the end or the
middle of a sequence of cursively joined characters. Different glyphs might be used for a punctuation character
depending on inline-progression-direction (e.g., horizontal vs. vertical). In these situations, a single Unicode
character might map to one of several alternative glyphs.

107

http://www.w3.org/TR/REC-xml/#NT-content
http://www.unicode.org/unicode/standard/versions/

SVG Tiny 1.2 Specification 10 Text

- In many languages, particular sequences of characters will be converted into multiple glyphs such that parts of a
particular character are in one glyph and the remainder of that character is in another glyph.
In many situations, the algorithms for mapping from characters to glyphs are system-dependent, resulting in the
possibility that the rendering of text might be (usually slightly) different when viewed in different user environ-
ments. If the author of SVG content requires precise selection of fonts and glyphs, then it is recommended that the
necessary fonts (potentially subsetted to include only the glyphs needed for the given document) be available
either as SVG fonts embedded within the SVG content or as WebFonts posted at the same Web location as the SVG
content.
Throughout this chapter, the term character shall be equivalent to the definition of a character in XML [XML11].

10.3 Fonts, font tables and baselines

A font consists of a collection of glyphs together with the information (the font tables) necessary to use those
glyphs to present characters on some medium. The combination of the collection of glyphs and the font tables is
called the font data. The font tables include the information necessary to map characters to glyphs, to determine
the size of glyph areas and to position the glyph area. Each font table consists of one or more font characteristics,
such as the 'font-weight' and 'font-style'.

The geometric font characteristics are expressed in a coordinate system based on the EM box. (The EM is a relat-
ive measure of the height of the glyphs in the font; see CSS2 em square ([CSS2], section 15.4.3).) The box 1 EM high
and 1 EM wide is called the design space. This space is given geometric coordinates by sub-dividing the EM into a
number of units-per-em ([CSS2], section 15.3.4).

Note: Units-per-em is a font characteristic. A typical value for units-per-EM is 1000 or 2048.

The coordinate space of the EM box is called the design space coordinate system. For scalable fonts, the curves
and lines that are used to draw a glyph are represented using this coordinate system.

Note: Most often, the (0,0) point in this coordinate system is positioned on the left edge of the EM box, but not
at the bottom left corner. The Y coordinate of the bottom of a roman capital letter is usually zero. And the descend-
ers on lowercase roman letters have negative coordinate values.

SVG assumes that the font tables will provide at least three font characteristics: an ascent, a descent and a set of
baseline-tables. The ascent is the distance to the top of the EM box from the (0,0) point of the font; the descent is
the distance to the bottom of the EM box from the (0.0) point of the font. The baseline-table is explained below.

Note: Within an OpenType font, for horizontal writing-modes, the ascent and descent are given by the sTypoAs-
cender and sTypoDescender entries in the OS/2 table. For vertical writing-modes, the descent (the distance, in this
case from the (0,0) point to the left edge of the glyph) is normally zero because the (0,0) point is on the left edge.
The ascent for vertical writing-modes is either 1 em or is specified by the ideographic top baseline value in the
OpenType Base table for vertical writing-modes.

In horizontal writing-modes, the glyphs of a given script are positioned so that a particular point on each glyph,
the alignment-point, is aligned with the alignment-points of the other glyphs in that script. The glyphs of different
scripts, for example, Western, Northern Indic and Far-Eastern scripts, are typically aligned at different points on the
glyph. For example, Western glyphs are aligned on the bottoms of the capital letters, northern indic glyphs are
aligned at the top of a horizontal stroke near the top of the glyphs and far-eastern glyphs are aligned either at the
bottom or center of the glyph. Within a script and within a line of text having a single font-size, the sequence of
alignment-points defines, in the inline-progression-direction, geometric line called a baseline. Western and most
other alphabetic and syllabic glyphs are aligned to an "alphabetic" baseline, the northern indic glyphs are aligned to
a "hanging" baseline and the far-eastern glyphs are aligned to an "ideographic" baseline.

A baseline-table specifies the position of one or more baselines in the design space coordinate system. The func-
tion of the baseline table is to facilitate the alignment of different scripts with respect to each other when they are
mixed on the same text line. Because the desired relative alignments may depend on which script is dominant in a
line (or block), there may be a different baseline table for each script. In addition, different alignment positions are
needed for horizontal and vertical writing modes. Therefore, the font may have a set of baseline tables: typically,
one or more for horizontal writing-modes and zero or more for vertical writing-modes.

Note: Some fonts may not have values for the baseline tables. Heuristics are suggested for approximating the
baseline tables when a given font does not supply baseline tables.

SVG further assumes that for each glyph in the font data for a font, there is a width value, an alignment-baseline
and an alignment-point for horizontal writing-mode. (Vertical writing-mode is not supported in SVG Tiny 1.2.)

In addition to the font characteristics required above, a font may also supply substitution and positioning tables
that can be used by a formatter to re-order, combine and position a sequence of glyphs to make one or more

108

http://www.w3.org/TR/CSS2/fonts.html#q1
http://www.w3.org/TR/CSS2/fonts.html#emsq
http://www.w3.org/TR/CSS2/fonts.html#unitsperem

SVG Tiny 1.2 Specification 10 Text

composite glyphs. The combination may be as simple as a ligature, or as complex as an indic syllable which com-
bines, usually with some re-ordering, multiple consonants and vowel glyphs.

10.4 The 'text' element

The "text' element defines a graphics element consisting of text. The XML content within the 'text' element, along
with relevant attributes and properties and character-to-glyph mapping tables within the font itself, define the
glyphs to be rendered. (See Characters and their corresponding glyphs.) The attributes and properties on the 'text'
element indicate such things as the writing direction, font specification and painting attributes which describe how
exactly to render the characters. Subsequent sections of this chapter describe the relevant text-specific attributes
and properties, in particular text layout and bidirectionality.

Since 'text' elements are rendered using the same rendering methods as other graphics elements, all of the
same coordinate system transformations and painting features that apply to shapes such as paths and rectangles
also apply to 'text' elements.

Text behaves like other graphical objects, and it is therefore possible to apply a gradient to text. When this facil-
ity is applied to text then the object bounding box units are computed relative to the entire 'text' element in all
cases, even when different effects are applied to different 'tspan' elements within the same 'text' element.

The 'text' element renders its first glyph (after bidirectionality reordering) at the initial current text position,
which is established by the 'x' and 'y' attributes on the 'text' element (with possible adjustments due to the value of
the 'text-anchor' property). After the glyph(s) corresponding to the given character is (are) rendered, the current text
position is updated for the next glyph. In the simplest case, the new current text position is the previous current text
position plus the glyph's advance value. See text layout for a description of glyph placement and glyph advance.

Schema: text

<define name='text’'>
<element name='text'>
<ref name='text.AT'/>
<zeroOrMore><ref name='svg.TextCommon.group'/></zeroOrMore>
</element>
</define>

<define name='text.AT' combine='interleave'>
<ref name='svg.Properties.attr’'/>
<ref name='svg.Core.attr'/>
<ref name='svg.Conditional.attr'/>
<ref name='svg.FocusHighlight.attr'/>
<ref name='svg.Editable.attr'/>
<ref name='svg.Focus.attr'/>
<ref name='svg.Transform.attr'/>
<optional>
<attribute name='x' svg:animatable='true' svg:inheritable='false’>
<ref name='Coordinates.datatype'/>
</attribute>
</optional>
<optional>
<attribute name='y' svg:animatable='true' svg:inheritable='false’>
<ref name='Coordinates.datatype'/>
</attribute>
</optional>
<optional>
<attribute name='rotate’ svg:animatable='true’' svg:inheritable='false'>
<ref name='Numbers.datatype’/>
</attribute>
</optional>
</define>

Attribute definitions:

x = "<list-of-coordinates>"
If a single <coordinate> is provided, then the value represents the new absolute X coordinate for the current
text position for rendering the glyphs that correspond to the first character within this element or any of its
descendants.

109

http://www.w3.org/TR/REC-xml/#NT-content

SVG Tiny 1.2 Specification 10 Text

If a comma- or space-separated list of n <coordinate>s is provided, then the values represent new absolute
X coordinates for the current text position for rendering the glyphs corresponding to each of the first n
characters within this element or any of its descendants.

If more <coordinate>s are provided than there are characters, then the extra <coordinate>s must be
ignored.

If more characters are provided than <coordinate>s, then for each of these extra characters normal text
layout processing describied in the Text layout section shall occur.

At least one <coordinate> value must be specified in the attribute.

The lacuna value is '0'".

Animatable: yes.

y = "<list-of-coordinates>"
The corresponding list of absolute Y coordinates for the glyphs corresponding to the characters within this
element. The processing rules for the 'y' attribute parallel the processing rules for the 'x' attribute.
At least one <coordinate> value must be specified in the attribute.
The lacuna value is '0'.
Animatable: yes.

editable ="none" | simple"
This attribute indicates whether the text can be edited. See the definition of the 'editable’ attribute.
Animatable: yes.

rotate = "<list-of-numbers>"
This attribute indicates the supplemental rotation about the alignment-point that must be applied to the
glyphs corresponding to characters within this element according to the following rules:

A comma- or space-separated list of <number>s must be provided. The first <number> specifies the
supplemental rotation that must be applied to the glyphs corresponding to the first character within this
element or any of its descendants, the second <number> specifies the supplemental rotation that must be
applied to the glyphs that correspond to the second character, and so on.

If more <number>s are provided than there are characters, then the extra <number>s must be ignored.

If more characters are provided than <number>s, then for each of these extra characters the rotation value
specified by the last number must be used.

Where multiple characters map to one glyph, the rotation specified for the first character of the ligature
should be used for the glyph, and the subsequent rotations for the other contributing characters should be
ignored.

At least one <number> value must be specified in the attribute.

This supplemental rotation must have no impact on the rules by which current text position as glyphs get
rendered.

Animatable: yes (non-additive, 'set’ and 'animate’ elements only).

focusable ="true" | "false" | "auto"
See attribute definition for description.
Animatable: yes.

Navigation Attributes
See definition.

Example text01 below contains the text string "Hello, out there" which will be rendered onto the canvas using the
Verdana font family with the glyphs filled with the color blue.

Example: 10_01.svg

<?xml version="1.0"7>
<svg xmlns="http://www.w3.0rg/2000/svg" version="1.2" baseProfile="tiny"
width="10cm" height="3cm" viewBox="0 @ 1000 300">

<desc>Example text@l - 'Hello, out there' in blue</desc>

110

/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/examples/10_01.svg

SVG Tiny 1.2 Specification 10 Text

<text x="250" y="150"
font-family="Verdana" font-size="55" fill="blue">
Hello, out there
</text>

<!-- Show outline of canvas using 'rect’' element -->
<rect x="1" y="1" width="998" height="298"
fill="none" stroke="blue" stroke-width="2"/>
</svg>

Hello, out there

10.5 The 'tspan' element

Within a text content block element, graphic and font properties can be adjusted by including a 'tspan' element.

Schema: tspan

<define name='tspan’'>
<element name='tspan’'>
<ref name='tspan.AT'/>
<zeroOrMore><ref name='svg.TextCommon.group'/></zeroOrMore>
</element>
</define>

<define name='tspan.AT' combine='interleave'>
<ref name='svg.Properties.attr'/>
<ref name='svg.FocusHighlight.attr'/>
<ref name='svg.Core.attr'/>
<ref name='svg.Conditional.attr'/>
<ref name='svg.Focus.attr'/>
</define>

The following examples show basic use of the 'tspan’ element.
Example tspan01 uses a 'tspan' element to indicate that the word "not" is to use a bold font and have red fill.

Example: 10_03.svg

<?xml version="1.0"7>
<svg xmlns="http://www.w3.0rg/2000/svg" version="1.2" baseProfile="tiny"
width="10cm" height="3cm"” viewBox="0 @ 1000 300">

<desc>Example tspan@l - using tspan to change visual attributes</desc>

<g font-family="Verdana” font-size="45">
<text x="200" y="150" fill="blue">

You are
<tspan font-weight="bold" fill="red" >not</tspan>
a banana.
</text>
</g>
<!-- Show outline of canvas using 'rect’' element -->

<rect x="1" y="1" width="998" height="298"
fill="none" stroke="blue" stroke-width="2"/>
</svg>

111

/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/examples/10_03.svg

SVG Tiny 1.2 Specification 10 Text

You are not a banana.

Within a text content block element, graphic and font properties can be adjusted by including a 'tspan' element.
Positional attributes such as 'x', 'y', and 'rotate' are not available on 'tspan' in SVG Tiny 1.2.

Attribute definitions:

focusable = "true" | "false" | "auto"
See attribute definition for description.
Animatable: yes.

Navigation Attributes
See definition.

10.6 Text layout

10.6.1 Text layout introduction

This section describes the text layout features supported by SVG. Text layout is described in a general and direction-
ally neutral way, to provide a single reference point for layout information which applies to left-to-right (e.g., Latin
scripts), bidirectional (e.g., Hebrew or Arabic) and vertical (e.g., Asian scripts). In SVG Tiny 1.2, vertical writing is not
supported. The descriptions in this section assume straight line text (i.e., text that is either strictly horizontal or ver-
tical with respect to the current user coordinate system).

For each text content block element, the SVG user agent determines the current reference orientation. The refer-
ence orientation is the vector pointing towards negative infinity in Y within the current user coordinate system.
(Note: in the initial coordinate system, the reference orientation is up.)

Based on the reference orientation the SVG user agent determines the current inline-progression-direction. For
left-to-right text, the inline-progression-direction points 90 degrees clockwise from the reference orientation vector.
For right-to-left text, the inline progression points 90 degrees counter-clockwise from the reference orientation
vector.

Based on the reference orientation the SVG user agent determines the current block-progression-direction. For
left-to-right and right-to-left text, the block-progression-direction points 180 degrees from the reference orientation
vector because the only available horizontal writing modes are Ir-tb and rl-tb.

In processing a given text content block element, the SVG user agent keeps track of the current text position. The
initial current text position is established by the 'x* and 'y' attributes on the text content block element.

The current text position is adjusted after each glyph to establish a new current text position at which the next
glyph shall be rendered. The adjustment to the current text position is based on the current inline-progression-
direction, glyph-specific advance values corresponding to the glyph orientation of the glyph just rendered, kerning
tables in the font and the current values of various attributes and properties, such as the spacing properties and any
'x' and 'y' attributes on text content block elements. If a glyph does not provide explicit advance values correspond-
ing to the current glyph orientation, then an appropriate approximation should be used. For vertical text, a sugges-
ted approximation is the sum of the ascent and descent values for the glyph. Another suggested approximation for
an advance value for both horizontal and vertical text is the size of an em (see 'units-per-em’).

For each glyph to be rendered, the SVG user agent determines an appropriate alignment-point on the glyph
which will be placed exactly at the current text position. The alignment-point is determined based on glyph cell
metrics in the glyph itself, the current inline-progression-direction and the glyph orientation relative to the inline-
progression-direction. For most uses of Latin text the alignment-point in the glyph will be the intersection of left
edge of the glyph cell (or some other glyph-specific x-axis coordinate indicating a left-side origin point) with the
Latin baseline of the glyph. For many cases with top-to-bottom vertical text layout, the reference point will be either
a glyph-specific origin point based on the set of vertical baselines for the font or the intersection of the center of the

112

SVG Tiny 1.2 Specification 10 Text

glyph with its top line (see [CSS2] section 15.3.8 for a definition of top line). If a glyph does not provide explicit origin
points corresponding to the current glyph orientation, then an appropriate approximation should be used, such as
the intersection of the left edge of the glyph with the appropriate horizontal baseline for the glyph or intersection
of the top edge of the glyph with the appropriate vertical baseline. If baseline tables are not available, user agents
should establish baseline tables that reflect common practice.

Adjustments to the current text position are either absolute position adjustments or relative position adjustments.
An absolute position adjustment occurs in the following circumstances:

« Atthe start of a 'text' element

+ Atthe start of a 'textArea' element

+ For each character within a 'text' element which has an 'x' or 'y’ attribute value assigned to it explicitly

All other position adjustments to the current text position are relative position adjustments.
Each absolute position adjustment defines a new text chunk. Absolute position adjustments impact text layout
in the following ways:

- Ligatures only occur when a set of characters which might map to a ligature are all in the same text chunk.

+ Each text chunk represents a separate block of text for alignment due to 'text-anchor' property values.

+ Reordering of characters due to bidirectionality only occurs within a text chunk. Reordering does not happen
across text chunks.

The following additional rules apply to ligature formation:

« Asin the discussion of the CSS2 spacing properties ([CSS2], section 16.4), when the resultant space between two
characters is not the same as the default letter spacing, user agents should either not use ligatures or not apply
letter-spacing depending on their knowledge of which behavior will produce the most coherent results for the
script being used (for example, when the letter-spacing is high it is likely that breaking ligatures will produce the
best result with Roman scripts, but be less than optimal for Arabic scripts, where ignoring the letter-spacing and
maintaining the ligatures will be preferred).

« Ligature formation must only occur between characters that are not separated by element markup, and must
still be enabled between characters separated by other XML markup, such as comments, processing
instructions, or CDATA sections. Ligature processing must take place only after entity and character references
have been resolved. For example, assuming that there is a ligature defined for the string "dahut" and that the
'&hu-ent;' entity reference contains the string "hu", in all the following examples the "dahut" ligature will be
enabled:

e <text>Le dahut vit dans les Alpes grenobloises.</text>
e <text>Le da&hu-ent;t vit dans les Alpes grenobloises.</text>
e <text>Le da<!-- random comment -->hut vit dans les Alpes grenobloises.</text>
e <text>Le da<?turn around?>hut vit dans les Alpes grenobloises.</text>
e <text>Le da<![CDATA[hul>t vit dans les Alpes grenobloises.</text>
But it will not be enabled in the following case:
e <text>Le da<tspan fill='orange'>h</tspan>ut vit dans les Alpes grenobloises.</text>

- As mentioned above, ligature formation should not be enabled for the glyphs corresponding to characters

within different text chunks.

10.6.2 Relationship with bidirectionality

The characters in certain scripts are written from right to left. In some documents, in particular those written with
the Arabic or Hebrew script, and in some mixed-language contexts, text in a single line may appear with mixed dir-
ectionality. This phenomenon is called bidirectionality, or "bidi" for short.

The Unicode standard ([UNICODE], specifically [UAX9]) defines a complex algorithm for determining the proper
directionality of text. The algorithm consists of an implicit part based on character properties, as well as explicit con-
trols for embeddings and overrides. The SVG user agent applies this bidirectional algorithm when determining the
layout of characters within a text content block element.

The 'direction' and 'unicode-bidi' properties allow authors to override the inherent directionality of the content
characters and thus explicitly control how the elements and attributes of a document language map to this al-
gorithm. These two properties are applicable to all characters whose glyphs are perpendicular to the inline-
progression-direction.

In many cases, the bidirectional algorithm from Unicode [UNICODE] produces the desired result automatically,
and in such cases the author does not need to use these properties. For other cases, such as when using right-to-left
languages, it may be sufficient to add the 'direction’ property to the rootmost 'svg' element, and allow that direction
to inherit to all text elements, as in the following example (which may be used as a template):

113

http://www.w3.org/TR/CSS2/fonts.html#alignment
http://www.w3.org/TR/CSS2/text.html#spacing-props

SVG Tiny 1.2 Specification 10 Text

Example: rtl-text.svg

<svg xmlns="http://www.w3.0rg/2000/svg"
width="100%" height="100%" viewBox="0 @ 400 400"
direction="rtl"” xml:lang="fa">

<title direction="1tr" xml:lang="en">Right-to-left Text</title>
<desc direction="1tr" xml:lang="en">
A simple example for using the 'direction’ property in documents
that predominantly use right-to-left languages.
</desc>

<text x="200" y="200" font-size="20">;Liw! > SVG Tiny 1.2 aw! 5 ¥sb.</text>

</svg>

el su Vgb SVG Tiny 1.2 olicwls

Below is another example, where where implicit bidi reordering is not sufficient:

Example: rtl-complex.svg

<?xml version="1.0" encoding="utf-8"7?>

<svg xmlns="http://www.w3.0rg/2000/svg"
width="100%" height="100%" viewBox="0 @ 400 400"
direction="rtl"” xml:lang="he">

<title direction="1tr" xml:lang="en">Right-to-left Text</title>
<desc direction="1tr" xml:lang="en">
An example for using the ’'direction’ and 'unicode-bidi' properties
in documents that predominantly use right-to-left languages.
</desc>

<text x="200" y="200" font-size="20"> ni1n>
MAC: ‏ ;
<tspan direction="1tr" unicode-bidi="embed">00-24-AF-2A-55-FC</tspan>
</text>

</svg>

00-24-AF-2A-55-FC :MAC nano

Within text content elements, the alignment of text with regards to the 'text-anchor' or 'text-align' properties is de-
termined by the value of the 'direction' property. For example, given a 'text' element with a 'text-anchor' value of
"end", for a 'direction’ value of "Itr", the text will extend to the left of the position of the 'text' element's 'x' attribute
value, while for 'direction’ value of "rtl", the text will extend to the right of the position of the "text' element’s 'x' at-
tribute value.

A more complete discussion of bidirectionality can be found in the Text direction section of CSS 2 ([CSS2], sec-
tion 9.10).

The processing model for bidirectional text is as follows. The user agent processes the characters which are
provided in logical order (i.e., the order the characters appear in the original document). The user agent determines
the set of independent blocks within each of which it should apply the Unicode bidirectional algorithm. Each text
chunk represents an independent block of text. After processing the Unicode bidirectional algorithm and properties
'direction' and 'unicode-bidi' on each of the independent text blocks, the user agent will have a potentially re-
ordered list of characters which are now in left-to-right rendering order. While kerning or ligature processing might
be font-specific, the preferred model is that kerning and ligature processing occurs between combinations of char-
acters or glyphs after the characters have been re-ordered.

114

/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/examples/rtl-text.svg
/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/examples/rtl-complex.svg
http://www.w3.org/TR/REC-CSS2/visuren.html#direction

SVG Tiny 1.2 Specification 10 Text

10.6.3 The 'direction’ property

'direction’
Value: Itr | rtl | inherit
Initial: Itr
Applies to: text content elements
Inherited: yes

Percentages: N/A
Media: visual
Animatable: no

This property specifies the base writing direction of text and the direction of embeddings and overrides (see
'unicode-bidi') for the Unicode bidirectional algorithm. For the 'direction’ property to have any effect on an element
that does not by itself establish a new text chunk (such as the 'tspan' element in SVG 1.2 Tiny), the 'unicode-bidi'
property's value must be embed or bidi-override.

Note: though this property can be declared on any element for purposes of inheritance, it only affects text con-
tent. It does not effect the coordinate system or the positioning of shapes.

Except for any additional information provided in this specification, the normative definition of the property is
found in CSS 2 ([CSS2], section 9.10).

10.6.4 The 'unicode-bidi' property

'unicode-bidi'
Value: normal | embed | bidi-override | inherit
Initial: normal
Applies to: text content elements
Inherited: no

Percentages: N/A
Media: visual
Animatable: no

Except for any additional information provided in this specification, the normative definition of the property is
found in CSS 2 ([CSS2], section 9.10).

10.7 Text rendering order

The glyphs associated with the characters within text content block elements are rendered in the logical order of
the characters in the original document, independent of any re-ordering necessary for visual display (e.g to imple-
ment bidirectionality). Thus, for text that goes right-to-left visually, the glyphs associated with the rightmost charac-
ter are rendered before the glyphs associated with the other characters, as they come earlier in logical order.

Additionally, each distinct glyph is rendered in its entirety (i.e., it is filled and stroked as specified by the 'fill' and
'stroke’ properties) before the next glyph gets rendered.

10.8 Alignment properties

10.8.1 Text alignment properties

The 'text-anchor' property is used to align a string of text relative to a given point, along a given axis. This axis of
alignment varies by writing mode; for horizontal writing mode (the norm for Latin or Arabic) the axis is horizontal,
while for vertical writing mode (often used for Japanese) the axis is vertical. (Note: SVG Tiny 1.2 does not include sup-
port for vertical text.) The point of orientation depends upon the 'text-anchor' property value.

The 'text-anchor' property is applied to each individual text chunk within a given "text' element. Each text chunk
has an initial current text position, which represents the point in the user coordinate system resulting from
(depending on context) application of the 'x' and 'y’ attributes on the 'text' element assigned explicitly to the first
rendered character in a text chunk.

115

http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/visuren.html#propdef-direction
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/visuren.html#propdef-unicode-bidi

SVG Tiny 1.2 Specification 10 Text

'text-anchor’

Value: start | middle | end | inherit
Initial: start

Applies to: ‘text' Element

Inherited: yes

Percentages: N/A

Media: visual

Animatable: yes

Computed value: Specified value, except inherit

Values have the following meanings (where right, left, top, and bottom refer to alignment in an untransformed co-

ordinate space):

start
The rendered characters are aligned such that the start of the resulting rendered text is at the initial current
text position. For an element with a 'direction’ property value of "Itr" (typical for most European languages),
the left side of the text is rendered at the initial text position. For an element with a 'direction’ property value of
"rtl" (typical for Arabic and Hebrew), the right side of the text is rendered at the initial text position. For an
element with a vertical primary text direction (often typical for Asian text), the top side of the text is rendered
at the initial text position. (Note: SVG Tiny 1.2 does not include support for vertical text.)

middle
The rendered characters are aligned such that the geometric middle of the resulting rendered text is at the
initial current text position.

end
The rendered characters are aligned such that the end of the resulting rendered text is at the initial current
text position. For an element with a 'direction' property value of "ltr" (typical for most European languages),
the right side of the text is rendered at the initial text position. For an element with a 'direction’ property value
of "rtl" (typical for Arabic and Hebrew), the left side of the text is rendered at the initial text position. For an
element with a vertical primary text direction (often typical for Asian text), the bottom of the text is rendered
at the initial text position. (Note: SVG Tiny 1.2 does not include support for vertical text.)

10.9 Font selection properties

SVG uses the following font specification properties. Except for any additional information provided in this specific-
ation, the normative definition of the property is in XSL 1.1 ([XSL], section 7.9).

‘font-family’
Value: [[<family-name> |
<generic-family> 1,]* [<family-name>
<generic-family>] | inherit

Initial: depends on user agent
Applies to: text content elements
Inherited: yes

Percentages: N/A

Media: visual

Animatable: yes

Computed value: Specified value, except inherit

This property indicates which font family is to be used to render the text, specified as a prioritized list of font family
names and/or generic family names. Except for any additional information provided in this specification, the norm-
ative definition of the property is in XSL 1.1 ([XSL], section 7.9.2).

‘font-style'
Value: normal | italic | oblique | inherit
Initial: normal

116

http://www.w3.org/TR/CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/2006/REC-xsl11-20061205/#common-font-properties
http://www.w3.org/TR/CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/2006/REC-xsl11-20061205/#font-family
http://www.w3.org/TR/2006/REC-xsl11-20061205/#font-family
http://www.w3.org/TR/CSS2/cascade.html#value-def-inherit

SVG Tiny 1.2 Specification 10 Text

Applies to: text content elements
Inherited: yes

Percentages: N/A

Media: visual

Animatable: yes

Computed value: Specified value, except inherit
This property specifies whether the text is to be rendered using a normal, italic or oblique face. The font-style value
"backslant" defined in XSL 1.1 is not supported. Except for any additional information provided in this specification,

the normative definition of the property is in XSL 1.1 ([XSL], section 7.9.7).

'‘font-variant'

Value: normal | small-caps | inherit
Initial: normal

Applies to: text content elements
Inherited: yes

Percentages: N/A

Media: visual

Animatable: yes

Computed value: Specified value, except inherit
This property indicates whether the text is to be rendered using the normal glyphs for lowercase characters or using
small-caps glyphs for lowercase characters. Except for any additional information provided in this specification, the

normative definition of the property is in XSL 1.1 ([XSL], section 7.9.8).

‘font-weight'

Value: normal | bold | bolder | lighter | 100 | 200 | 300
| 400 | 500 | 600 | 700 | 800 | 900 | inherit

Initial: normal

Applies to: text content elements

Inherited: yes

Percentages: N/A
Media: visual
Animatable: yes

Computed one of the legal numeric values, non-numeric values shall be converted to numeric values
value: according to the rules defined below.

This property refers to the boldness or lightness of the glyphs used to render the text, relative to other fonts in the
same font family. Except for any additional information provided in this specification, the normative definition of
the property is in XSL 1.1 ([XSL], section 7.9.9).

Non-numeric values are interpreted as follows:

normal
Same as "400".

bold
Same as "700".

bolder
Specifies the next weight that is assigned to a font that is darker than the inherited one. If there is no such
weight, it simply results in the next darker numerical value (and the font remains unchanged), unless the
inherited value was "900", in which case the resulting weight is also "900".

117

http://www.w3.org/TR/2006/REC-xsl11-20061205/#font-style
http://www.w3.org/TR/CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/2006/REC-xsl11-20061205/#font-variant
http://www.w3.org/TR/CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/2006/REC-xsl11-20061205/#font-weight
http://www.w3.org/TR/2006/REC-xsl11-20061205/#font-weight

SVG Tiny 1.2 Specification 10 Text

lighter
Specifies the next weight that is assigned to a font that is lighter than the inherited one. If there is no such
weight, it simply results in the next lighter numerical value (and the font remains unchanged), unless the
inherited value was "100", in which case the resulting weight is also "100".

‘font-size'
Value: <absolute-size> | <relative-size> |
<length> | inherit
Initial: medium
Applies to: text content elements
Inherited: yes, the computed value is inherited
Percentages: N/A
Media: visual
Animatable: yes

Computed value: Absolute length

This property refers to the size of the font from baseline to baseline when multiple lines of text are set solid in a mul-
tiline layout environment. The SVG user agent processes the <length> as a height value in the current user coordin-
ate system. Percentage values are not supported.

Except for any additional information provided in this specification, the normative definition of the property is in
XSL 1.1 ([XSL], section 7.9.4).

10.10 White space handling

SVG supports the standard XML attribute 'xml:space’ to specify the handling of white space characters within a giv-
en text content block element's character data. Note that any child element of a text content block element may
also have an 'xml:space' attribute which will apply to that child element's text content. The SVG user agent has spe-
cial processing rules associated with this attribute as described below. These are behaviors that occur subsequent
to XML parsing [XML11] and do not affect the contents of the Document Object Model (DOM) [DOM3].

Attribute definition:

xml:space = "default" | "preserve"
An inheritable attribute which can have one of two values:

default
The initial value for 'xml:space’. When xml:space="default", the SVG user agent will do the following using
a copy of the original character data content. First, it will remove all newline characters. Then it will
convert all tab characters into space characters. Then, it will strip off all leading and trailing space
characters. Then, all contiguous space characters will be consolidated.

preserve
When xml:space="preserve", the SVG user agent will do the following using a copy of the original
character data content. It will convert all newline and tab characters into space characters. Then, it will
draw all space characters, including leading, trailing and multiple contiguous space characters. Thus,
when drawn with xml:space="preserve", the string "a b" (three spaces between "a" and "b") will produce
a larger separation between "a" and "b" than "a b” (one space between "a" and "b").

Animatable: no.

The following example illustrates that line indentation can be important when using xml:space="default". The frag-
ment below show two pairs of similar 'text' elements, with both 'text' elements using xml:space="default'. For these
examples, there is no extra white space at the end of any of the lines (i.e., the line break occurs immediately after the
last visible character).

[01] <text xml:space='default'>
[02] WS example

[03] indented lines

[04] </text>

118

http://www.w3.org/TR/CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/2006/REC-xsl11-20061205/#font-size
http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/

SVG Tiny 1.2 Specification 10 Text

[05] <text xml:space='preserve'>WS example indented lines</text>
[06]

[07] <text xml:space='default'>

[081WS example

[@9]1non-indented lines

[10] </text>

[11] <text xml:space='preserve’'>WS examplenon-indented lines</text>

The first pair of 'text' elements above show the effect of indented character data. The attribute xml:space="default' in
the first 'text' element instructs the SVG user agent to:

+ convert all tabs (if any) to space characters,

- strip out all line breaks (i.e., strip out the line breaks at the end of lines [01], [02] and [03]),

- strip out all leading space characters (i.e., strip out space characters before "WS example" on line [02]),

- strip out all trailing space characters (i.e., strip out space characters before "</text>" on line [04]),

- consolidate all intermediate space characters (i.e., the space characters before "indented lines" on line [03]) into

a single space character.

The second pair of 'text' elements above show the effect of non-indented character data. The attribute
xml:space="default' in the third 'text' element instructs the SVG user agent to:

« convert all tabs (if any) to space characters,

« strip out all line breaks (i.e., strip out the line breaks at the end of lines [07], [08] and [09]),

. strip out all leading space characters (there are no leading space characters in this example),

- strip out all trailing space characters (i.e., strip out space characters before "</text>" on line [10]),

+ consolidate all intermediate space characters into a single space character (in this example, there are no

intermediate space characters).

Note that XML parsers are required to convert the standard representations for a newline indicator (e.g., the literal
two-character sequence "#xD#xA" or the stand-alone literals #xD or #xA) into the single character #xA before
passing character data to the application. See XML end-of-line handling ([XML11], section 2.11).

Any features in the SVG language or the SVG DOM that are based on character position number are based on
character position after applying the white space handling rules described here. In particular, if xml:space="default",
it is often the case that white space characters are removed as part of processing. Character position numbers index
into the text string after the white space characters have been removed per the rules in this section.

10.11 Text in an area

10.11.1 Introduction to text in an area

The 'textArea’ element allows simplistic wrapping of text content within a given region. This profile of SVG specifies
a single rectangular region. Other profiles may allow a sequence of arbitrary shapes.

Text wrapping via the 'textArea' element is available as a lightweight and convenient facility for simple text
wrapping where a complete box model layout engine is not required.

The layout of wrapped text is user agent dependent; thus, content developers need to be aware that there
might be different results, particularly with regard to where line breaks occur.

The minimal layout facilities required for text in an area are described in text in an area layout rules.

Example textAreaOT1 below contains a text string which will wrap into a rectangular area. Any text which does
not fit will not be rendered.

Example: textAreaO1.svg

<?xml version="1.0" encoding="UTF-8"7>
<svg xmlns="http://www.w3.0rg/2000/svg" xmlns:xlink="http://www.w3.0rg/1999/xlink"
version="1.2" baseProfile="tiny" viewBox="0 @ 220 320">

<title>Basic textflow</title>

<textArea font-size="25" font-family="Georgia" x="10" y="10" width="200"
height="300">Tomorrow, and tomorrow, and
tomorrow; creeps in this petty pace from day to day, until the last syll­able of recorded
time. And all our yesterdays have lighted fools the way to dusty death.</textArea>
<rect x="5" y="5" width="210" height="310" stroke-width="3" stroke="#777" fill="none"/>
</svg>

119

http://www.w3.org/TR/2006/REC-xml11-20060816/#sec-line-ends
/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/examples/textArea01.svg

SVG Tiny 1.2 Specification

Tomorrow, and
tomorrow, and
tomorrow; creeps
in this petty pace
from day to day,
until the last syll-
able of recorded
time. And all our
yvesterdays have

lighted fools the
way to dusty

10 Text

10.11.2 The 'textArea' element

Schema: textArea

<define name='textArea’'>
<element name='textArea'>
<ref name='textArea.AT'/>
<zeroOrMore>
<choice>
<element name='tspan'>
<ref name='tspan.AT'/>
<zeroOrMore>
<choice>
<ref name='tbreak'/>
<ref name='svg.TextCommon.group'/>
</choice>
</zeroOrMore>
</element>
<ref name='svg.TextCommon.group'/>
</choice>
</zeroOrMore>
</element>
</define>

<define name='textArea.AT' combine='interleave'>
<ref name='svg.Properties.attr'/>
<ref name='svg.FocusHighlight.attr'/>
<ref name='svg.Core.attr'/>
<ref name='svg.Conditional.attr'/>
<ref name='svg.Focus.attr'/>
<ref name='svg.Transform.attr'/>
<ref name='svg.XY.attr'/>
<ref name='svg.Editable.attr'/>
<optional>

<attribute name='width’ svg:animatable='true' svg:inheritable='false’'>

<choice>
<ref name='Length.datatype'/>
<value>auto</value>
</choice>
</attribute>
</optional>
<optional>

<attribute name='height' svg:animatable='true' svg:inheritable='false’'>

<choice>
<ref name='Length.datatype'/>

120

SVG Tiny 1.2 Specification 10 Text

<value>auto</value>
</choice>
</attribute>
</optional>
</define>

Attribute definitions:

x = "<coordinate>"
The x-axis coordinate of one corner of the rectangular region into which the text content will be placed. The
lacuna value is '0".
Animatable: yes.

y = "<coordinate>"
The y-axis coordinate of one corner of the rectangular region into which the text content will be placed. The
lacuna value is '0'.
Animatable: yes.

width = "auto" | "<coordinate>"
The width of the rectangular region into which the text content will be placed. A value of 'auto’ indicates that
the width of the rectangular region is infinite. The lacuna value is 'auto'.
Animatable: yes.

height ="auto" | "<coordinate>"
The height of the rectangular region into which the text content will be placed. A value of 'auto' indicates that
the height of the rectangular region is infinite. The lacuna value is 'auto'.
Animatable: yes.

editable ="none" | "simple"
This attribute indicates whether the text can be edited. See the definition of the 'editable’ attribute.
Animatable: yes.

focusable ="true" | "false" | "auto"
See attribute definition for description.
Animatable: yes

Navigation Attributes

See definition.
If both 'width' and 'height' have the value 'auto’, the text will be rendered in a single line along the direction of the
text progression until all the text is rendered, or until a line-breaking element such as 'tbreak’ is encountered, in
which case the remaining text is rendered on a new line.

10.11.3 The "tbreak' element

The 'tbreak’ element is an empty element that forcibly breaks the current line of text, even if the current line of text
is empty (i.e. multiple consecutive 'tbreak’ elements each cause a line break.)

121

SVG Tiny 1.2 Specification 10 Text

Schema: tbreak

<define name='tbreak’'>
<element name='tbreak’'>
<ref name='tbreak.AT'/>
<empty/>
</element>
</define>

<define name='tbreak.AT' combine='interleave'>
<ref name='svg.Core.attr'/>
<ref name='svg.Conditional.attr'/>

</define>

The 'tbreak’ element has no attributes aside from the standard core and conditional attributes.

10.11.4 The 'line-increment' property

The 'line-increment' property provides limited control over the size of each line in the block-progression-direction.
This property applies to the 'textArea' element, and to child elements of the 'textArea' element. The 'line-increment’
property must not have any effect when used on an element which is not, or does not have as an ancestor, a
'textArea' element.

'line-increment’

Value: auto | <number> | inherit

Initial: auto

Applies to: 'textArea’, 'tspan' and 'tbreak’' elements
Inherited: yes

Percentages: N/A

Media: visual

Animatable: yes

Computed value: Specified value, except inherit

Values for the property have the following meaning:

auto
Subsequent lines are offset from the previous line by the maximum font-size for any glyphs drawn within that
line, multiplied by some reasonable value for default line spacing. This specification recommends a value of
1.1 for this multiplier.

<number>
Subsequent lines are offset from the previous line by this amount (in user units). Negative values are

unsupported.

10.11.5 The 'text-align' property
Alignment in the inline progression direction in flowing text is provided by the text-align property. It is a modified
version of the XSL 1.1 text-align property ([XSL], section 7.16.9).

'text-align'
Value: start | end | center | inherit
Initial: start

Appliesto: textArea elements
Inherited: yes

Percentages: N/A

Media: visual
Animatable: yes

For details refer to the XSL 1.1 text-align property ([XSL], section 7.16.9). Note that SVG does not require user agents
to support the following values for this property: justify, inside, outside, <string>, left, or right. The lacuna value is
start.

122

http://www.w3.org/TR/CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/2006/REC-xsl11-20061205/#text-align
http://www.w3.org/TR/CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/2006/REC-xsl11-20061205/#text-align

SVG Tiny 1.2 Specification 10 Text

As with the 'text-anchor' property, the values start and end are dependent on the value of the 'direction’ property
(typically, as appropriate for the writing system being used).
« For left to right horizontal (French, Russian, Thai, etc.): start is left and end is right
« Forright to left horizontal (Hebrew, Arabic, etc.): start is right and end is left
«+ For top to bottom vertical (vertical Chinese, etc.): start is top and end is bottom (Note: SVG Tiny 1.2 does not
include support for vertical text.)

10.11.6 The 'display-align' property
The 'display-align' property specifies the alignment, in the block-progression-direction, of the text content of the
'textArea' element.

'display-align’

Value: auto | before | center | after | inherit
Initial: auto

Applies to: ‘textArea’

Inherited: yes

Percentages: N/A

Media: visual

Animatable: yes

Computed value: Specified value, except inherit

Values for the property have the following meaning:
auto
For SVG, auto is equivalent to before.
before
The before-edge of the first line is aligned with the before-edge of the first region.
center
The lines are centered in the block-progression-direction.
after
The after-edge of the last line is aligned with the after-edge of the last region.
The following sentence is informative: For a better understanding of the 'display-align' property this diagram from
the XSL specification (the final diagram in [XSL], section 4.2.3) illustrates the correspondence between the various
edge names for a mixed writing-mode example (western and japanese writing-mode).

10.11.7 Text in an area layout rules

Text in an area layout is defined as a post processing step to the standard text layout model of SVG.

A conformant SVG user agent can implement a simplistic layout algorithm which consists simply of inserting line
breaks whenever the content explicitly specifies a line break with a 'tbreak' element or when the current line cannot
fit all of the remaining glyphs. Any lines of glyphs that do not completely fit within the region(s) are not rendered.

SVG user agents should implement a line-breaking algorithm that supports at a minimum the features described
below as a post processing step to SVG's standard text layout model.

1. Thetextis processed in logical order to determine line breaking opportunities between characters, according to
Unicode Standard Annex No. 14 [UAX14].

2. Text layout is performed as normal, on one infinitely long line; soft hyphens are included in the line. The result is
a set of positioned Glyphs.

3. Thefirst line is positioned such that its before edge is flush against the region's before edge, relative to the
block-progression-direction.

4. Glyphs represent a character or characters within a word. Each glyph is associated with the word that contains
its respective characters. In cases where characters from multiple words contribute to the same glyph, the words
are merged and all the glyphs are treated as part of the earliest word in logical order.

5. The glyphs from a word are collapsed into Glyph Groups. A Glyph Group is comprised of all consecutive glyphs
from the same word. In most cases, each word generates one glyph group; however, in some cases the
interaction between BIDI and special markup may cause glyphs from one word to have glyphs from other words
embedded in it.

123

http://www.w3.org/TR/CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/xsl/japaneseblock3.gif
http://www.unicode.org/unicode/reports/tr14/

SVG Tiny 1.2 Specification 10 Text

10.

11.

12.

Each Glyph Group has two extents calculated: its normal extent, and its last in text area extent. Its normal extent
is the sum of the advances of all glyphs in the group except soft hyphens. The normal extent is the extent used
when a Glyph Group from a later word is in the same text area. The last in text area extent includes the advance
of a trailing soft hyphen, but does not include the advance of trailing white space or non-spacing combining
marks. The last in text region extent is used when this glyph group is from the last word (in logical order) in this
text area. (If the entire line consists of a single word which is not breakable, the SVG user agent may choose to
force a break in the line so that at least some text will appear for the given line.)

If xml:space="default", any space character that causes a line break in a 'textArea' element will be consumed by
the line break and thus not rendered. However, if xml:space="preserve", any space character that causes a line
break and subsequent spaces that will not fit on the line shall be included in the next line.

Words are added to the current line in logical order. All the Glyph Groups from a word must be in the same line,
and all the glyphs from a Glyph Group must be in the same 'textArea'.

If 'line-increment' is a number, then each line will be sized in the block-progression-direction to the value of 'line-
increment'. If 'line-increment' is auto, then the maximum 'font-size' for any glyph in the line will determine the
size of the line in the block-progression-direction. When a word is added, the line increment may increase; it can
never decrease from the first word. An increase in the line increment can only reduce the space available for text
placement in the span. The span will have the maximum possible number of words. The position of the
dominant baseline for a given line is determined by first computing the line-increment value for that line and
then choosing a position for the dominant baseline, using the position where the given baseline would appear
for the font that will be used to render the first character and an assumed font-size equal to the line-increment
value.

The Glyphs from the Glyph Groups are then collapsed into the text regions by placing the first selected glyph (in
display order) at the start of the text area and each subsequent glyph at the location of the glyph following the
preceding selected glyph (in display order).

The next word is selected, and the next line location is determined. The next line is positioned such that its
before edge is flush against the after edge of the previous line relative to the block-progression-direction. Go to
step 8.

Any lines which extend outside of the area(s) in the block-progression-direction are not rendered.

10.12 Editable text fields

SVG Tiny 1.2 allows text elements to be edited. Although simple text editing can be implemented directly in script,
implementing an intuitive and well internationalized text input system which works on a variety of platforms is
complex.Therefore, this functionality is provided by the SVG user agent, which has access to system text libraries.
Content authors can build higher level widgets, such as form entry fields, on top of the editable text functionality.

10.12.1 The 'editable' attribute

The text content block elements have an editable attribute which specifies whether the contents of the elements
can be edited in place.

Schema: editable

<define name='svg.Editable.attr' combine='interleave'>
<optional>
<attribute name='editable' svg:animatable='true' svg:inheritable='false’'>
<choice>
<value>none</value>
<value>simple</value>
</choice>
</attribute>
</optional>
</define>

Attribute definition:

editable ="none" | "simple"

If set to 'none’ (the lacuna value), SVG editing facilities are not provided for the contents of the text content
block elements. If set to 'simple’, the SVG user agent must provide a way for the user to edit the content of the

124

SVG Tiny 1.2 Specification 10 Text

text content block elements and all contained subelements which are not hidden (with visibility="hidden") or
removed from the rendering tree (through the 'switch' element or display="none").

If a clipboard is supported by the platform, the SVG user agent must also provide a way to cut or copy the
selected text from the element to the clipboard, and to paste text from the clipboard into the element.

Whenever the 'editable’ attribute is set to 'simple’, the 'focusable' attribute is considered to be set to 'true’,
irrespective of what the actual value is.

Animatable: yes.

SVG user agents should allow for the editing of text in-place. However, editing with a modal editing dialog is an al-
ternate possibility, and may be the only option on some platforms. The current editing position should be indicated,
for example with a caret. SVG Tiny 1.2 user agents must also support system functions such as copy/paste and drag/
drop if they are available to applications on the platform.

To start editing, the current presentation value of the 'editable’ attribute must be 'simple’, the text content block
element must have focus, and it must then be activated, e.g. by using an Enter key or clicking on the text region
with a pointer device. When editing text in a text field, all text and key events are dispatched to the SVG user agent,
which processes the events for proper handling of text entry.

If a text content block element is editable, then the SVG user agent must not normalize white space in user input
when changing the tree according to the input. However, the displayed text must be rendered according to the SVG
rules for 'xml:space'.

For editing in-place the following functionality must be made available:

« movement to the next/previous character (in logical order), for example with Left/Right arrows

+ in'textArea' elements, movement to the next/previous line, for example with the Down/Up keys

« movement to the beginning of the line, for example with the Home key

« movement to the end of the line, for example with the End key

+ copy/cut/paste, if a clipboard is supported, for example with Copy and Paste keys
The functionality should use the normal key bindings that are used for those tasks on the given platform. For
devices without keyboard access, the equivalent system input methods should be used wherever possible to
provide the functionality described above.

When doing editing in-place, the content of the DOM nodes that are being edited should be live at all times and
reflect the current state of the edited string as it is being edited. When using a modal editing dialog, the content of
the DOM nodes will only change once the user commits the edit (for example, by using an Enter key or clicking an
"OK" button, or an alike behavior native to the platform), firing a single textInput event.

If an Input Method Editor (IME) is used (for example, to input Kanji text, or to input Latin text using number keys
on mobile phones), the text events correspond to the actual text entered (eg the Kanji character, or the Latin char-
acter) and not to the keyboard or mouse gestures needed to produce it (such as the sequence of kana characters, or
the number of sequential presses of a numeric key).

While text is being edited, the SVG user agent should always make the caret visible to the user as it is moved
around the edited text (either due to typing more characters or to moving it within existing text). The precise beha-
vior in which this functionality is supported depends on the SVG user agent.

The behavior of edited text while the caret is placed inside a ligature is implementation dependent. SVG user
agents are however encouraged to take into account the notions captured in Character Model for the World Wide
Web 1.0: Fundamentals, Section 6.1: String concepts [CHARMOD].

If the text of an editable element is edited, and the element has child elements, the contents of the edited ele-
ment must first be stripped of all non-'tbreak’ elements, preserving the contents of each non-'tbreak’ element in
place.

If the editable element does not have text content, it may not be possible to activate the editability with a point-
er, since there will be no rendered element to click on. In the case of the 'textArea' element, which has inherent
'width' and 'height' geometry, setting the 'pointer-events' property value to boundingBox will allow the user to initi-
ate the editing (see Example textArea02). This functionality does not exist for the 'text' element since it has no inher-
ent geometry without text content.

Example textArea02 below shows how to use the 'pointer-events' property value boundingBox to create a declar-
ative input box that can be activated with a pointer device.

125

http://www.w3.org/TR/2005/REC-SMIL2-20050107/animation.html#animationNS-AnimationSandwichModel
http://www.w3.org/TR/charmod/#sec-Strings
http://www.w3.org/TR/charmod/#sec-Strings

SVG Tiny 1.2 Specification 10 Text

Example: textArea02.svg

<?xml version="1.0" encoding="UTF-8"7?>
<svg xmlns="http://www.w3.0rg/2000/svg"
version="1.2" baseProfile="tiny"” viewBox="0 @ 250 100">

<title>Editable text input</title>
<desc>Illustrates how to create an editable input box without script</desc>

<rect x='0' y='Q' width='250' height='100"' fill='"#87ceeb’'>
<title>background rectangle</title>
</rect>

<g id="nameInput” transform='translate(50, 20)'>
<text x="0" y="20" font-size="18" font-family="Arial" fill="#000080">Name:</text>
<rect x="0" y="25" width="156" height="26" rx="3" ry="3"
fill="white" stroke-width="2" stroke="#000080"/>
<textArea x="3" y="27" width="150" height="20" font-size="18" font-family="Arial”
editable="simple"” focusable="true" pointer-events="boundingBox"/>
</g>

</svg>

MName:

10.13 Text selection and clipboard operations

If SVG viewers support text selection and copy/paste operations then they must support:

« user selection of text strings in SVG content

+ the ability to copy selected text strings to the system clipboard

A text selection operation starts when all of the following occur:

- the user positions the pointing device or caret over a glyph that has been rendered as part of a text content
block element, initiates a select operation (e.g., pressing the standard system mouse button for select
operations) and then moves the current text position while continuing the select operation (e.g., continuing to
press the standard system mouse button for select operations);

« no other visible graphics element has been painted above the glyph at the point at which the pointing device
was clicked.

As the text selection operation proceeds (e.g., the user continues to press the given mouse button), all associated
events with other graphics elements are ignored (i.e., the text selection operation is modal) and the SVG user agent
shall dynamically indicate which characters are selected by an appropriate highlighting technique, such as redraw-
ing the selected glyphs with inverse colors. As the current text position is moved during the text selection process,
the end glyph for the text selection operation is the glyph within the same "text' element whose glyph cell is closest
to the pointer. All characters within the 'text' element whose position within the 'text' element is between the start
of selection and end of selection shall be highlighted, regardless of position on the canvas and regardless of any
graphics elements that might be above the end of selection point.

Once the text selection operation ends (e.g., the user releases the given mouse button), the selected text will
stay highlighted until an event occurs which cancels text selection, such as a pointer device activation event (e.g.,
pressing a mouse button).

Detailed rules for determining which characters to highlight during a text selection operation are provided in
Text selection implementation notes.

For systems which have system clipboards, the SVG user agent should provide a user interface for initiating a
copy of the currently selected text to the system clipboard. It is sufficient for the SVG user agent to post the selected
text string in the system's appropriate clipboard format for plain text, but it is preferable if the SVG user agent also
posts a rich text alternative which captures the various font properties associated with the given text string.

For bidirectional text, the SVG user agent must support text selection in logical order, which will result in discon-
tinuous highlighting of glyphs due to the bidirectional reordering of characters. SVG user agents can also optionally

126

/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/examples/textArea02.svg

SVG Tiny 1.2 Specification 10 Text

provide an alternative ability to select bidirectional text in visual rendering order (i.e., after bidirectional text layout
algorithms have been applied), with the result that selected character data might be discontinuous logically. In this
case, if the user requests that bidirectional text be copied to the clipboard, then the SVG user agent is required to
make appropriate adjustments to copy only the visually selected characters to the clipboard.

When feasible, it is recommended that generators of SVG attempt to order their text strings to facilitate properly
ordered text selection within SVG viewing applications such as Web browsers.

In addition to discrete text selection, the SVG user agent should provide facility for the mass selection of entire
text passages, for whatever text is in scope. If a text content element has focus, such a select-all operation should in-
clude only the contents of that element. If no text content element is in focus, the select-all operation should select
all the text in the document. This may be a progressive operation, widening the scope with each subsequent opera-
tion. For example, a common idiom is to allow a user to select text with a single click on a word, with first the word
selected, then the entire passage with a second click, then the entire document with a third click. For purposes of
accessibility, the user agent must allow any such operation to be performed by keyboard as well as pointer device
(such as in the ctri/command+A "select-all" keyboard shortcut), and should also expose appropriate accessibility APIs.

10.14 Text search

If the user agent supports searching for text strings, then it must support searching for text strings in SVG content as
well. An SVG viewer which supports search must allow the user to find all instances of the searched text string with-
in the document that are in the rendering tree (e.g., those with a 'display' property other than none), and must high-
light or otherwise indicate each instance. SVG viewers which allow sequential searches for text strings must pan and
zoom the viewport, as appropriate, in order to show the text string in context, and are recommended to adjust the
viewport as if there had been a fragment identifier link traversal to the element containing the text string.

In other words, if the containing text content element is too large to be enclosed in the viewport, the SVG user
agent is recommended to zoom out, but if the text does fit, the user agent is recommended only to pan, and not to
zoom. In order to enable maximum usability, authors should create their content accordingly, breaking text into dis-
crete text content elements that fit within the expected viewport at a readable size, while providing sufficient con-
text. Additionally, users must be provided a way to zoom in on text that is too small for the user to read.

Example 'text_search.svg' below contains a long text string which extends outside of the initial viewport, and
which needs to be adjusted when searching for one of the words outside the viewport. The image shows the results
of a text search using the Batik SVG toolkit.

Example: text_search.svg

<svg xmlns="http://www.w3.0rg/2000/svg" version="1.2"
width="100%" height="100%" viewBox="0 @ 120 60">

<title>Text Search</title>

<desc>
An example of text that extends beyond the viewport,
requiring the user agent to pan the viewport when
words are searched for.

</desc>

<l--
This rectangle is the same position and dimensions as the viewBox,
illustrating the initial area of the viewport.

-—>

<rect x="0" y="0" width="120" height="60" fill="#6495ed" stroke="blue" />

<l--
The contents of this text element extend beyond the initial viewport.
-—>
<text x="120" y="35" text-anchor="middle"” fill="blue"
font-size="10" font-family="Helvetica">
Seek and you shall find, find and you will search.
</text>

</svg>

127

/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/examples/text_search.svg

SVG Tiny 1.2 Specification 10 Text

|00 Squiggle: Text Search 4 my ry Batik: Find
B 2e® 20 4T /PO Search for text
Find = find
] Case sensitive l“_3

:Dhr;lw

12} Highligha result

(%) Highlighs and center result

) Highlighs, center and zoom on result

{ Find J [Clear) [Close)

e

(1) Location; | text_search.svg

i3

128

SVG Tiny 1.2 Specification 11 Painting: Filling, Stroking, Colors and Paint Servers

11 Painting: Filling, Stroking, Colors and Paint Servers

Contents
LIPS I LYo 18 Tt « o T T 129
LI 2 o 1= 1377 LYo I o = 11 0 129
I T o oo o 1T =T 130
LI S 1 o) o o] o =] 1 =T 132
11,5 NON-SCAlING STIOKE . . .ottt e e e ettt e e e et e e e e e 135
11.6 Simple alpha COMPOSITINGttt e e e e e e e ettt 136
11.6.1 Compositing the currentColor Value.t e e e e et ieaenes 137
11.7 The VieWPOrt-fill PrOPEItY. . . .ottt et e e e e e et ettt ettt e e 137
11.8 The 'vViewport-fill-0pacity’ PrOPEItY ...ttt ettt et et et ettt e e e a e e aaans 138
11.9 Controlling visibility and renderingot e e ettt et e 139
I R K08 Y=Y oo LT Ve N 11 3 140
11.10.1 The 'color-rendering’ ProPertyouu ettt ettt e e e aenes 140
11.10.2 The 'shape-rendering’ ProPeItYc.iu ettt ettt e e ettt e e et anenes 140
11.10.3 The teXt-TeNderiNg PrOPEItY. « . vttt et ettt ettt ettt ettt et e e ettt e e e e eanenes 141
11.70.4 The 'iIMage-rendering PrOPEITY vttt ettt e et ettt ettt ettt a et eenenenns 142
11.10.5 The 'buffered-rendering ProPertYuu ettt ettt e et e ettt e e it enenaenas 142
11.17 Inheritance of PAINTING PrOPEITIESttt ettt ettt ettt e ettt e e e e e e e eeenanaans 143
11.12 Object and group opacity: the 'opacity’ PrOPeITYuu ittt et 143
IR 15 3o o T 146
11.13.1 Syntax for Color ValUues e e e 146
TTA3.2 HTML COlOr KEYWOIAS . . o ettt ettt e e e et et e e ettt e et aenes 147
LI o 1N Y=Y = 147
TT.T4.7 SYStEM PAINT SEIVEIS . o e ettt ettt ettt e ettt e et e et et et e et et et ettt et et e aeeeenenenenns 147
11.14.2 The 'solidColor €l@mMENTttt e e e e e e e 148
LR B35 B I o T o) oYl o o oY= Y/ 150
LI I3 = Te 1= 013 151
LR T I IR YT T T o 1 T=T o 151
11,152 Radial gradients . ..o .ottt e e e e e e e e e 153
11.15.3 Defining gradient stops: the 'stop’ elementooii it et 154

11.1 Introduction

Graphics elements, including text content elements and shapes, can be filled (which means painting the interior of
the object) and stroked (which means painting along the outline of the object). Filling and stroking both can be
thought of in more general terms as painting operations.
With SVG, you can paint (i.e., fill or stroke) with:

+ asingle color, possibly with some level of transparency

+ agradient (linear or radial)
SVG uses the general notion of a paint server. Apart from system paint, paint servers are specified using a local IRI
reference on a 'fill' or 'stroke’ property. Gradients and colors are just specific types of paint servers.

11.2 Specifying paint
Properties 'fill' and 'stroke' take on a value of type <paint>, which is specified as follows:
<paint>: none |

currentColor |

<color> |
<FuncIRI> [none | currentColor | <color>] |

129

SVG Tiny 1.2 Specification 11 Painting: Filling, Stroking, Colors and Paint Servers

<system paint> |
inherit

none
Indicates that no paint shall be applied.

currentColor
Indicates that painting shall be done using the color specified by the current animated value of the 'color'
property. This mechanism is provided to facilitate sharing of color attributes between parent grammars such
as other (non-SVG) XML. This mechanism allows you to define a style in your HTML which sets the 'color'
property and then pass that style to the SVG user agent so that your SVG text will draw in the same color.

<color>
the explicit color (in the sRGB color space [SRGB]).

<FuncIRI> [none | currentColor | <color>]
The <FunclRI> specifies a paint server such as a gradient. The fragment identifier of the <FuncIRI> provides a
link to the paint server (e.g., a gradient or 'solidColor') that shall be used to paint the current object. SVG Tiny
1.2 user agents are only required to support local IRI references. If the IRl reference is invalid (for example, it
points to an object that doesn't exist or the object is not a valid paint server or it is a non-local IRI reference
and the viewer does not support it), then the fallback value (if specified) is used; otherwise it must be treated
as if none was specified.

<system paint>
A system paint server

11.3 Fill properties

‘fll'
Value: <paint> | inherit (See Specifying paint)
Initial: black
Applies to: shapes and text content elements
Inherited: yes
Percentages: N/A
Media: visual
Animatable: yes

Computed value: "none", system paint, specified <color> value or absolute IRI

The "fill' property specifies that the interior of the given graphical element must be painted. The area to be painted
shall consist of any areas inside the outline of the shape. To determine the inside of the shape, all subpaths must be
considered, and the interior shall be determined according to the rules associated with the current value of the "fill-
rule' property. The zero-width geometric outline of a shape must be included in the area to be painted.

Open subpaths must be filled by performing the fill operation as if an additional "closepath" command were ad-
ded to the path to connect the last point of the subpath with the first point of the subpath. Thus, fill operations ap-
ply to both open subpaths within 'path' elements (i.e., subpaths without a closepath command) and 'polyline'
elements.

'fill-rule'
Value: nonzero | evenodd | inherit
Initial: nonzero
Applies to: shapes and text content elements
Inherited: yes
Percentages: N/A
Media: visual
Animatable: yes

Computed value: Specified value, except inherit

130

http://www.w3.org/TR/CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/CSS2/cascade.html#value-def-inherit

SVG Tiny 1.2 Specification 11 Painting: Filling, Stroking, Colors and Paint Servers

The 'fill-rule' property indicates the algorithm which must be used to determine what parts of the canvas are in-
cluded inside the shape. For a simple, non-intersecting path, it is intuitively clear what region lies "inside"; however,
for a more complex path, such as a path that intersects itself or where one subpath encloses another, the interpreta-
tion of "inside" is not so obvious.
The *fill-rule' property provides two options for how the inside of a shape is determined:
nonzero
The following algorithm, or any other that gives the same result, must be used to determine the "insideness"
of a point on the canvas. Draw a ray from the point to infinity in any direction and then examine the places
where a segment of the shape crosses the ray. Starting with a count of zero, add one each time a path
segment crosses the ray from left to right and subtract one each time a path segment crosses the ray from
right to left. After counting the crossings, if the result is zero then the point is outside the path. Otherwise, it is
inside. The following drawing illustrates the nonzero rule:

evenodd

The following algorithm, or any other that gives the same result, must be used to determine the "insideness"
of a point on the canvas. Draw a ray from the point to infinity in any direction and counting the number of
path segments from the given shape that the ray crosses. If this number is odd, the point is inside; if even, the
point is outside. The following drawing illustrates the evenodd rule:

3w OO

(Note: the above explanations do not specify what to do if a path segment coincides with or is tangent to the ray.
Since any ray will do, one may simply choose a different ray that does not have such problem intersections.)

'fill-opacity’
Value: <opacity-value> | inherit
Initial: 1
Applies to: shapes and text content elements
Inherited: yes
Percentages: N/A
Media: visual
Animatable: yes

Computed value: Specified value, except inherit

'fill-opacity' specifies the opacity of the painting operation which shall be used to paint the interior the current ob-

ject. (See Painting shapes and text.)

<opacity-value>
The opacity of the painting operation that is to be used to fill the current object. Any values outside the range
0.0 (fully transparent) to 1.0 (fully opaque) must be clamped to this range. (See Clamping values which are
restricted to a particular range.)

Related property: 'stroke-opacity'.

131

http://www.w3.org/TR/CSS2/cascade.html#value-def-inherit

SVG Tiny 1.2 Specification 11 Painting: Filling, Stroking, Colors and Paint Servers

11.4 Stroke properties

The following are the properties which affect how an element is stroked.

In all cases, strokes which are affected by directionality, such as those having dash patterns, must be rendered
such that the stroke operation starts at the same point at which the graphics element starts. In particular, for 'path’
elements, the start of the path is the first point of the initial "moveto" command.

For strokes, such as dash patterns whose computations are dependent on progress along the outline of the
graphics element, distance calculations must use the SVG user agent's standard distance along a path algorithms.

When stroking is performed using a complex paint server, such as a gradient, the stroke operation must be
identical to the result that would have occurred if the geometric shape defined by the geometry of the current
graphics element and its associated stroking properties were converted to an equivalent 'path' element and then
filled using the given paint server.

'stroke’
Value: <paint> | inherit (See Specifying paint)
Initial: none
Applies to: shapes and text content elements
Inherited: yes
Percentages: N/A
Media: visual
Animatable: yes

Computed value: "none", system paint, specified <color> value or absolute IRI

The 'stroke' property shall paint along the outline of the given graphics element.

A subpath (see Paths) consisting of a single moveto shall not be stroked. A subpath consisting of a moveto and
lineto to the same exact location or a subpath consisting of a moveto and a closepath shall not be stroked if the
'stroke-linecap’ property has a value of butt and shall be stroked if the 'stroke-linecap' property has a value of round
or square, producing respectively a circle or a square centered at the given point.

This property contributes to an element's decorated bounding box.

'stroke-width'

Value: <length> | inherit

Initial: 1

Applies to: shapes and text content elements
Inherited: yes

Percentages: N/A

Media: visual

Animatable: yes

Computed value: Specified value, except inherit

<length>
The width of the stroke which shall be used on the current object.
No stroke shall be painted for a zero value. A negative value is unsupported and must be treated as if the
stroke had not been specified.

This property contributes to an element's decorated bounding box.

'stroke-linecap'

Value: butt | round | square | inherit
Initial: butt

Applies to: shapes and text content elements
Inherited: yes

Percentages: N/A

Media: visual

132

http://www.w3.org/TR/CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/CSS2/cascade.html#value-def-inherit

SVG Tiny 1.2 Specification 11 Painting: Filling, Stroking, Colors and Paint Servers

Animatable: yes
Computed value: Specified value, except inherit

'stroke-linecap’ specifies the shape which shall be used at the end of open subpaths when they are stroked.

butt
The shape drawn at the end of open subpaths shall be as per the drawing below.

round
The shape drawn at the end of open subpaths shall be as per the drawing below.

square
The shape drawn at the end of open subpaths shall be as per the drawing below.

.
A
‘butt’ cap ‘round’ cap 'square’ cap

This property contributes to an element's decorated bounding box.

'stroke-linejoin’

Value: miter | round | bevel | inherit
Initial: miter

Applies to: shapes and text content elements
Inherited: yes

Percentages: N/A

Media: visual

Animatable: yes

Computed value: Specified value, except inherit

'stroke-linejoin' specifies the shape which shall be used at the corners of shapes when they are stroked.

miter
The shape drawn at the corner of shapes shall be as per the drawing below.

round
The shape drawn at the corner of shapes shall be as per the drawing below.

bevel
The shape drawn at the corner of shapes shall be as per the drawing below.

‘miter’ join ‘round’ join '‘bevel join

This property contributes to an element's decorated bounding box.

'stroke-miterlimit'

Value: <miterlimit> | inherit

Initial: 4

Applies to: shapes and text content elements
Inherited: yes

Percentages: N/A

Media: visual

Animatable: yes

Computed value: Specified value, except inherit

133

http://www.w3.org/TR/CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/CSS2/cascade.html#value-def-inherit

SVG Tiny 1.2 Specification 11 Painting: Filling, Stroking, Colors and Paint Servers

When two line segments meet at a sharp angle and miter joins have been specified for 'stroke-linejoin', it is possible
for the miter to extend far beyond the thickness of the line stroking the path. The 'stroke-miterlimit' imposes a limit
on the ratio of the miter length to the 'stroke-width'. When the limit is exceeded, the join must be converted from a
miter to a bevel.
<miterlimit>
The limit on the ratio of the miter length to the 'stroke-width'. The value of <miterlimit> must be a number
greater than or equal to 1. Any other value shall be treated as unsupported and processed as if the property
had not been specified.
The ratio of miter length (distance between the outer tip and the inner corner of the miter) to 'stroke-width' is dir-
ectly related to the angle (theta) between the segments in user space by the formula:

miterLimit = miterLength / stroke-width = 1 / sin(theta / 2)

For example, a miter limit of 1.414 converts miters to bevels for theta less than 90 degrees, a limit of 4.0 converts
them for theta less than approximately 29 degrees, and a limit of 10.0 converts them for theta less than approxim-
ately 11.5 degrees.

This property contributes to an element's decorated bounding box.

'stroke-dasharray'

Value: none | <list-of-lengths> | inherit
Initial: none

Applies to: shapes and text content elements
Inherited: yes

Percentages: N/A

Media: visual

Animatable: yes (non-additive)

Computed value: Specified value, except inherit

'stroke-dasharray' specifies the pattern of dashes and gaps that shall be used to stroke paths. The <list-of-lengths>
contains the list of <length>s that specify the lengths of alternating dashes and gaps that must be used. If an odd
number of values is provided, then the list of values shall be repeated to yield an even number of values. Thus,
stroke-dasharray="5,3,2" is equivalent to stroke-dasharray="5,3,2,5,3,2". The computed value of the attribute 'stroke-
linecap' is applied to both sides of each dash. If a dash has zero length, linecaps are still added if the stroke-linecap
values round and square are used.
none
Indicates that no dashing shall be used. If stroked, the line must be drawn solid.
<list-of-lengths>
The list of <length>s that specify the lengths of alternating dashes and gaps that must be used. A negative
<length> value shall be treated as unsupported and processed as if the property had not been specified. If the
sum of the <length>s is zero, then the stroke shall be rendered as if a value of none were specified.
Note: Certain cases regarding the behavior of 'stroke-dasharray' are not fully specified because SVG Tiny implement-
ations often rely on underlying graphics libraries with predetermined behaviors they cannot easily change.
Examples include: rendering of 'stroke-linejoin' and 'stroke-linecap' in case a dash ends exactly at a corner of two
path segments, continuation of stroke-dasharray in subpaths, and others. These cases may be fully specified in ver-
sion SVG 1.2 Full. Additional attributes, such as dash-caps that can be defined separately from linecaps may be ad-
ded. Authors are encouraged not to rely on a specific behavior of a specific viewer for 'stroke-dasharray' regarding
these currently unspecified cases.

'stroke-dashoffset'

Value: <length> | inherit

Initial: 0

Applies to: shapes and text content elements
Inherited: yes

Percentages: N/A

Media: visual

134

http://www.w3.org/TR/CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/CSS2/cascade.html#value-def-inherit

SVG Tiny 1.2 Specification 11 Painting: Filling, Stroking, Colors and Paint Servers

Animatable: yes
Computed value: Specified value, except inherit

'stroke-dashoffset' specifies the distance into the dash pattern that must be used to start the dash. When rendering a
'path' element with multiple subpaths, the value of 'stroke-dashoffset' should start from scratch with the original
value of 'stroke-dashoffset' for each subpath. SVG 1.2 Full may be stricter and also add an additional attribute to
change this behavior.
<length>

Values can be negative.

'stroke-opacity’

Value: <opacity-value> | inherit

Initial: 1

Applies to: shapes and text content elements
Inherited: yes

Percentages: N/A

Media: visual

Animatable: yes

Computed value: Specified value, except inherit

'stroke-opacity' specifies the opacity of the painting operation used to stroke the current object. (See Painting

shapes and text.)

<opacity-value>
The opacity of the painting operation that is to be used to stroke the current object. Any values outside the
range 0.0 (fully transparent) to 1.0 (fully opaque) must be clamped to this range. (See Clamping values which
are restricted to a particular range.)

Related property: 'fill-opacity".

11.5 Non-scaling stroke

Sometimes it is of interest to let the outline of an object keep its original width no matter which transforms are ap-
plied to it. For example, in a map with a 2px wide line representing roads it is of interest to keep the roads 2px wide
even when the user zooms into the map. To achieve this, SVG Tiny 1.2 introduces the 'vector-effect' property. Future
versions of the SVG language will allow for more powerful vector effects through this property but this version re-
stricts it to being able to specify the non-scaling stroke behavior.

'vector-effect'

Value: non-scaling-stroke | none | inherit
Initial: none

Applies to: graphics elements

Inherited: no

Percentages: N/A

Media: visual

Animatable: yes

Computed value: Specified value, except inherit

none
Specifies that no vector effect shall be applied, i.e. the default rendering behaviour from SVG 1.1 is used which

is to first fill the geometry of a shape with a specified paint, then stroke the outline with a specified paint.

non-scaling-stroke
Modifies the way an object is stroked. Normally stroking involves calculating stroke outline of the shape's path

in current user space and filling that outline with the stroke paint (color or gradient). With the non-scaling-
stroke vector effect, stroke outline shall be calculated in the "host" coordinate space instead of user coordinate

135

http://www.w3.org/TR/CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/CSS2/cascade.html#value-def-inherit

SVG Tiny 1.2 Specification 11 Painting: Filling, Stroking, Colors and Paint Servers

space. More precisely: a user agent establishes a host coordinate space which in SVG Tiny 1.2 is always the
same as "screen coordinate space". The stroke outline is calculated in the following manner: first, the shape's
path is transformed into the host coordinate space. Stroke outline is calculated in the host coordinate space.
The resulting outline is transformed back to the user coordinate system. (Stroke outline is always filled with
stroke paint in the current user space). The resulting visual effect of this modification is that stroke width is not
dependant on the transformations of the element (including non-uniform scaling and shear transformations)
and zoom level.

Note: Future versions of SVG may allow ways to control the host coordinate system.

Below is an example of the non-scaling-stroke 'vector-effect'.

Example: non-scaling-stroke.svg

<?xml version="1.0"7>

<svg xmlns="http://www.w3.0rg/2000/svg" version="1.2" baseProfile="tiny"
width="6cm” height="4cm"” viewBox="0 @ 600 400"
viewport-fill="rgb(255,150,200)">

<desc>Example non-scaling stroke</desc>
<rect x="1" y="1" width="598" height="398" fill="none" stroke="black"/>

<g transform="scale(9,1)">
<line stroke="black"” stroke-width="5" x1="10" y1="50" x2="10" y2="350"/>
<line vector-effect="non-scaling-stroke” stroke="black" stroke-width="5"
x1="32" y1="50" x2="32" y2="350"/>
<line vector-effect="none" stroke="black" stroke-width="5"
x1="55" y1="5@" x2="55" y2="350"/>
</g>

</svg>

11.6 Simple alpha compositing

Graphics elements are blended into the elements already rendered on the canvas using simple alpha compositing,
in which the resulting color and opacity at any given pixel on the canvas must be the result of the following formu-
las (all color values use premultiplied alpha):

Er, Eg, Eb - Element color value
Ea - Element alpha value
Cr, Cg, Cb - Canvas color value (before blending)
Ca - Canvas alpha value (before blending)
Cr', Cg', Cb' - Canvas color value (after blending)
Ca’ - Canvas alpha value (after blending)

Ca’ =1-(1-Ea) x (1 - Ca)
Cr' = (1 -Ea) *x Cr + Er
Cg' = (1 - Ea) * Cg + Eg
Cb'" = (1 -Ea) x Cb + Eb

136

/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/examples/non-scaling-stroke.svg

SVG Tiny 1.2 Specification 11 Painting: Filling, Stroking, Colors and Paint Servers

The following rendering properties, which provide information about the color space in which to perform the com-
positing operations, apply to compositing operations:
» 'color-rendering'

11.6.1 Compositing the currentColor value

The currentColor value may be assigned a color value that has an opacity component. This opacity value is used in
the rendering operation using the alpha compositing method described above. That is, the opacity value in cur-
rentColor is used when compositing the color into a paint server (which may have its own values for opacity).

11.7 The 'viewport-fill' property

SVG enables the author to specify a solid color which will be used to fill the viewport of any element that creates a
viewport, such as the 'svg' element.

The 'viewport-fill' property specifies the color which shall be used to fill the viewport created by a particular ele-
ment. It must cause the entire canvas of the element that it applies to to be filled with the specified solid color. That
canvas may then be clipped by that element's 'viewBox'.

'viewport-fill'
Value: none | currentColor | <color> | inherit
Initial: none
Applies to: viewport-creating elements
Inherited: no
Percentages: N/A
Media: visual
Animatable: yes

Computed value: "none" or specified <color> value, except inherit

If the value of 'viewport-fill' is none, then no paint operation is applied to the viewport.
Below is an example of 'viewport-fill'.

Example: 11_02.svg

<?xml version="1.0"7>
<svg xmlns="http://www.w3.0rg/2000/svg" version="1.2" baseProfile="tiny"
viewport-fill="red">

<desc>

Everything here has a red background.

The rectangle is not filled, so the red background will show through.
</desc>

<rect x="20" y="20" width="100" height="100" fill="none"” stroke="black"/>

</svg>

Here is a slightly more complex example. The 'viewBox' gives a coordinate system 300 units wide and 100 units high.
The rendering shows what happens when this is displayed inside a square viewport.

137

http://www.w3.org/TR/CSS2/cascade.html#value-def-inherit
/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/examples/11_02.svg

SVG Tiny 1.2 Specification 11 Painting: Filling, Stroking, Colors and Paint Servers

Example: 11_03.svg

<?xml version="1.0"7>
<svg xmlns="http://www.w3.0rg/2000/svg" version="1.2" baseProfile="tiny"
viewBox="0 @ 300 100" viewport-fill="yellow">

<desc>
The viewport has a yellow background.
The rectangle is filled and covers the viewport, so the yellow
background will only show through in the "leftovers” if the
aspect ratio of the viewport differs from that of the viewBox.
</desc>

<rect x="0" y="0" width="300" height="100" fill="red"” fill-opacity="0.3" stroke="black"/>

</svg>

The filling of the viewport is the first operation in the rendering chain of an element. Therefore:
« The viewport fill operation happens before filling and stroking.
« The viewport fill operation occurs before compositing, and thus is part of the input to the compositing

operations.
- The viewport fill operation renders into the element's conceptual offscreen buffer, and thus opacity applies as

usual.
+ Viewport fill is not affected by the 'fill' or ‘fill-opacity' properties.

11.8 The 'viewport-fill-opacity' property
The 'viewport-fill-opacity' property specifies the opacity of the 'viewport-fill' that shall be used for a particular
element.

'viewport-fill-opacity’

Value: <opacity-value> | inherit
Initial: 1.0

Applies to: viewport-creating elements
Inherited: no

Percentages: N/A

Media: visual

Animatable: yes

Computed value: Specified value, except inherit

<opacity-value>
The opacity of the painting operation that is to be used to fill the viewport. Any values outside the range 0.0

(fully transparent) to 1.0 (fully opaque) must be clamped to this range. (See Clamping values which are
restricted to a particular range.)

138

/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/examples/11_03.svg
http://www.w3.org/TR/CSS2/cascade.html#value-def-inherit

SVG Tiny 1.2 Specification 11 Painting: Filling, Stroking, Colors and Paint Servers

11.9 Controlling visibility and rendering

SVG uses two properties, 'display' and 'visibility', to control the rendering of graphics elements or (in the case of the
'display' property) container elements. Neither of these two properties affects the objects existence in the DOM, i.e.
no matter what value of these properties the object still remains in the DOM.

The differences between the two properties are as follows:

- When applied to a container element, setting 'display’ to none causes the container and all of its children to be
excluded from the rendering tree; thus, it acts on groups of elements as a group. 'visibility', however, only
applies to individual graphics elements. Setting 'visibility' to hidden on a 'g' will make its children visually
invisible as long as the children do not specify their own 'visibility' properties as visible.

« When the 'display' property is set to none, then the given element does not become part of the rendering tree.
With 'visibility' set to hidden, however, processing occurs as if the element were part of the rendering tree and
still taking up space, but not actually visually rendered onto the canvas. This distinction has implications for the
‘tspan’ element, event processing, and for bounding box calculations. If 'display' is set to none on a 'tspan' then
the text string is ignored for the purposes of text layout; however, if 'visibility' is set to hidden, the text string is
used for text layout (i.e., it takes up space) even though it is not visually rendered on the canvas. Regarding
events, if 'display’ is set to none, the element receives no events which require the element to be in the
rendering tree (for example mouse events); however, if 'visibility' is set to hidden, the element might still receive
events, depending on the value of property 'pointer-events'. The geometry of a graphics element with 'display'
set to none is not included in bounding box calculations; however, even if 'visibility' is to hidden, the geometry of
the graphics element still contributes to bounding box calculations.

'display’

Value: inline | block | list-item |
run-in | compact | marker |
table | inline-table | table-row-group | table-header-group |
table-footer-group | table-row | table-column-group | table-column |
table-cell | table-caption | none | inherit

Initial: inline

Applies to: 'svg', 'g", 'switch', 'a’, 'foreignObject’, graphics elements (including the text content block
elements), media elements and text sub-elements (e.g., 'tspan' and 'a’)

Inherited: no

Percentages: N/A
Media: all
Animatable: yes

Computed Specified value, except inherit
value:

A value of display="none" indicates that the given element and its children shall not be rendered directly or made
audible (i.e., those elements are not present in the rendering tree). Any computed value other than none indicates
that the given element shall be rendered or made audible by the SVG user agent.

The 'display' property only affects the direct rendering or audibility of a given element, whereas it does not pre-
vent elements from being referenced by other elements.

Elements with display="none" do not take up space in text layout operations, do not receive events and do not
contribute to bounding box calculations.

Except for any additional information provided in this specification, the normative definition of this property is
found in CSS 2 ([CSS2], section 9.2.5).

'visibility'
Value: visible | hidden | collapse | inherit
Initial: visible
Applies to: graphics elements (including the text content block elements), media elements and text sub-
elements (e.g., 'tspan' and 'a’)
Inherited: yes

139

http://www.w3.org/TR/CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/CSS2/visuren.html#propdef-display
http://www.w3.org/TR/CSS2/cascade.html#value-def-inherit

SVG Tiny 1.2 Specification 11 Painting: Filling, Stroking, Colors and Paint Servers

Percentages: N/A
Media: all
Animatable: yes

Computed Specified value, except inherit
value:

visible
The current graphics element or media element shall be visible.
hidden or collapse
The current graphics element or media element shall be invisible (i.e., nothing is painted on the canvas).
Note that, unlike the 'display' property, the 'visibility' property does not have any affect on the audibility of any me-
dia element. To control the audibility of an element, use the 'display’ or ‘audio-level' properties.
Note that if the 'visibility' property is set to hidden on a 'tspan' element, then the text is invisible but shall still
takes up space in text layout calculations.
Depending on the value of property 'pointer-events', graphics elements which have their ‘visibility' property set
to hidden still might receive events.
Except for any additional information provided in this specification, the normative definition of this property is
found in CSS 2 ([CSS2], section 11.2).

11.10 Rendering hints

11.10.1 The 'color-rendering' property

The creator of SVG content might want to provide a hint to the implementation about how to make speed versus
quality tradeoffs as it performs color interpolation and compositing. The 'color-rendering' property provides a hint
to the SVG user agent about how to optimize its color interpolation and compositing operations.

'color-rendering’

Value: auto | optimizeSpeed | optimizeQuality | inherit

Initial: auto

Applies to: container elements, graphics elements and 'animateColor’
Inherited: yes

Percentages: N/A

Media: visual

Animatable: yes

Computed value: Specified value, except inherit

auto
Indicates that the user agent shall make appropriate tradeoffs to balance speed and quality, but quality shall
be given more importance than speed.

optimizeSpeed
Indicates that the user agent shall emphasize rendering speed over quality. For RGB display devices, this
option will sometimes cause the user agent to perform color interpolation and compositing in the device RGB
color space.

optimizeQuality
Indicates that the user agent shall emphasize quality over rendering speed.

11.10.2 The 'shape-rendering' property

The creator of SVG content might want to provide a hint to the implementation about what tradeoffs to make as it
renders vector graphics elements such as 'path' elements and basic shapes such as circles and rectangles. The
'shape-rendering' property provides these hints.

'shape-rendering'
Value: auto | optimizeSpeed | crispEdges |
geometricPrecision | inherit

140

http://www.w3.org/TR/CSS2/visufx.html#propdef-visibility
http://www.w3.org/TR/CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/CSS2/cascade.html#value-def-inherit

SVG Tiny 1.2 Specification 11 Painting: Filling, Stroking, Colors and Paint Servers

Initial: auto
Applies to: shapes
Inherited: yes
Percentages: N/A
Media: visual
Animatable: yes

Computed value: Specified value, except inherit

auto
Indicates that the user agent shall make appropriate tradeoffs to balance speed, crisp edges and geometric
precision, but with geometric precision given more importance than speed and crisp edges.

optimizeSpeed
Indicates that the user agent shall emphasize rendering speed over geometric precision and crisp edges. This
option will sometimes cause the user agent to turn off shape anti-aliasing.

crispEdges
Indicates that the user agent shall attempt to emphasize the contrast between clean edges of artwork over
rendering speed and geometric precision. To achieve crisp edges, the user agent might turn off anti-aliasing
for all lines and curves or possibly just for straight lines which are close to vertical or horizontal. Also, the user
agent might adjust line positions and line widths to align edges with device pixels.

geometricPrecision
Indicates that the user agent shall emphasize geometric precision over speed and crisp edges.

11.10.3 The 'text-rendering' property

The creator of SVG content might want to provide a hint to the implementation about what tradeoffs to make as it
renders text. The 'text-rendering' property provides these hints.

'text-rendering'
Value: auto | optimizeSpeed | optimizeLegibility |
geometricPrecision | inherit

Initial: auto

Applies to: text content block elements
Inherited: yes

Percentages: N/A

Media: visual

Animatable: yes

Computed value: Specified value, except inherit

auto
Indicates that the user agent shall make appropriate tradeoffs to balance speed, legibility and geometric
precision, but with legibility given more importance than speed and geometric precision.

optimizeSpeed
Indicates that the user agent shall emphasize rendering speed over legibility and geometric precision. This
option will sometimes cause the user agent to turn off text anti-aliasing.

optimizeLegibility
Indicates that the user agent shall emphasize legibility over rendering speed and geometric precision. The
user agent will often choose whether to apply anti-aliasing techniques, built-in font hinting or both to
produce the most legible text.

geometricPrecision
Indicates that the user agent shall emphasize geometric precision over legibility and rendering speed. This
option will usually cause the user agent to suspend the use of hinting so that glyph outlines are drawn with
comparable geometric precision to the rendering of path data.

141

http://www.w3.org/TR/CSS2/cascade.html#value-def-inherit

SVG Tiny 1.2 Specification 11 Painting: Filling, Stroking, Colors and Paint Servers

11.10.4 The 'image-rendering' property

The creator of SVG content might want to provide a hint to the implementation about how to make speed vs. qual-
ity tradeoffs as it performs image processing. The 'image-rendering' property provides a hint to the SVG user agent
about how to optimize its image rendering.

'image-rendering'

Value: auto | optimizeSpeed | optimizeQuality | inherit
Initial: auto

Applies to: images

Inherited: yes

Percentages: N/A

Media: visual

Animatable: yes

Computed value: Specified value, except inherit

auto
Indicates that the user agent shall make appropriate tradeoffs to balance speed and quality, but quality shall
be given more importance than speed. The user agent shall employ a resampling algorithm at least as good as
nearest neighbor resampling, but bilinear resampling is strongly preferred. For Conforming High-Quality SVG
Viewers, the user agent shall employ a resampling algorithm at least as good as bilinear resampling.

optimizeQuality
Indicates that the user agent shall emphasize quality over rendering speed. The user agent shall employ a
resampling algorithm at least as good as bilinear resampling.

optimizeSpeed
Indicates that the user agent shall emphasize rendering speed over quality. The user agent should use a
resampling algorithm which achieves the goal of fast rendering, with the requirement that the resampling
algorithm shall be at least as good as nearest neighbor resampling. If performance goals can be achieved with
higher quality algorithms, then the user agent should use the higher quality algorithms instead of nearest
neighbor resampling.

In all cases, resampling must be done in a truecolor (e.g., 24-bit) color space even if the original data and/or the tar-

get device is indexed color.

11.10.5 The 'buffered-rendering' property

The creator of SVG content might want to provide a hint to the implementation about how often an element is
modified to make speed vs. memory tradeoffs as it performs rendering. The 'buffered-rendering' property provides a
hint to the SVG user agent about how to buffer the rendering of elements:

'buffered-rendering’

Value: auto | dynamic | static | inherit

Initial: auto

Applies to: container elements and graphics elements
Inherited: no

Percentages: N/A

Media: visual

Animatable: yes

Computed value: Specified value, except inherit

auto
Indicates that the user agent is expected to use a reasonable compromise between speed of update and
resource allocation.

dynamic
Indicates that the element is expected to be modified often.

142

http://www.w3.org/TR/CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/CSS2/cascade.html#value-def-inherit

SVG Tiny 1.2 Specification 11 Painting: Filling, Stroking, Colors and Paint Servers

static
Indicates that the element is not expected to be modified often. This suggests that user agent may be able to
allocate resources, such as an offscreen buffer, that would allow increased performance in redraw. It does not
mean that the element will never change. If an element is modified when the value is 'static', then redraw
might have reduced performance.

11.11 Inheritance of painting properties

The values of any of the painting properties described in this chapter can be inherited from a given object's parent.
Painting, however, is always done on each graphics element individually, never at the container element (e.g., a 'g')
level. Thus, for the following SVG, even though the gradient fill is specified on the 'g', the gradient is simply inherited
through the 'g' element down into each rectangle, each of which is rendered such that its interior is painted with
the gradient.

Example Inheritance

Example: 11_01.svg

<?xml version="1.0"7>
<svg xmlns="http://www.w3.0rg/2000/svg" version="1.2" baseProfile="tiny"
width="7cm"” height="2cm" viewBox="0 @ 700 200">

<desc>Gradients apply to leaf nodes</desc>

<g>
<defs>
<linearGradient xml:id="MyGradient” gradientUnits="objectBoundingBox">
<stop offset="0" stop-color="#F60"/>
<stop offset="1" stop-color="#FF6"/>
</linearGradient>
</defs>

<rect x="1" y="1" width="698" height="198"
fill="none" stroke="blue" stroke-width="2"/>

<g fill="url(#MyGradient)">
<rect x="100" y="50" width="200" height="100"/>
<rect x="400" y="50" width="200" height="100"/>
</g>
</g>
</svg>

Any painting properties defined in terms of the object's bounding box use the bounding box of the graphics ele-
ment to which the operation applies. Note that text elements are defined such that any painting operations defined
in terms of the object's bounding box use the bounding box of the entire 'text' element. (See the discussion of ob-
ject bounding box units and text elements.)

11.12 Object and group opacity: the 'opacity' property
There are several opacity properties within SVG:

+ Solid color opacity

+ Fill opacity

+ Stroke opacity

+ Gradient stop opacity

+ Viewport fill opacity

+ Object/group opacity (described here)

143

/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/examples/11_01.svg

SVG Tiny 1.2 Specification 11 Painting: Filling, Stroking, Colors and Paint Servers

Except for object/group opacity (described just below), all other opacity properties are involved in intermediate ren-
dering operations. Object/group opacity can be thought of conceptually as a postprocessing operation. Conceptu-
ally, after the object/group is rendered into an RGBA offscreen image, the object/group opacity setting specifies
how to blend the offscreen image into the current background.

Object/group opacity can, if applied to container elements, be a resource intensive operation. Therefore this ver-
sion of SVG restricts this property to only be set on, and only apply to, the 'image’ element. Note: if the value is set to
inherit, then the initial value of 1 for the opacity property will be used, meaning full opacity. This is the same as not
specifying it at all.

'opacity’
Value: <opacity-value> | inherit
Initial: 1
Applies to: 'image' element
Inherited: no
Percentages: N/A
Media: visual
Animatable: yes

Computed value: Specified value, except inherit

<opacity-value>
The uniform opacity setting that must applied across an entire object. Any values outside the range 0.0 (fully
transparent) to 1.0 (fully opaque) must be clamped to this range. (See Clamping values which are restricted to
a particular range.)

Below is an example of 'opacity' which illustrates the difference in behavior between SVG Basic/Full 1.1 and SVG Tiny

1.2.

Example: struct-image-201-t.svg

<?xml version="1.0" encoding="UTF-8"7>

<svg version="1.2" baseProfile="tiny"” xml:id="svg-root” width="100%" height="100%"
viewBox="0 @ 480 360" xmlns="http://www.w3.0rg/2000/svg"” xmlns:ev="http://www.w3.0rg/2001/xml-events”
xmlns:xlink="http://www.w3.0rg/1999/x1link">

<l-- -—=>
<!--= Copyright 2007 World Wide Web Consortium, (Massachusetts ===>
<!--= Institute of Technology, European Research Consortium for =-->
<!--= Informatics and Mathematics (ERCIM), Keio University). ===>
<!--= All Rights Reserved. ===>
<!--= See http://www.w3.org/Consortium/Legal/. ===
<l-- -—=>
<metadata>

<p>

This test shows the differences in opacity-handling between SVG Tiny 1.2 and SVG Full 1.1.
</p>
<p>

The test has passed if the leftmost column looks like either of the other two columns.
SVG Tiny 1.2 requires only what is portrayed by the middle column, but does not require
user agents that implement both SVG 1.1 and 1.2 Tiny to follow the more limited
opacity-handling in 1.2 Tiny.

</p>

<p>
In SVG Tiny 1.2 the opacity property is only allowed on the image element itself.
If it's encountered anywhere else it must be treated as an unsupported value.

NOTE: This test is not valid 1.2 Tiny because it's using opacity on something
other than the image element.
</p>
</metadata>
<title xml:id="test-title">$RCSfile: struct-image-201-t.svg,v $</title>
<defs>
<font-face
font-family="SVGFreeSansASCII"
unicode-range="U+0-7F">
<font-face-src>

144

http://www.w3.org/TR/CSS2/cascade.html#value-def-inherit
/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/examples/struct-image-201-t.svg

SVG Tiny 1.2 Specification 11 Painting: Filling, Stroking, Colors and Paint Servers

<font-face-uri xlink:href="SVGFreeSans.svgt#ascii”/>
</font-face-src>
</font-face>
</defs>
<g xml:id="test-body-content” font-family="SVGFreeSansASCII,sans-serif” font-size="18">

<text x="240" y="70" text-anchor="middle" font-size="32">Test opacity</text>

<g id="test" transform="translate(-100 0)">
<text x="240" y="120" text-anchor="middle">Test</text>
<text x="240" y="130" text-anchor="middle"” font-size="9">Mouseover to compare</text>
<rect id="r1" x="200" y="135" height="20" width="80" fill="green"/>
<rect id="r2" x="200" y="160" height="20" width="80" fill="green"/>
<rect id="r3" x="200" y="185" height="20" width="80" fill="green"/>
<rect id="r4" x="200" y="210" height="20" width="80" fill="green"/>

<g pointer-events="none">
<image width="460" height="20" x="10" y="135" xlink:href="1pixelwhite.png"
preserveAspectRatio="none" opacity="0.25"/>
<g opacity="0.5">
<image width="460" height="20" x="10" y="160" xlink:href="1pixelwhite.png"
preserveAspectRatio="none" opacity="0.5"/>
<rect id="r5" x="200" y="185" height="20" width="80" fill="white" opacity="0.5"/>

</g>
<g opacity="0.75">
<g opacity="inherit">
<image width="460" height="20" x="10" y="210" xlink:href="1pixelwhite.png"
preserveAspectRatio="none" opacity="inherit"/>
</g>
</g>
</g>

<ev:listener event="mouseover" observer="rl1" handler="#handler"/>
<ev:listener event="mouseout” observer="rl1" handler="#handler"/>
<ev:listener event="mouseover" observer="r2" handler="#handler"/>
<ev:listener event="mouseout” observer="r2" handler="#handler"/>
<ev:listener event="mouseover" observer="r3" handler="#handler"/>
<ev:listener event="mouseout” observer="r3" handler="#handler"/>
<ev:listener event="mouseover" observer="r4" handler="#handler"/>
<ev:listener event="mouseout” observer="r4" handler="#handler"/>
<handler id="handler">
if(event.type == "mouseover"”)
{
event.target.setFloatTrait("width", 289);
if(event.target.id == "r3")
document.getElementById("r5").setFloatTrait("width”, 280);

}
else
{
event.target.setFloatTrait("width", 80);
if(event.target.id == "r3")
document.getElementById("r5").setFloatTrait("width"”, 80);
}
</handler>

</g>

<g id="tinyl2reference”>
<text x="240" y="120" text-anchor="middle">Tiny 1.2 ref</text>
<rect x="200" y="135" height="20" width="80" fill="green"/>
<rect x="200" y="160" height="20" width="80" fill="green"/>
<rect x="200" y="185" height="20" width="80" fill="green"/>
<rect x="200" y="210" height="20" width="80" fill="green"/>
<rect x="200" y="135" height="20" width="80" fill="white"” fill-opacity="0.25"/>
<rect x="200" y="160" height="20" width="80" fill="white"” fill-opacity="0.5"/>
<rect x="200" y="185" height="20" width="80" fill="white" fill-opacity="1"/>
<rect x="200" y="210" height="20" width="80" fill="white" fill-opacity="1"/>
</g>

<g id="fullllreference” transform="translate(100 0)">
<text x="240" y="120" text-anchor="middle">Full 1.1 ref</text>
<rect x="200" y="135" height="20" width="80" fill="green"/>
<rect x="200" y="160" height="20" width="80" fill="green"/>
<rect x="200" y="185" height="20" width="80" fill="green"/>

145

SVG Tiny 1.2 Specification 11 Painting: Filling, Stroking, Colors and Paint Servers

<rect x="200" y="210" height="20" width="80" fill="green"/>

<rect x="200" y="135" height="20" width="80" fill="white"” fill-opacity="@.25"/>

<rect x="200" y="160" height="20" width="80" fill="white"” fill-opacity="@.25"/>

<rect x="200" y="185" height="20" width="80" fill="white"” fill-opacity="@.25"/>

<rect x="200" y="210" height="20" width="80" fill="white” fill-opacity="0.421875"/>
</g>

</g>
<g font-family="SVGFreeSansASCII,sans-serif” font-size="32">
<text xml:id="revision” x="10" y="340" stroke="none"
fill="black">$Revision: 1.4 $</text>
</g>
<rect xml:id="test-frame"” x="1" y="1" width="478" height="358" fill="none" stroke="#000"/>
</svg>

Test opacity

Test Tiny 1.2 ref Full 1.1 ref
]

MousEoyEr i COmgsan

$Revision: 1.4 $

11.13 Color

In SVG Tiny 1.2, all colors are specified in the sSRGB color space [SRGB]. SVG Tiny 1.2 user agents are not required to,
but may, support color management. However, SVG Tiny 1.2 user agents should apply gamma correction if the re-
sponse curve of the display system differs from that of SRGB.

11.13.1 Syntax for color values

Five syntactical forms are specified for SVG Tiny 1.2, and all of them must be supported in a conforming SVG
Interpreter:
Three digit hex — #rgb
Each hexadecimal digit, in the range 0 to F, represents one sRGB color component in the order red, green and
blue. The digits A to F may be in either uppercase or lowercase. The value of the color component is obtained
by replicating digits, so 0 become 00, 1 becomes 11, F becomes FF. This compact syntactical form can
represent only 4096 colors. Examples: #000 (i.e. black) #fff (i.e. white) #6CF (i.e. #66CCFF, rgb(102, 204, 255)).
Six digit hex — #rrggbb
Each pair of hexadecimal digits, in the range 0 to F, represents one sRGB color component in the order red,
green and blue. The digits A to F may be in either uppercase or lowercase.This syntactical form, originally
introduced by HTML, can represent 16777216 colors. Examples: #9400D3 (i.e. a dark violet), #FFD700 (i.e. a
golden color).

146

SVG Tiny 1.2 Specification 11 Painting: Filling, Stroking, Colors and Paint Servers

Integer functional — rgb(rrr, ggg, bbb)
Each integer represents one sRGB color component in the order red, green and blue, separated by a comma
and optionally by white space. Each integer is in the range 0 to 255. This syntactical form can represent
16777216 colors. Examples: rgb(233, 150, 122) (i.e. a salmon pink), rgb(255, 165, 0) (i.e. an orange).

Float functional — rgb(R%, G%, B%)
Each percentage value represents one sRGB color component in the order red, green and blue, separated by a
comma and optionally by white space. For colors inside the sSRGB gamut, the range of each component is 0.0%
to 100.0% and an arbitrary number of decimal places may be supplied. Scientific notation is not supported.
This syntactical form can represent an arbitrary range of colors, completely covering the sSRGB gamut. Color
values where one or more components are below 0.0% or above 100.0% represent colors outside the SRGB
gamut Examples: rgbh(12.375%, 34.286%, 28.97%).

Color keyword
The sixteen color keywords below (originally from HTML 4 [HTML4]) must be supported, with the further
restriction that they must be lowercase.

11.13.2 HTML color keywords

. black rgb(0, 0, 0) . green rgb(0, 128, 0)
[] silver rgh(192,192,192)] time rgb(0, 255, 0)
B gray rgb(128, 128, 128) B olive rgb(128, 128, 0)
[] white rgb(255, 255, 255) [] yellow rgb(255, 255, 0)
. maroon rgb(128, 0, 0) . navy rgb(0, 0, 128)
B re rgb(255, 0, 0) B ble rgb(0, 0, 255)
B purple rgh(128, 0, 128) B tea rgb(0, 128, 128)
B fuchsia rgb(255, 0, 255) [] aqua rgb(0, 255, 255)

11.14 Paint servers

With SVG, you can fill (i.e., paint the interior of) or stroke (i.e., paint the outline of) shapes and text using one of the
following:

« color (using <color> or a reference to a 'solidColor' element)

+ asystem paint

« gradients (linear or radial)
SVG uses the general notion of a paint server. Gradients and patterns are just specific types of built-in paint servers.
The 'solidColor' element is another built-in paint server, described in Color.

Apart from system paint, paint servers are referenced using a local IRl reference on a 'fill' or 'stroke' property.

11.14.1 System paint servers

The following list of system paint servers must be supported. If a paint specification specifies one of the system
paint servers, then the user agent must either paint using a system-provided paint server or paint with a substitute
paint server, such as a color or gradient. System paint servers often depend on the operating system, user choices,
and the implementation. Substitute paint servers should attempt to match the appearance of corresponding user
interface elements on the platform, including user color choices. In environments which do not provide adequate
system paint server APIs, a conformant user agent may use substitute paint servers which do not necessarily match
the environment's system paint servers.
The computed value of a paint specified as a system paint is the specified value.

ActiveBorder

Active window border.
ActiveCaption

Active window caption.
AppWorkspace

Background color of multiple document interface.

147

SVG Tiny 1.2 Specification 11 Painting: Filling, Stroking, Colors and Paint Servers

Background

Desktop background.
ButtonFace

Face color for three-dimensional display elements.
ButtonHighlight

Dark shadow for three-dimensional display elements (for edges facing away from the light source).
ButtonShadow

Shadow color for three-dimensional display elements.
ButtonText

Text on push buttons.
CaptionText

Text in caption, size box, and scrollbar arrow box.
GrayText

Disabled (‘grayed’) text.
Highlight

Item(s) selected in a control.
HighlightText

Text of item(s) selected in a control.
InactiveBorder

Inactive window border.
InactiveCaption

Inactive window caption.
InactiveCaptionText

Color of text in an inactive caption.
InfoBackground

Background color for tooltip controls.
InfoText

Text color for tooltip controls.
Menu

Menu background.
MenuText

Text in menus.
Scrollbar

Scroll bar gray area.
ThreeDDarkShadow

Dark shadow for three-dimensional display elements.
ThreeDFace

Face color for three-dimensional display elements.
ThreeDHighlight

Highlight color for three-dimensional display elements.
ThreeDLightShadow

Light color for three-dimensional display elements (for edges facing the light source).
ThreeDShadow

Dark shadow for three-dimensional display elements.
Window

Window background.
WindowFrame

Window frame.
WindowText

Text in windows.

11.14.2 The 'solidColor' element

The 'solidColor' element is a paint server that provides a single color with opacity. It can be referenced like the other
paint servers (i.e. gradients).

148

SVG Tiny 1.2 Specification 11 Painting: Filling, Stroking, Colors and Paint Servers

Schema: solidColor

<define name='solidColor'>
<element name='solidColor'>
<ref name='solidColor.AT'/>
<ref name='solidColor.CM'/>
</element>
</define>

<define name='solidColor.CM'>
<zeroOrMore>
<choice>
<ref name='svg.Desc.group'/>
<ref name='svg.Animate.group'/>
<ref name='svg.Handler.group'/>
<ref name='svg.Discard.group'/>
</choice>
</zeroOrMore>
</define>

<define name='solidColor.AT' combine='interleave'>
<ref name='svg.Properties.attr'/>
<ref name='svg.Core.attr'/>

</define>

The 'solid-color' property specifies the color that shall be used for this 'solidColor' element. The keyword currentColor
can be specified in the same manner as within a <paint> specification for the 'fill' and 'stroke' properties.

'solid-color'
Value: currentColor | <color> | inherit
Initial: black
Applies to: 'solidColor' elements
Inherited: no
Percentages: N/A
Media: visual
Animatable: yes

Computed value: Specified <color> value, except inherit
The 'solid-opacity' property defines the opacity of the 'solidColor".

'solid-opacity'

Value: <opacity-value> | inherit
Initial: 1

Applies to: 'solidColor' elements
Inherited: no

Percentages: N/A

Media: visual

Animatable: yes

Computed value: Specified value, except inherit

<opacity-value>
The opacity of the 'solidColor'. Any values outside the range 0.0 (fully transparent) to 1.0 (fully opaque) must be
clamped to this range. (See Clamping values which are restricted to a particular range.)
The 'solidColor' paint server applies paint of the specified color using the opacity defined in 'solid-opacity'. The value
of 'solid-opacity' is independent of the opacity used to render the paint via 'fill' or 'stroke’ (see alpha compositing).
Properties shall inherit into the 'solidColor' element from its ancestors; properties shall not inherit from the ele-
ment referencing the 'solidColor' element.
'solidColor' elements are never rendered directly; their only usage is as something that can be referenced using
the 'fill' and 'stroke' properties. The 'display’' property does not apply to the 'solidColor' element; thus, 'solidColor'

149

SVG Tiny 1.2 Specification 11 Painting: Filling, Stroking, Colors and Paint Servers

elements are not directly rendered even if the 'display' property is set to a value other than none, and 'solidColor'
elements are available for referencing even when the 'display' property on the 'solidColor' element or any of its an-

cestors is set to none.
Below is an example of the 'solidColor' element:

Example: solidcolor.svg

<?xml version="1.0" encoding="UTF-8"7?>

<svg xmlns="http://www.w3.0rg/2000/svg” xmlns:xlink="http://www.w3.0rg/1999/x1link"
version="1.2" baseProfile="tiny"
width="480" height="360" viewBox="0 @ 480 360">

<title>'solidColor' example</title>

<defs>
<solidColor xml:id="solidMaroon"” solid-color="maroon” solid-opacity="0.7"/>

</defs>

<g>
<circle transform="translate(100, 150)" fill="url(#solidMaroon)"” r="30"/>
<rect fill="url(#solidMaroon)"” transform="translate(190, 150)" x="-30" y="-30" width="60" height="60"/>
<path fill="url(#solidMaroon)"” transform="translate(270, 150)" d="M @ -30 L 30 30 L -30 30 Z" />
<text fill="url(#solidMaroon)” transform="translate(340, 150)" y="21" font-weight="bold" font-size="60">A</text>

</g>
</svg>

OHAA

11.14.3 The 'color' property

The 'color' property, which is defined in CSS2 as the color of text, does not directly apply to SVG elements. The value
of the SVG color property may however be used to provide an indirect value for those properties which allow the
currentColor keyword: the 'fill', 'stroke’, 'solid-color' and 'stop-color' properties.

'color'
Value: <color> | inherit
Initial: depends on user agent
Applies to: None. Indirectly affects other properties via currentColor
Inherited: yes

150

/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/examples/solidcolor.svg
http://www.w3.org/TR/CSS2/cascade.html#value-def-inherit

SVG Tiny 1.2 Specification 11 Painting: Filling, Stroking, Colors and Paint Servers

Percentages: N/A
Media: visual
Animatable: yes

Computed value: Specified <color> value, except inherit

Except for any additional information provided in this specification, the normative definition of the property is
found in CSS 2 ([CSS2], section 14.1).

11.15 Gradients

Gradients consist of continuously smooth color transitions along a vector from one color to another, possibly fol-
lowed by additional transitions along the same vector to other colors. SVG provides for two types of gradients,
'linearGradient' and 'radialGradient'.

Once defined, gradients are then referenced using 'fill' or 'stroke' properties on a given graphics element to in-
dicate that the given element shall be filled or stroked with the referenced gradient.

11.15.1 Linear gradients
Linear gradients are defined by a 'linearGradient' element.

Schema: linearGradient

<define name='linearGradient'>
<element name='linearGradient'>
<ref name='linearGradient.AT'/>
<ref name='GradientCommon.CM'/>
</element>
</define>

<define name='linearGradient.AT' combine='interleave'>
<ref name='svg.Properties.attr'/>
<ref name='svg.GradientCommon.attr'/>
<ref name='svg.Core.attr'/>
<ref name='svg.X12Y12.attr'/>
</define>

Attribute definitions:

gradientUnits = "userSpaceOnUse" | "objectBoundingBox"
Defines the coordinate system for attributes 'x1', 'y1', 'x2', 'y2' that shall be used when rendering the gradient.

If gradientUnits="userSpaceOnUse", 'x1', 'y1', 'x2', 'y2' shall represent values in the coordinate system that
results from taking the current user coordinate system in place at the time when the gradient element is
referenced (i.e., the user coordinate system for the element referencing the gradient element via a 'fill' or
'stroke’ property).

If gradientUnits="objectBoundingBox", the user coordinate system for attributes 'x1','y1', 'x2', 'y2' shall be
established using the bounding box of the element to which the gradient is applied (see Object bounding box
units).

When gradientUnits="objectBoundingBox" the stripes of the linear gradient shall be perpendicular to the
gradient vector in object bounding box space (i.e., the abstract coordinate system where (0,0) is at the top/left
of the object bounding box and (1,0) is at the top/right of the object bounding box). When the object's
bounding box is not square, the stripes that are conceptually perpendicular to the gradient vector within
object bounding box space shall render non-perpendicular relative to the gradient vector in user space due to
application of the non-uniform scaling transformation from bounding box space to user space.

The lacuna value is 'objectBoundingBox'.

Animatable: yes.

x1 ="<coordinate>"
'x1','y1', 'x2', 'y2"' define a gradient vector for the linear gradient. This gradient vector provides starting and
ending points onto which the gradient stops shall be mapped. The values of 'x1','y1', 'x2", 'y2' must be
numbers.
The lacuna value is '0'.

151

http://www.w3.org/TR/CSS2/colors.html#colors

SVG Tiny 1.2 Specification 11 Painting: Filling, Stroking, Colors and Paint Servers

Animatable: yes.

y1 ="<coordinate>"
See 'x1'.
The lacuna value is '0'.
Animatable: yes.

x2 = "<coordinate>"
See 'x1'.
The lacuna value is '1'.
Animatable: yes.

y2 =" <coordinate>"
See 'x1'.
The lacuna value is '0".
Animatable: yes.

If 'x1'="x2"' and 'y1' ="'y2', then the area to be painted shall be painted as a single color using the color and opacity of
the last gradient stop.

If the gradient starts or ends inside the bounds of the target rectangle the terminal colors of the gradient shall be
used to fill the remainder of the target region.

Properties shall inherit into the 'linearGradient' element from its ancestors; properties shall not inherit from the
element referencing the 'linearGradient' element.

'linearGradient' elements are never rendered directly; their only usage is as something that can be referenced us-
ing the 'fill' and 'stroke' properties. The 'display' property does not apply to the 'linearGradient' element; thus,
'linearGradient' elements are not directly rendered even if the 'display' property is set to a value other than none,
and 'linearGradient' elements are available for referencing even when the 'display' property on the 'linearGradient’
element or any of its ancestors is set to none.

Example 13_01 shows how to fill a rectangle by referencing a linear gradient paint server.

Example: 13_01.svg

<?xml version="1.0"7>
<svg xmlns="http://www.w3.0rg/2000/svg" version="1.2" baseProfile="tiny"
width="8cm"” height="4cm" viewBox="0 @ 800 400">

<desc>Example 13_01 - fill a rectangle using a linear gradient paint server</desc>

<g>
<defs>
<linearGradient xml:id="MyGradient">
<stop offset="0.05" stop-color="#F60"/>
<stop offset="0.95" stop-color="#FF6"/>
</linearGradient>
</defs>

<!-- Qutline the drawing area in blue -->
<rect fill="none" stroke="blue"
x="1" y="1" width="798" height="398"/>

<!-- The rectangle is filled using a linear gradient paint server -->
<rect fill="url(#MyGradient)" stroke="black"” stroke-width="5"
x="100" y="100" width="600" height="200"/>
</g>
</svg>

152

/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/examples/13_01.svg

SVG Tiny 1.2 Specification 11 Painting: Filling, Stroking, Colors and Paint Servers

11.15.2 Radial gradients
Radial gradients are defined by a 'radialGradient' element.

Schema: radialGradient

<define name='radialGradient'>
<element name='radialGradient'>
<ref name='radialGradient.AT'/>
<ref name='GradientCommon.CM'/>
</element>
</define>

<define name='radialGradient.AT' combine='interleave'>
<ref name='svg.Properties.attr'/>
<ref name='svg.GradientCommon.attr'/>

)

<ref name='svg.Core.attr'/>
<ref name='svg.CxCy.attr'/>
<ref name='svg.R.attr'/>

</define>

Attribute definitions:

gradientUnits = "userSpaceOnUse" | "objectBoundingBox"
Defines the coordinate system for attributes 'ex', 'cy’, 'r' that shall be used when rendering the gradient.

If gradientUnits="userSpaceOnUse", 'cx', 'cy', 'r' shall represent values in the coordinate system that results
from taking the current user coordinate system in place at the time when the gradient element is referenced
(i.e., the user coordinate system for the element referencing the gradient element via a 'fill' or 'stroke'
property).

If gradientUnits="objectBoundingBox", the user coordinate system for attributes 'ex', 'cy’, 'r' shall be
established using the bounding box of the element to which the gradient is applied (see Object bounding box
units).

When gradientUnits="objectBoundingBox" the rings of the radial gradient shall be circular with respect to
the object bounding box space (i.e., the abstract coordinate system where (0,0) is at the top/left of the object
bounding box and (1,1) is at the bottom/right of the object bounding box). When the object's bounding box is
not square, the rings that are conceptually circular within object bounding box space shall render as elliptical
due to application of the non-uniform scaling transformation from bounding box space to user space.

The lacuna value is 'objectBoundingBox'.

Animatable: yes.

cx = "<coordinate>"
‘ex’, 'cy' and 'r' define the largest (i.e., outermost) circle for the radial gradient and the 0 gradient stop is
mapped to (‘ex’, 'cy’).
The lacuna value is '0.5'".
Animatable: yes.

cy = "<coordinate>"
See 'cx'.
The lacuna value is '0.5'".

153

SVG Tiny 1.2 Specification 11 Painting: Filling, Stroking, Colors and Paint Servers

Animatable: yes.

r ="<length>"
See 'cx'.
A negative value shall be treated as unsupported. A value of zero shall cause the area to be painted as a
single color using the color and opacity of the last gradient stop. The lacuna value is '0.5'.
Animatable: yes.

If the gradient starts or ends inside the bounds of the object(s) being painted by the gradient the terminal colors of
the gradient shall be used to fill the remainder of the target region.

Properties shall inherit into the 'radialGradient' element from its ancestors; properties shall not inherit from the
element referencing the 'radialGradient' element.

'radialGradient' elements must never be rendered directly; their only usage is as something that can be refer-
enced using the 'fill' and 'stroke' properties. The 'display' property does not apply to the 'radialGradient' element;
thus, 'radialGradient' elements are not directly rendered even if the 'display' property is set to a value other than
none, and 'radialGradient' elements are available for referencing even when the ‘'display' property on the
'radialGradient' element or any of its ancestors is set to none.

Example 13_02 shows how to fill a rectangle by referencing a radial gradient paint server.

Example: 13_02.svg

<?xml version="1.0"7>
<svg xmlns="http://www.w3.0rg/2000/svg" version="1.2" baseProfile="tiny"
width="8cm"” height="4cm"” viewBox="0 @ 800 400">

<desc>Example 13_02 - fill a rectangle by referencing a radial gradient paint server</desc>

<g>
<defs>
<radialGradient xml:id="MyGradient" gradientUnits="userSpaceOnUse"
cx="400" cy="200" r="300">
<stop offset="0" stop-color="red"/>
<stop offset="0.5" stop-color="blue"/>
<stop offset="1" stop-color="red"/>
</radialGradient>
</defs>
<l-- Qutline the drawing area in blue -->

<rect fill="none" stroke="blue"
x="1" y="1" width="798" height="398"/>

<!-- The rectangle is filled using a radial gradient paint server -->
<rect fill="url(#MyGradient)" stroke="black" stroke-width="5"
x="100" y="100" width="600" height="200"/>
</g>
</svg>

11.15.3 Defining gradient stops: the 'stop' element
The ramp of colors to use on a gradient is defined by the 'stop' elements that are child elements to either the
'linearGradient' element or the 'radialGradient' element.

154

/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/examples/13_02.svg

SVG Tiny 1.2 Specification 11 Painting: Filling, Stroking, Colors and Paint Servers

Schema: stop

<define name='stop'>
<element name='stop'>
<ref name='stop.AT'/>
<ref name='stop.CM'/>
</element>
</define>

<define name='stop.CM'>
<zeroOrMore>
<choice>
<ref name='svg.Desc.group'/>
<ref name='svg.Animate.group'/>
</choice>
</zeroOrMore>
</define>

<define name='stop.AT' combine='interleave'>
<ref name='svg.Properties.attr'/>
<ref name='svg.Core.attr'/>
<optional>
<attribute name='offset’' svg:animatable='true’' svg:inheritable='false'>
<ref name='Number.datatype'/>
</attribute>
</optional>
</define>

Attribute definitions:

offset ="<number>"
The 'offset" attribute is a <number> which indicates where the gradient stop shall be placed. For linear
gradients, the 'offset' attribute represents a location along the gradient vector. For radial gradients, it
represents a relative distance from (‘cx’, 'cy') to the edge of the outermost/largest circle.
The lacuna value is '0'".
Animatable: yes.

The 'stop-color' property specifies the color that shall be used at the gradient stop. The keyword currentColor can be
specified in the same manner as within a <paint> specification for the 'fill' and 'stroke' properties.

'stop-color'

Value: currentColor | <color> | inherit
Initial: black

Applies to: 'stop' elements

Inherited: no

Percentages: N/A

Media: visual

Animatable: yes

Computed value: Specified <color> value, except inherit
The 'stop-opacity' property specifies the opacity that shall be used for the gradient 'stop".

'stop-opacity'

Value: <opacity-value> | inherit
Initial: 1

Applies to: 'stop' elements
Inherited: no

Percentages: N/A

Media: visual

Animatable: yes

155

http://www.w3.org/TR/CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/CSS2/cascade.html#value-def-inherit

SVG Tiny 1.2 Specification 11 Painting: Filling, Stroking, Colors and Paint Servers

Computed value: Specified value, except inherit

The gradient paint server applies paint of the specified gradient using the opacities defined by 'stop-opacity' values.
The values of 'stop-opacity' are independent of the opacity used to render the paint via 'fill' or 'stroke' (see alpha
compositing).
<opacity-value>
The opacity of the 'stop-color’ for the current gradient 'stop'. Any values outside the range 0.0 (fully
transparent) to 1.0 (fully opaque) must be clamped to this range. (See Clamping values which are restricted to
a particular range.)
Some notes on gradients:

« Any gradient offset values outside the range 0.0 to 1.0 must be clamped to this range. (See Clamping values
which are restricted to a particular range.)

- Itis necessary that at least two 'stop' elements are specified to have a gradient effect. If no 'stop' elements are
specified, then painting shall occur as if none were specified as the paint style. If one 'stop’ is specified, then
painting shall occur with the solid color fill using the color defined for that gradient stop.

« Each gradient offset value is required to be equal to or greater than the previous gradient stop's offset value. If a
given gradient stop's offset value is not equal to or greater than all previous offset values, then the offset value
must be adjusted to be equal to the largest of all previous offset values.

« Iftwo gradient stops have the same offset value, then the latter gradient stop shall control the color value at the
overlap point. In particular:

<stop offset="0" stop-color="white"/>
<stop offset=".2" stop-color="red"/>
<stop offset=".2" stop-color="blue"/>
<stop offset="1" stop-color="black"/>

will have approximately the same effect as:

<stop offset="0" stop-color="white"/>
<stop offset=".1999999999" stop-color="red"/>
<stop offset=".2" stop-color="blue"/>
<stop offset="1" stop-color="black"/>

which is a gradient that goes smoothly from white to red, then abruptly shifts from red to blue, and then goes
smoothly from blue to black.

+ Colors and opacities are interpolated separately, and the resulting gradient is composited using simple alpha
compositing. In particular:

<stop offset="0" stop-color="#FQ0" stop-opacity="0"/>
<stop offset="1" stop-color="#0F@" stop-opacity="1"/>

will produce a gradient from fully transparent red, via partly transparent dark yellow, to fully opaque lime.

« All gradient stops must be converted into the interpolation color space. Interpolation between gradient stop
colors must occur in the interpolation color space.

+ SVGTiny 1.2 user agents have the option to interpolate gradients in either sSRGB or in linearRGB color space.
Both color spaces have the same color gamut (see [SRGB]).

« Other W3C specifications may allow alternative interpolation color spaces to be specified.

156

SVG Tiny 1.2 Specification 12 Multimedia

12 Multimedia

Contents
12,1 Media @lEmMENTS . . ettt e et e e e e e 157
12.1.1 Media timeline and document timeline.ot i e et e 157
12.1.2 Media availability e 158
1203 Platform lImMitst e e 159
12.1.4 Audio mixing for 'audio’ and 'video' elements.t e 159
12.1.5 Discrete control of audio and VIdeo.ot 159
12.1.6 Controlling media playback through scriptoouiuiiin i e e et 159
12,2 The 'audio’ €lEMENTttt e et e e et e e 159
12.3 The 'VIdEO @lEMENT ...ttt e e e e e e ettt e ettt e e e 161
12.3.1 Restricting the transformation of the 'video' element. ..ottt ci e 164
12.3.2 Restricting compositing of the 'video' element.ot e 165
12,3 3 EXAMIPIES « oottt e e e, 165
124 The 'animation’ @lement.t e e 168
12.5 The 'audio-level PrOPErtyttt ettt e e et 170
12.6 Attributes for runtime synchronization. oot e e et 170
12.7 The "initialVisibility' attribUte.o e e e e e e et e 172

12.1 Media elements

SVG supports media elements similar to the SMIL 2.1 Media Elements ([SMIL21], chapter 7). Media elements define
their own timelines within their time container. All SVG media elements support the SVG timing attributes and
runtime synchronization attributes. The default event-base element for all SVG media elements is the element itself.
The following elements are media elements:
- 'audio'
+ 'video'
« 'animation'

12.1.1 Media timeline and document timeline

Media elements start playing when they become active, i.e. at a time specified in the document timeline which de-
pends on their 'begin' attribute (see SVG timing attributes). However, depending on the value of the 'timelineBegin'
attribute on the rootmost 'svg' element, the actual beginning of the document timeline may be delayed until the
whole document is loaded. This is the case when 'timelineBegin' is set to 'onLoad". In that case, the beginning of the
actual playback of the media will be delayed, but the media begin time in the document timeline will remain as
specified.

Note: 'image’ elements are not considered as media elements because they are not timed. They start playing at
time 0 in the document timeline.

The following examples illustrate this behavior:

Example: video-timelineBegin-01.svg

<?xml version="1.0"7>
<svg xml:id="A" xmlns="http://www.w3.0rg/2000/svg" xmlns:xlink="http://www.w3.0rg/1999/x1link” version="1.2"
baseProfile="tiny"

timelineBegin="onLoad"> <!-- process time = t0 -->
<l-- ...[many elements]... --> <!-- additional process time = tl = 5s -->
<video xlink:href="myvideo.mp4" begin="0s"/> <!-- additional process time = t2 = 1s -->

</svg>
In this example, the document timeline will start after the document is fully processed, i.e. at time t0+t7+t2 > 6s. The

video will start when the document is loaded. But, at that time, the document time will be 0. So, the video will start
with the first frame of the video.

157

http://www.w3.org/TR/2005/REC-SMIL2-20051213/extended-media-object.html

SVG Tiny 1.2 Specification 12 Multimedia

Example: video-timelineBegin-02.svg

<?xml version="1.0"7>
<svg xml:id="B" xmlns="http://www.w3.0rg/2000/svg" xmlns:xlink="http://www.w3.0rg/1999/x1link” version="1.2"
baseProfile="tiny"

timelineBegin="onStart"> <!-- process time = t0 -->
<!-- _..[many elements]... --> <!-- additional process time = tl = 5s -->
<video xlink:href="myvideo.mp4" begin="0s"/> <!-- additional process time = t2 = 1s -->

</svg>

In this example, the document timeline will start when the 'svg' element is fully parsed and processed, i.e. at time t0.
The video will also start at document time 0, but since the video will only be processed when document time is
to+t1+t2, the video will start displaying the frame at time t0+t7+t2 in the video timeline.

Furthermore, the time in the media timeline which is played, e.g. the exact frame of video or the exact sample of
audio that is played, can be altered by the 'syncBehavior' attribute. The following examples illustrate this behavior.
These examples are the same as the previous ones, but the values of the 'syncBehavior' attributes are changed from
the default value to 'independent'.

Example: video-timelineBegin-03.svg

<?xml version="1.0"7>
<svg xml:id="A" xmlns="http://www.w3.0rg/2000/svg" xmlns:xlink="http://www.w3.0rg/1999/xlink"” version="1.2"
baseProfile="tiny"

timelineBegin="onLoad"> <!-- process time = t@ -->
<!-- ...[many elements]... --> <!-- additional process time = tl = 5s -->
<video xlink:href="myvideo.mp4" begin="0s" syncBehavior="independent"”/> <!-- additional process time = t2 = 1s -->

</svg>

Example: video-timelineBegin-04.svg

<?xml version="1.0"7>
<svg xml:id="B" xmlns="http://www.w3.0rg/2000/svg" xmlns:xlink="http://www.w3.0rg/1999/x1link” version="1.2"
baseProfile="tiny"

timelineBegin="onStart"> <!-- process time = t@ -->
<!-- ...[many elements]... --> <!-- additional process time = tl = 5s -->
<video xlink:href="myvideo.mp4” begin="0s" syncBehavior="independent”/> <!-- additional process time = t2 = 1s -->

</svg>

In example video-timelineBegin-03.svg, the video does not start until the document's load event, whereas in ex-
ample video-timelineBegin-04.svg, the video begins as soon as the video element is parsed and the video is ready
for rendering. In both cases, since the timeline of the document and of the video are independent, when the video
will start, it will start from the first frame, i.e. time 0 in the media timeline.

12.1.2 Media availability

The value of the 'externalResourcesRequired' attribute may also delay the actual time at which a media (even im-
ages) will start playing, but it does not affect the time in the document timeline. Indeed, media elements and the
image element may require external resources referenced by the ‘xlinkchref attribute. If the
'externalResourcesRequired' attribute is set to 'true’, on the resource or on a parent in the scene tree, e.g. a 'g' ele-
ment, then this external resource has to become available before the media can start. If the
'externalResourcesRequired' attribute is set to 'false’, the media element or the image element will start playing as
soon as it becomes active.

The meaning of "available" depends on the media type, on the protocol used to access the resource as well as
on the implementation. For example, if a protocol like HTTP is used, "available" may mean that the whole resource is
downloaded. It may also mean that a coarse version of the resource is available, for example in case of progressive
PNG (see PNG Pass extraction ([PNG], section 4.5.2)). In that case, it is an implementation choice to decide whether
to display the coarse version before the whole resource is downloaded. Another example is when streaming proto-
cols like RTSP/RTP are used. In that case, "available" usually means that enough stream has been buffered before the

158

http://www.w3.org/TR/PNG/#4Concepts.EncodingPassAbs

SVG Tiny 1.2 Specification 12 Multimedia

playback may start. To reduce the amount of time required for a media to become available, authors are encour-
aged to use the 'prefetch’ element to signal that external resources have to be prefetched.

12.1.3 Platform limits

Particular platforms may have restrictions on the number of audio voices or channels that can be mixed, or the
number of video streams that may be presented concurrently. Since these vary, the SVG language itself does not
impose any such limits on audio or video.

12.1.4 Audio mixing for 'audio' and 'video' elements

If two or more audio streams from 'audio’ or 'video' elements are active at the same time, their rendering should be
mixed in proportions equal to the computed value of the 'audio-level' property of each audio stream. An audio
stream may be active if it is referred to by an active audio element or if it is part of video content that is referred to
by an active 'video' element.

12.1.5 Discrete control of audio and video

Authors may wish to independently control both the visual and auditory aspects of the 'video' element. Through a
combination of the various properties available, all permutations are possible, as described below:

« play both video and audio: this is the default setting, and nothing special needs to be done

« play video with no audio: use the 'audio-level' property with a value of 0

- play audio with no video: use the 'visibility' property with a value of hidden

« hide both video and audio: use the 'display' property with a value of none

12.1.6 Controlling media playback through script

In addition to setting fixed timeline attribute values or using declarative animation to control the playback of media
elements such as 'audio’, 'video', and 'animation’, SVG allows scripted control. See the uDOM section on Multimedia
control for details.

12.2 The 'audio' element

The 'audio' element specifies an audio file which is to be rendered to provide synchronized audio. The usual SMIL
timing features are used to start and stop the audio at the appropriate times. An 'xlink:href' must be used to link to
the audio content. No visual representation shall be produced. However, content authors can if desired create
graphical representations of control panels to start, stop, pause, rewind, or adjust the volume of audio content.

The 'audio’ element must reference content with an audio stream.

Schema: audio

<define name='audio'>
<element name='audio'>
<ref name='audio.AT'/>
<ref name='audio.CM'/>
</element>
</define>

<define name='audio.AT' combine='interleave'>

<ref name='svg.Core.attr'/>

<ref name='svg.XLinkEmbed.attr'/>

<ref name='svg.Conditional.attr'/>

<ref name='svg.External.attr'/>

<ref name='svg.AnimateTiming.attr'/>

<ref name='svg.AnimateSync.attr'/>

<ref name='svg.Media.attr'/>

<ref name='svg.ContentTypeAnim.attr'/>
</define>

<define name='audio.CM'>
<zeroOrMore>

<choice>
<ref name='svg.Desc.group'/>
<ref name='svg.Animate.group'/>
<ref name='svg.Handler.group'/>
<ref name='svg.Discard.group'/>

</choice>

159

SVG Tiny 1.2 Specification 12 Multimedia

</zeroOrMore>
</define>

Attribute definitions:

xlink:href ="<IRI>"
An IRl reference. An invalid IRl reference is an unsupported value. An empty string value (xlink:href="") disables
playback of the element. The lacuna value is the empty string.

When the value of this attribute is animated or otherwise modified, if the media timeline can be controlled,
then the media timeline is restarted only if the 'syncBehavior' attribute is set to independent. If the media
timeline cannot be controlled, then the media timeline is unaffected by such modification.

Animatable: yes.

type = "<content-type>"
The audio format. Implementations may choose not to fetch audios of formats that they do not support. For
optimizing download time by requiring a particular content format authors are encouraged to use
'requiredFormats’, instead of 'type'.
Animatable: yes.

Runtime synchronization attributes
See definition.

SVG timing attributes
If the 'fill' attribute is specified, it has no effect. See definition.

The following example illustrates the use of the 'audio' element. When the button is pushed, the audio file is played
three times.

Example: media01.svg

<svg width="100%" height="100%" version="1.2" baseProfile="tiny"
xmlns="http://www.w3.0rg/2000/svg"
xmlns:xlink="http://www.w3.0rg/1999/x1link">

<desc>SVG audio example</desc>

<audio xlink:href="ouch.ogg" audio-level="0.7" type="application/ogg"
begin="mybutton.click” repeatCount="3"/>

<g xml:id="mybutton">
<rect width="150" height="50" x="20" y="20" rx="10"
fill="#ffd" stroke="#933" stroke-width="5"/>
<text x="95" y="55" text-anchor="middle"” font-size="30"
fill="#933">Press Me</text>
</g>

<rect x="0" y="0" width="190" height="90" fill="none" stroke="#777"/>

</svg>

[Press Me

This specification does not mandate support for any particular audio format. Content can check for a particular au-
dio codec with the 'requiredFormats' conditional processing attribute.

160

SVG Tiny 1.2 Specification 12 Multimedia

12.3 The 'video' element

The 'video' element specifies a video file which is to be rendered to provide synchronized video. The usual SMIL tim-
ing features are used to start and stop the video at the appropriate times. An 'xlink:href' must be used to link to the
video content. It is assumed that the video content may also include an audio stream, since this is the usual way that
video content is produced, and thus the audio shall be controlled by the 'video' element's media attributes.

The 'video' element must reference content with a video stream.

The 'video' element produces a rendered result, and thus has 'width’, 'height’, 'x' and 'y" attributes.

The 'video' element can have two different transform behaviors, either geometric or pinned, depending on the
value of the transformBehavior attribute. If the transform behavior is geometric, the 'video' element must establish a
new viewport for the referenced document as described in Establishing a new viewport. In this case, the 'video' ele-
ment supports the 'viewport-fill' and 'viewport-fill-opacity' properties. The bounds for the new viewport shall be
defined by attributes 'x, 'y', 'width' and 'height'. The placement and scaling of the referenced video shall be con-
trolled by the 'preserveAspectRatio’ attribute on the 'video' element. In the case of pinned transform behavior, a new
viewport must not be established. As such, ‘'viewport-fill', ‘'viewport-fill-opacity’, 'width’, ‘height’, or
'preserveAspectRatio’ have no effect.

The value of the 'viewBox' attribute to use when evaluating the 'preserveAspectRatio’ attribute shall be defined
by the referenced content. For content that clearly identifies a 'viewBox' that value shall be used. For most video
content the bounds of the video should be used (i.e. the 'video' element has an implicit 'viewBox' of "0 0 video-width
video-height"). Where no value is readily available the 'preserveAspectRatio’ attribute shall be ignored.

Schema: video

<define name='video'>
<element name='video'>
<ref name='video.AT'/>
<ref name='video.CM'/>
</element>
</define>

<define name='video.AT' combine='interleave'>
<ref name='svg.Core.attr'/>
<ref name='svg.FocusHighlight.attr'/>
<ref name='svg.Media.attr'/>
<ref name='svg.XLinkEmbed.attr'/>
<ref name='svg.Conditional.attr'/>
<ref name='svg.External.attr'/>
<ref name='svg.AnimateTiming.attr'/>
<ref name='svg.AnimateSync.attr'/>
<ref name='svg.Focus.attr'/>
<ref name='svg.Transform.attr'/>
<ref name='svg.XYWH.attr'/>
<ref name='svg.PAR.attr'/>
<ref name='svg.ContentTypeAnim.attr'/>
<ref name='svg.InitialVisibility.attr'/>
<optional>
<attribute name='transformBehavior' svg:animatable='no’' svg:inheritable='false’'>
<choice>
<value>geometric</value>
<value>pinned</value>
<value>pinned90</value>
<value>pinned180</value>
<value>pinned270</value>
</choice>
</attribute>
</optional>
<optional>
<attribute name='overlay' svg:animatable='no' svg:inheritable='false'>
<choice>
<value>none</value>
<value>top</value>
</choice>
</attribute>
</optional>
</define>

<define name='video.CM'>
<zeroOrMore>

161

SVG Tiny 1.2 Specification 12 Multimedia

<choice>
<ref name='svg.Desc.group'/>
<ref name='svg.Animate.group'/>
<ref name='svg.Handler.group'/>
<ref name='svg.Discard.group'/>

</choice>

</zeroOrMore>
</define>

Attribute definitions:

x = "<coordinate>"
The x-axis coordinate of the rectangular region into which the video is placed. The lacuna value is '0".
If the transform behavior of the video is geometric, this coordinate is one corner of the rectangular region.
If it is pinned, this coordinate is the pin point of the rectangular region. See the 'transformBehavior' attribute
for the interpretation of this attribute.
Animatable: yes.

y ="<coordinate>"
The y-axis coordinate of the rectangular region into which the video is placed. The lacuna value is '0".
If the transform behavior of the video is geometric, this coordinate is one corner of the rectangular region.
If it is pinned, this coordinate is the pin point of the rectangular region. See the ‘transformBehavior' for the
interpretation of this attribute.
Animatable: yes.

width ="<length>"
The width of the rectangular region into which the video is placed. A negative value shall be treated as
unsupported. The lacuna value is '0'.
If the transform behavior of the video is geometric, a value of zero shall disable rendering of the element. If
it is pinned, this attribute shall have no effect on rendering.
Animatable: yes.

height = "<length>"
The height of the rectangular region into which the video is placed. A negative value shall be treated as
unsupported. The lacuna value is '0'.
If the transform behavior of the video is geometric, a value of zero shall disable rendering of the element. If
it is pinned, this attribute shall have no effect on rendering.
Animatable: yes.

xlink:href ="<IRI>"
An IRl reference to the video content. An invalid IRI reference is an unsupported value. An empty string value
(xlink:href="") disables rendering of the element. The lacuna value is the empty string.

When the value of this attribute is animated or otherwise modified, if the media timeline can be controlled,
then the media timeline is restarted only if the 'syncBehavior' attribute is set to independent. If the media
timeline cannot be controlled, then the media timeline is unaffected by such modification.

Animatable: yes.

preserveAspectRatio = [defer] <align> [<meet>]
Indicates whether or not to force uniform scaling. (See the 'preserveAspectRatio’ for the syntax of <align> and
the interpretation of this attribute.)
Animatable: yes.

type = "<content-type>"
The video format. Implementations may choose not to fetch videos of formats that they do not support. For
optimizing download time by requiring a particular content format authors are encouraged to use
'requiredFormats’, instead of 'type'.
Animatable: yes.

162

SVG Tiny 1.2 Specification 12 Multimedia

transformBehavior = "geometric" | "pinned" | "pinned90" | "pinned180" | "pinned270"
See attribute definition for description.
Animatable: no.

overlay ="top" | "none"

See attribute definition for description.
Animatable: no.

initialVisibility = "whenStarted" | "always'
See attribute definition for description.
Animatable: no.

focusable = "true" | "false" | "auto"
See attribute definition for description.
Animatable: yes.

Navigation Attributes
See definition.

Runtime synchronization attributes
See definition.

SVG timing attributes
See definition.

The following example illustrates the use of the 'video' element. The video content is partially obscured by other
graphics elements. This example shows the 'video' element being rendered into an offscreen buffer and then trans-
formed and composited in the normal way, so that it behaves like any other graphical primitive such as an image or
a rectangle. In this manner, the 'video' element may be scaled, rotated, skewed, displayed at various sizes, and
animated.

Example: media02.svg

<svg xmlns="http://www.w3.0rg/2000/svg" version="1.2" baseProfile="tiny"
xmlns:xlink="http://www.w3.0rg/1999/x1link"
width="420" height="340" viewBox="0 @ 420 340">

<desc>SVG 1.2 video example</desc>
<g>
<circle cx="0" cy="0" r="170" fill="#da4" fill-opacity="0.3"/>
<video xlink:href="noonoo.avi” audio-level=".8" type="video/x-msvideo”
width="320" height="240" x="50" y="50" repeatCount="indefinite"/>
<circle cx="420" cy="340" r="170" fill="#927" fill-opacity="0.3"/>
<rect x="1" y="1" width="418" height="338" fill="none"
stroke="#777" stroke-width="1"/>

</g>

</svg>

163

SVG Tiny 1.2 Specification 12 Multimedia

Show this example of the 'video' element (requires an SVG Tiny 1.2 viewer and support for a Windows AVI using Mo-
tion JPEG; this is a 3.7M video file).

This specification does not mandate support for any particular video format. Content can check for a particular
video codec with the 'requiredFormats' conditional processing attribute.

The content creator should be aware that video is a feature that may not be available on all target devices. In or-
der to create interoperable content the content creator should provide a fall-back alternative by using the 'switch’
element. The following feature string is defined for checking for video support: http://www.w3.org/Graphics/SVG/fea-
ture/1.2/#Video. Video may not be completely supported on a resource limited device. SVG Tiny 1.2 introduces more
granular video rendering control to provide reproducible results in all environments. This control is documented in
the two following sections.

12.3.1 Restricting the transformation of the 'video' element

Transforming video is an expensive operation that should be used with caution, especially on content targeted for
mobile devices. Using transformed video may also lead to non-interoperable content since not all devices will sup-
port this feature. To give the content creator control over video transformation, SVG Tiny 1.2 introduces the
'transformBehavior' attribute and a corresponding feature string: http://www.w3.org/Graphics/SVG/feature/1.2/
#TransformedVideo. A viewer supporting video transformation must treat the 'video' element like any other element
regarding transformations. A viewer not supporting video transformation must treat the video as a point (given by
the 'x' and 'y' attributes). The 'width' and 'height' attributes shall be ignored if present and instead the width and
height (in device pixels) shall be taken from the media itself. The video must be displayed with its center aligned
with the origin of the local coordinate system.

A content creator can use the 'transformBehavior' attribute to explicitly choose the transform behavior on a
viewer supporting transformed video. This might be of interest to increase the performance of content targeting re-
stricted devices.

Attribute definition:

transformBehavior = "geometric" | "pinned" | "pinned90" | "pinned180" | "pinned270"
Defines whether a video is transformed/resampled (in essence treated as a geometric rectangle) or pinned/
unresampled (i.e., treated as a pin point for a non-geometric blit region).
The attribute can take one of the five following values:

164

/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/examples/noonoo.svg

SVG Tiny 1.2 Specification 12 Multimedia

geometric
The media shall be treated as a geometric rectangle in the local coordinate system, defined by 'x', 'y,
'width' and 'height' attributes. The media must be resampled to fill the rectangle and is subject to
transformation. This is the lacuna value.

pinned
The video is displayed without rotation.

pinned90
The video is displayed with a fixed rotation equivalent to the effect of transform="rotate(90)".

pinned180
The video is displayed with a fixed rotation equivalent to the effect of transform="rotate(180)".

pinned270
The video is displayed with a fixed rotation equivalent to the effect of transform="rotate(270)".

If one of the four values 'pinned’, 'pinned90', 'pinned180' and 'pinned270’ is specified, the media shall be treated
as a point, defined by 'x’' and 'y attributes. This point must be transformed to the nearest actual device pixel.
Video at the native resolution given by the media shall then be painted on a region whose center is the pin
point and whose width and height are defined by the media. The pixels must be aligned to the device pixel
grid and there shall be no resampling. The values of the 'width' and 'height' attributes in this case shall have no
effect on the rendering of the video.

Animatable: no.

12.3.2 Restricting compositing of the 'video' element
For the same reasons as restricting transformations the content creator might need to restrict the compositing of
video with other elements. Not all devices support compositing of the video element with other content. In that
case it is necessary to render the video on top of all other svg content. SVG Tiny 1.2 therefore introduces the
‘overlay' attribute and a corresponding feature string: http://www.w3.org/Graphics/SVG/feature/1.2/#ComposedVideo.
A viewer supporting compositing of video must render the 'video' element according to the SVG painter's model,
and thus graphical elements might be rendered on top of the video. A viewer not supporting video compositing
must always render the video on top of all other SVG elements.

A content creator can use the 'overlay' attribute to explicitly choose the compositing behavior on a viewer sup-
porting composited video. This may increase the performance of content that is targeted at restricted devices.

Attribute definition:

overlay ="top" | "none"
Defines whether a 'video' is rendered according to the SVG painter's model or if it must be positioned on top of
all other SVG elements.
The attribute value can be either of the following:

top
The 'video' element must not be composited on to the background as usual. Instead a temporary video
canvas must be set aside and drawn last in the whole document's compositing process.

none
The 'video' must be rendered according to the SVG painter's model. This is the lacuna value.
Animatable: no.

If multiple 'video' elements have overlay="top", the drawing order of those 'video' elements follows the typical SVG
rendering order.

12.3.3 Examples

The following example illustrates the use of the http://www.w3.org/Graphics/SVG/feature/1.2/#TransformedVideo
feature string. A 'switch' element is wrapped around two groups. The first group will render a scaled and rotated
video sequence on a viewer supporting video transformations while the second group will render the untrans-
formed video on viewers that don't support video transformations.

165

SVG Tiny 1.2 Specification 12 Multimedia

Example: media04.svg

<svg version="1.2" baseProfile="tiny"” xmlns="http://www.w3.org/2000/svg"
xmlns:xlink="http://www.w3.0rg/1999/x1ink"
width="100%" height="100%" viewBox="0 @ 400 300">
<desc>Example of switching on the http://www.w3.org/Graphics/SVG/feature/1.2/#TransformedVideo feature
string</desc>
<switch>

<!-- Transformed video group -->
<g requiredFeatures="http://www.w3.org/Graphics/SVG/feature/1.2/#TransformedVideo”
transform="translate(-21,-34) scale(1.24) rotate(-30)">
<rect x="6" y="166" width="184" height="140" fill="none" stroke="blue"
stroke-width="4" />
<video xlink:href="ski.avi"” audio-level=".8" type="video/x-msvideo”
x="10" y="170" width="176" height="132"/>
</g>

<!-- Untransformed video group -->
<g>
<rect x="6" y="166" width="184" height="140" fill="none" stroke="blue"
stroke-width="4"/>
<video xlink:href="ski.avi"” audio-level=".8" type="video/x-msvideo”
x="98" y="236"/>
</g>
</switch>
</svg>

SYGT 1.2 viewer supporting transformed yvideo. SYGT 1.2 viewer not supporting transformed video.

The above images show the rendering of Example media04 in two SVG user agents: the first one supporting trans-
formed video (on the left) and the second one not (on the right).

The following example illustrates the use of the http://www.w3.org/Graphics/SVG/feature/1.2/#ComposedVideo
feature string. A 'switch' element is wrapped around two groups. The first group must render a video with text com-
posited on top on viewers supporting composed video while the second group must render a video with text
placed above the video on viewers that do not support composed video.

Example: media05.svg

<?xml version="1.1"7>
<svg version="1.2" baseProfile="tiny"” xmlns="http://www.w3.org/2000/svg"
xmlns:xlink="http://www.w3.0rg/1999/x1link"
width="100%" height="100%" viewBox="0 @ 400 300">
<desc>Example of switching on the http://www.w3.org/Graphics/SVG/feature/1.2/#ComposedVideo feature
string</desc>

166

/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/examples/media04.svg
/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/examples/media05.svg

SVG Tiny 1.2 Specification 12 Multimedia

<rect x="2" y="2" width="396" height="296" fill="none" stroke="black"
stroke-width="2" />

<rect x="106" y="66" width="184" height="140" fill="none" stroke="blue"
stroke-width="4" />

<switch>

<!-- Composited video group -->
<g transform="translate(100 0)" requiredFeatures="http://www.w3.org/Graphics/SVG/feature/1.2/#ComposedVideo">
<video xlink:href="ski.avi"” audio-level=".8" type="video/x-msvideo”
x="10" y="70" width="176" height="132"/>
<text x="20" y="100" fill-opacity="0.5" fill="blue" font-size="20">Composited title.</text>
</g>

<!-- Overlayed video group -->
<g transform="translate(100 0)" font-size="18">
<video xlink:href="ski.avi"” audio-level=".8" type="video/x-msvideo”
x="10" y="70" overlay="top" width="176" height="132"/>
<text x="15" y="60" fill="blue" fill-opacity="0.5" >Non-composited title.</text>
</g>
</switch>
</svg>

Non-composited title.

167

SVG Tiny 1.2 Specification 12 Multimedia

The above images show the rendering of Example media05 in two SVG user agents: the first one supporting com-
posed video (on the left) and the second one not (on the right).

12.4 The 'animation' element

The 'animation’ elements specifies an SVG document providing synchronized animated vector graphics. Like 'video’,
the 'animation’ element is a graphical object with size determined by its 'x', 'y", 'width' and 'height' attributes. Further-
more, the 'animation' element supports timing and synchronization attributes which allow multiple animations to
run with independent timelines in the same SVG document. Just like 'video' and 'image’, the 'animation' element
must not point to document fragments within SVG files.

An 'animation' element establishes a new viewport for the referenced file as described in Establishing a new
viewport. The bounds for the new viewport are defined by attributes 'x', 'y, 'width' and ‘'height'. The
'preserveAspectRatio’ attribute on the rootmost 'svg' element in the referenced SVG document shall be ignored (as
are its 'width' and 'height' attributes). Instead, the 'preserveAspectRatio’ attribute on the referencing 'animation' ele-
ment shall define how the SVG content is fitted into the viewport. The same rule applies for the 'viewport-fill' and
‘'viewport-fill-opacity' properties.

The value of the 'viewBox' attribute to use when evaluating the 'preserveAspectRatio’ attribute is defined by the
referenced document's 'viewBox' value. When no value is available the 'preserveAspectRatio’ attribute must be ig-
nored, and only the translation due to the 'x' and 'y' attributes of the viewport must be used to display the content.

The referenced SVG document represents a separate document which generates its own parse tree and docu-
ment object model. Thus, there is no inheritance of properties into the referenced animation. For details, see Pro-
cessing of external references to documents.

The SVG specification does not specify when an animation that is not being displayed should be loaded. A user
agent is not required to load animation data for an animation that is not displayed (e.g. display="none"). However, it
should be noted that this may cause a delay when an animation becomes visible for the first time. In the case where
an author wants to suggest that the user agent load animation data before it is displayed, they should use the
'‘prefetch’ element.

Schema: animation

<define name='animation’'>
<element name='animation’'>
<ref name='animation.AT'/>
<ref name='animation.CM'/>
</element>
</define>

<define name='animation.AT' combine='interleave'>
<ref name='svg.Core.attr'/>
<ref name='svg.FocusHighlight.attr'/>
<ref name='svg.Media.attr'/>
<ref name='svg.Conditional.attr'/>
<ref name='svg.External.attr'/>
<ref name='svg.XLinkEmbed.attr'/>
<ref name='svg.Focus.attr'/>
<ref name='svg.AnimateTiming.attr'/>
<ref name='svg.AnimateSync.attr'/>
<ref name='svg.XYWH.attr'/>
<ref name='svg.PAR.attr'/>
<ref name='svg.Transform.attr'/>
<ref name='svg.InitialVisibility.attr'/>
</define>

<define name='animation.CM'>
<zeroOrMore>
<choice>
<ref name='svg.Desc.group'/>
<ref name='svg.Animate.group'/>
<ref name='svg.Discard.group'/>
<ref name='svg.Handler.group'/>
</choice>
</zeroOrMore>
</define>

Attribute definitions:

168

SVG Tiny 1.2 Specification 12 Multimedia

x = "<coordinate>"
The x-axis coordinate of one corner of the rectangular region into which the animation is placed. The lacuna
value is'0'".
Animatable: yes.

y = "<coordinate>"
The y-axis coordinate of one corner of the rectangular region into which the animation is placed. The lacuna
valueis'0".
Animatable: yes.

width ="<length>"
The width of the rectangular region into which the animation is placed. A negative value is unsupported. A
value of zero must disable rendering of the element. The lacuna value is '0'.
Animatable: yes.

height = "<length>"
The height of the rectangular region into which the animation is placed. A negative value is unsupported. A
value of zero must disable rendering of the element. The lacuna value is '0'.
Animatable: yes.

xlink:href = "<IRI>"
An IRl reference to the animation data. An invalid IRI reference is an unsupported value. An empty attribute
value (xlink:href="") disables rendering of the element. The lacuna value is the empty string.

When the value of this attribute is animated or otherwise modified, if the media timeline can be controlled,
then the media timeline is restarted only if the 'syncBehavior' attribute is set to independent. If the media
timeline cannot be controlled, then the media timeline is unaffected by such modification.

Animatable: yes.

preserveAspectRatio = ["defer"] <align> [<meet>]
Indicates whether or not to force uniform scaling. (See The 'preserveAspectRatio' attribute for the syntax of
<align> and the interpretation of this attribute.)
Animatable: yes.

initialVisibility = "whenStarted" | "always"
See attribute definition for description.
Animatable: no.

focusable = "true" | "false" | "auto"
See attribute definition for description.
Animatable: yes.

Navigation Attributes
See definition.

Runtime synchronization attributes
See definition.

SVG timing attributes
See definition.

The example below shows basic usage of the 'animation’ element. For another example, see the use and animation
example in the Linking chapter.

Example: media03.svg

<svg xmlns="http://www.w3.0rg/2000/svg"
xmlns:xlink="http://www.w3.0rg/1999/x1link"
version="1.2" baseProfile="tiny">
<desc>Example of two animation elements pointing to the same content.</desc>

169

SVG Tiny 1.2 Specification 12 Multimedia

" "

<animation begin="1" dur="3" repeatCount="1.5" fill="freeze’
x="100" y="100" width="50" height="50"
xlink:href="bouncingBall.svg"/>

<animation begin="2" x="300" y="100" width="50" height="50"
xlink:href="bouncingBall.svg"/>
</svg>

12.5 The 'audio-level' property

The 'audio-level' property can be applied to the 'audio’, 'video' and 'animation’ elements described above, the 'use’
element, plus container elements such as the 'g' element.

‘audio-level’
Value: <number> | inherit
Initial: 1.0
Applies to: media elements, 'use' and container elements
Inherited: no
Percentages: N/A
Media: visual, audio
Animatable: yes

Computed value: Specified value, except inherit

The 'audio-level' property specifies a value that is used to calculate the volume of a particular element. Values below
1.0 decrease it and a value of zero silences it.

An element's volume is the product of its clamped 'audio-level' property and either the clamped computed
value of its parent, or the initial value (1.0) if it has no parent. Audio level clamping occurs for any values outside the
range 0.0 (silent) to 1.0 (system volume). (See Clamping values which are restricted to a particular range.)

This sentence is informative: An element's volume cannot be louder than the volume of its parent.

The output signal level is calculated using the logarithmic scale described below (where vol is the value of the
element volume):

dB change in signal level = 20 * logl@(vol)

User agents may limit the actual signal level to some maximum, based on user preferences and hardware
limitations.

If the element has an element volume of 0, then the output signal must be inaudible. If the element has an ele-
ment volume of 1, then the output signal must be at the system volume level. Neither the ‘audio-level' property nor
the element volume override the system volume setting.

12.6 Attributes for runtime synchronization

SVG Tiny 1.2 supports the five attributes listed below from SMIL 2.1 to control runtime synchronization of timed ele-
ments. In SVG Tiny 1.2 the 'syncBehavior', 'syncTolerance' and 'syncMaster' attributes can be specified on the 'audio’,
'video' and 'animation’ elements. The 'syncBehaviorDefault' and 'syncToleranceDefault' attributes can be specified on
the 'svg' element.

Attribute definitions:

syncBehavior = "canSlip" | "locked" | "independent" | "default"
See the SMIL 2.1 definition of 'syncBehavior' ([SMIL21], section 10.4.1).
Animatable: no.

syncBehaviorDefault = "canSlip" | "locked" | "independent" | "inherit"
See the SMIL 2.1 definition of 'syncBehaviorDefault' ((SMIL21], section 10.4.1).
Animatable: no.

170

http://www.w3.org/TR/CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/2005/REC-SMIL2-20051213/
http://www.w3.org/TR/2005/REC-SMIL2-20051213/smil-timing#adef-syncBehavior
http://www.w3.org/TR/2005/REC-SMIL2-20051213/smil-timing#adef-syncBehaviorDefault

SVG Tiny 1.2 Specification 12 Multimedia

syncTolerance = "<Clock-value>" | "default"
See the SMIL 2.1 definition of 'syncTolerance' (SMIL21], section 10.4.1).
Animatable: no.

syncToleranceDefault = "<Clock-value>" | "inherit"

See the SMIL 2.1 definition of 'syncToleranceDefault' ([SMIL21], section 10.4.1).
Animatable: no.

syncMaster = "<boolean>"
See the SMIL 2.1 definition of 'syncMaster' ([SMIL21], section 10.4.1).
Animatable: no.

Example: video content synchronized with some text

The two files below illustrate how it is possible to make sure some video content can be synchronized with some
text using the synchronization attributes.

Example: sync-attr-main.svg

<?xml version="1.0"7>
<svg xmlns="http://www.w3.0rg/2000/svg"
xmlns:xlink="http://www.w3.0rg/1999/x1link"
version="1.2" baseProfile="tiny"
viewBox="0 0 400 100" height="100%" width="100%" syncBehaviorDefault="1ocked">

<title>Syncx Attributes</title>
<desc>An example which illustrates the use of sync* attributes</desc>

<video x="10" y="10" xml:id="myclip”
xlink:href="rtsp://www.example.org/mysong.m4v"” syncMaster="true"/>
<animation x="10" y="50" xml:id="mylyrics"” xlink:href="timed-lyrics.svg"/>
</svg>

Example: timed-lyrics.svg

<?xml version="1.0"7>

<svg xmlns="http://www.w3.0rg/2000/svg"
xmlns:x1link="http://www.w3.0rg/1999/x1link"
version="1.2" baseProfile="tiny"
viewBox="0 @ 400 100" height="100%" width="100%">

<title>Synchronizing lyrics with video</title>
<desc>This document contains the textual lyrics to synchronize with some video content in the referencing
document</desc>

<g fill="blue"” font-family="Arial” font-size="10" transform="translate(20, 20)">
<text xml:id="Text@" display="none">This is some text</text>
<set xlink:href="#Text@" attributeName="display” to="inline"” begin="0" end="1"/>
<text xml:id="Text1@" display="none">simulating some lyrics</text>
<set xlink:href="#Text10" attributeName="display” to="inline" begin="1.1" end="2"/>
<text xml:id="Text20" display="none">displayed synchronously</text>
<set xlink:href="#Text20" attributeName="display” to="inline" begin="2.1" end="3"/>
<text xml:id="Text30" display="none">with some video</text>
<set xlink:href="#Text30" attributeName="display” to="inline" begin="3.1" end="4"/>
<text xml:id="Text40" display="none">in a different document</text>
<set xlink:href="#Text40" attributeName="display” to="inline" begin="4.1" end="5"/>

</g>

</svg>

Since the timed elements (‘video' and 'animation’) do not specify their runtime synchronization behavior using the
'syncBehavior' attribute, the behavior is deduced from the 'syncBehaviorDefault' attribute on the nearest ancestor, in
this case on the 'svg' element.

This attribute has the value 'locked', which means that all the timed elements in the subtree share the same
timeline. In this case, the main scene timeline, the 'video' and 'animation' timelines are then locked to each other.

171

http://www.w3.org/TR/2005/REC-SMIL2-20051213/smil-timing#adef-syncTolerance
http://www.w3.org/TR/2005/REC-SMIL2-20051213/smil-timing#adef-syncToleranceDefault
http://www.w3.org/TR/2005/REC-SMIL2-20051213/smil-timing#adef-syncMaster
/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/examples/sync-attr-main.svg
/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/examples/timed-lyrics.svg

SVG Tiny 1.2 Specification 12 Multimedia

Then, the master is given to the video, which means that if the video is stalled in the streaming session, the
timeline of the video will be paused and, as a consequence, the timeline of the lyrics and of the main scene will be
paused as well.

12.7 The 'initialVisibility' attribute

The 'initialVisibility' attribute applies to visual media elements (‘video' and 'animation') and is used to control the vis-
ibility of the media object before its first active duration period has started. A visible media element that is visible
before activation shall have its first frame displayed. For an 'animation' element this means the referenced file
rendered at time 0. For a 'video' element it means the first frame of the video sequence.

Attribute definition:

initialvisibility = "whenStarted" | "always"
Controls the visibility of the media object before its first active duration period has started.
The attribute value can be either of the following:

whenStarted
The lacuna value. Indicates that the media object is not displayed, as though the element had
display="none", until its first active duration starts.

always
The media element is visible from the initialization of the parent time container (i.e. time 0 of the parent
SVG document). During this time, and until the active duration starts, the media element is initialized but
remains inactive.

Animatable: no.

172

SVG Tiny 1.2 Specification 13 Interactivity

13 Interactivity

Contents
LC 20 I L0140 18 Tt « o T T 173
13.2 Complete list Of SUPPOITEA EVENTS . ..o\ttt ettt et e ettt e e e et e e e et a e e enananas 173
13,3 USEr INTeI At EVENES . . ettt ettt et et e e ettt e e e e e e 177
1304 POINTr VNS .ottt ettt ettt e e e e e e e e e 178
LS 20 T (A=Y= o £ P 178
LS FCCTN 1S VA=Y= 0 PP 178
137 BVENT IO .ot e 179
138 EVeNt disPatChingottt e e e e e e e 179
13.9 Processing order for user interface @VeNTS.ttt e et e e e 179
13.10 The POINTEr-EVENTS' PrOPEITY. . . . ettt et ettt e ettt e e e e e et et e e e e e e e e aeeans 180
13.11 Magnification and Panning.ottt e e et 182
1312 EleMENT fOCUS. . ettt ettt ettt et e e e e e e e e e e e e e 182
13.12.1 The 'focusable attributeo. i e e e 182
LS 28 1 3 N\ 1V T =« o PP 183
13.13.1 Navigation behavior e e e e et e 183
13.13.2 SPECfYiNg NAVIGAtiONttt ettt ettt e et e ettt e e, 184
13.13.3 Specifying focus highlightingo e 187
13.13.4 Obtaining and listening to focus programmatically 188

13.1 Introduction

SVG content can be interactive (i.e., responsive to user-initiated events) by utilizing the following features in the SVG
language:
+ User-initiated actions such as a key-press can cause timed elements to start or stop, scripts to execute or
'listener' elements to trigger 'handler' elements.
« The user can initiate hyperlinks to new Web pages (see the 'a' element) by actions such as a stylus clickon a
particular graphics element.
+ In many cases, depending on the value of the 'zoomAndPan' attribute on the 'svg' element and on the
characteristics of the SVG user agent, users are able to zoom into and pan around SVG content.
This chapter describes:
« information about events, including under which circumstances events are triggered
+ how to indicate whether a given document can be zoomed and panned
« element focus and navigation
Related information can be found in other chapters:
+ hyperlinks are discussed in Linking
«+ 'script' and 'handler' elements are discussed in Scripting
« timed elements are discussed in Animation and Multimedia chapters

13.2 Complete list of supported events

The following aspects of SVG are affected by events:
« The SVG uDOM enables a script to register event listeners so that the script can be invoked when a given event
occurs.
« The'ev:event' attribute on the 'handler' element specifies for which event the 'handler' should trigger.
- Timed elements can be defined to begin or end based on events.
The following table lists all of the events which must be recognized and supported in SVG. The "Description”
column describes the required conditions for the event to occur.

Event Type Description Animation | Bubbles | Cancelable uDOM
event interface
name

173

SVG Tiny 1.2 Specification

13 Interactivity

DOMFocusin

DOMFocusOut

DOMACctivate

click

mousedown

mouseup

mouseover

mousemove

Occurs when an element receives focus. focusin
See the DOM 2 Events definition of

DOMFocusIn ([IDOM2EVENTS], section

1.6.1).

Occurs when an element loses focus. focusout
See the DOM 2 Events definition of

DOMFocusOut ([DOM2EVENTS], section

1.6.1).

Occurs when an element is activated, for activate
instance, through a mouse click or a
keypress.
See the DOM 2 Events definition of
DOMACctivate ((DOM2EVENTS], section
1.6.1).

Occurs when the pointing device button click
is clicked over an element. A click is
defined as a mousedown and mouseup
over the same screen location. The se-
guence of these events is: mousedown,
mouseup, click. If multiple clicks occur at
the same screen location, the sequence
repeats with the detail attribute incre-
menting with each repetition.

See the DOM 2 Events definition of
click (DOM2EVENTS], section 1.6.2).

Occurs when the pointing device button | mousedown
is pressed over an element.
See the DOM 2 Events definition of
mousedown ([DOM2EVENTS], section
1.6.2).

Occurs when the pointing device button | mouseup
is released over an element.
See the DOM 2 Events definition of
mouseup ([DOM2EVENTS], section
1.6.2).

Occurs when the pointing device is mouseover
moved onto an element.
See the DOM 2 Events definition of
mouseover ((DOM2EVENTS], section
1.6.2).

Occurs when the pointing device is mousemove
moved while it is over an element.
See the DOM 2 Events definition of
mousemove ([DOM2EVENTS], section
1.6.2).

174

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

No

Yes

Yes

Yes

Yes

Yes

Yes

UIEvent

UIEvent

UIEvent

MouseEvent

MouseEvent

MouseEvent

MouseEvent

MouseEvent

http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/events.html#Events-UIEvent
http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/events.html#Events-UIEvent
http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/events.html#Events-UIEvent
http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/events.html#Events-UIEvent
http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/events.html#Events-UIEvent
http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/events.html#Events-UIEvent
http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/events.html#Events-MouseEvent
http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/events.html#Events-MouseEvent
http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/events.html#Events-MouseEvent
http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/events.html#Events-MouseEvent
http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/events.html#Events-MouseEvent
http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/events.html#Events-MouseEvent
http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/events.html#Events-MouseEvent
http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/events.html#Events-MouseEvent
http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/events.html#Events-MouseEvent
http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/events.html#Events-MouseEvent

SVG Tiny 1.2 Specification

mouseout

mousewheel

textinput

keydown

keyup

load

SVGLoad

resize

Occurs when the pointing device is mouseout Yes Yes
moved away from an element.
See the DOM 2 Events definition of
mouseout ((DOM2EVENTS], section
1.6.2).

Occurs when a rotational input device none Yes Yes
has been activated.

See the description of the
MouseWheelEvent event for details.

One or more characters have been none Yes Yes

entered.
See the Text events section below

for details.

A key is pressed down. none Yes Yes
See the Key events section below for

details.

A key is released. none Yes Yes
See the Key events section below for

details.

The event is triggered at the point at load No No

which the user agent finishes loading
the element and any dependent re-
sources (such as images, style sheets, or
scripts). In the case the element refer-
ences a script, the event will be raised
only after an attempt to interpret the
script has been made. Dependent re-
sources that fail to load will not prevent
this event from firing if the element that
referenced them is still in the document
tree unless they are designated as ex-
ternalResourcesRequired. The event is
independent of the means by which the
element was added to DOM tree.

This event is deprecated and is for back- none No No
wards compatibility only, see notes be-

low. The This event must be dispatched

immediately after the load event is

dispatched.

Occurs when a document view is being resize Yes No
resized. This event is only applicable to

'svg' elements and is dispatched after

the resize operation has taken place. The

target of the event is the 'svg' element.

175

13 Interactivity

MouseEvent

MouseWheelEvent

TextEvent

KeyboardEvent

KeyboardEvent

Event

Event

Event

http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/events.html#Events-MouseEvent
http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/events.html#Events-MouseEvent
http://www.w3.org/TR/SVG/struct.html#ExternalResourcesRequired
http://www.w3.org/TR/SVG/struct.html#ExternalResourcesRequired

SVG Tiny 1.2 Specification 13 Interactivity

SVGResize | This eventis deprecated and is for back- none Yes No Event
wards compatibility only, see notes be-
low. This event must be dispatched im-
mediately after the resize event is
dispatched.

scroll Occurs when a document view is being scroll Yes No Event
shifted along the X or Y or both axis,
either through a direct user interaction
or any change on the currentTranslate
property available on svGsvGElement inter-
face. This event is only applicable to 'svg'
elements and is dispatched after the
shift modification has taken place. The
target of the event is the 'svg' element.

SVGScroll This event is deprecated and is for back- none Yes No Event
wards compatibility only, see notes be-
low. This event must be dispatched im-
mediately after the scroll event is
dispatched.

SVGZoom Occurs when the zoom level of a docu- zoom No No Event
ment view is being changed, either
through a direct user interaction or any
change to the currentscale property
available on svGsvGElement interface. This
event is only applicable to 'svg' elements
and is dispatched after the zoom level
modification has taken place. The target
of the event is the 'svg' element.

SVGRotate | Occurs when the rotation of a document rotate No No Event
view is being changed, either through a
direct user interaction or any change to
the currentRotate property available on
sVGsVGElement interface. This event is only
applicable to 'svg' elements and is dis-
patched after the rotation modification
has taken place. The target of the event
is the 'svg' element.

beginEvent | Occurs when a timed element begins. beginEvent Yes No TimeEvent
See the SMIL 2.1 definition of be-
ginEvent ((DOM2EVENTS], section
10.6.2).

endEvent Occurs when a timed element ends. endEvent Yes No TimeEvent
See the SMIL 2.1 definition of en-
dEvent ((DOM2EVENTS], section 10.6.2).

repeatEvent | Occurs when a timed element repeats. It | repeatEvent Yes No TimeEvent
is raised each time the element repeats,
after the first iteration.

176

http://www.w3.org/TR/2005/REC-SMIL2-20051213/smil-timing.html#Timing-DOMEvents
http://www.w3.org/TR/2005/REC-SMIL2-20051213/smil-timing.html#Timing-DOMEvents
http://www.w3.org/TR/2005/REC-SMIL2-20051213/smil-timing.html#Timing-DOMEvents
http://www.w3.org/TR/2005/REC-SMIL2-20051213/smil-timing.html#Timing-DOMEvents

SVG Tiny 1.2 Specification 13 Interactivity

See the SMIL 2.1 definition of re-
peatEvent ((DOM2EVENTS], section
10.6.2).

loadstart A load operation has begun. none No No ProgressEvent
See the description of the pro-
gressEvent interface for details on this
event.

progress Progress has occurred in loading a given none No No ProgressEvent
resource.
See the description of the pro-
gressEvent interface for details on this
event.

loadend A load operation has completed. none No No ProgressEvent
See the description of the pro-
gressEvent interface for details on this
event.

SVGTimer Occurs when the specified timer interval none No No Event
has elapsed for a timer. This event is
triggered only by 'running' timers in the
current global execution context of the
SVG document (i.e. for timers which
have been instantiated via the svcclobal
interface and started via the start()
method of the svcTimer interface). The
target of the event is the sveTimer object
itself. The event processing is limited to
the at target phase.

See the description of the svGTimer in-
terface for more details.

Note that in order to unify event names with other W3C specifications, SVG Tiny 1.2 deprecates some of the SVG 1.1
event types. (The term "deprecate” in this case means that user agents which are compatible with both SVG 1.1 and
SVG Tiny 1.2 must support both the old deprecated event names and the new event names. Content creators who
are making content that targets SVG Tiny 1.2 should use the new event types, not the deprecated event types.)
Specifically:

« The "svGLoad" event is deprecated in favor of "1oad”

« The "svGResize" event is deprecated in favor of "resize”

« The "svGscroll” event is deprecated in favor of "scrol1”
Details on the values of attributes on the event object passed to event listeners for the event types defined in DOM
Level 2 Events can be found in the description for that event in that specification. For other event types, the values
of the attributes are are described elsewhere in this specification.

13.3 User interface events

On SVG user agents which support interactivity, it is common for authors to define SVG documents such that they
are responsive to user interface events. Among the set of possible user events are pointer events, keyboard events,
and document events.

In response to user interface (Ul) events, the author might start an animation, perform a hyperlink to another
Web page, highlight part of the document (e.g. change the color of the graphics elements which are under the

177

http://www.w3.org/TR/2005/REC-SMIL2-20051213/smil-timing.html#Timing-DOMEvents
http://www.w3.org/TR/2005/REC-SMIL2-20051213/smil-timing.html#Timing-DOMEvents

SVG Tiny 1.2 Specification 13 Interactivity

pointer), initiate a "roll-over" (e.g., cause some previously hidden graphics elements to appear near the pointer) or
launch a script which communicates with a remote database.
The following example shows the use of a boMActivate event to trigger an ECMAScript event handler:

Example: activate.svg

<?xml version="1.0" encoding="UTF-8"7>

<svg xmlns="http://www.w3.0rg/2000/svg" version="1.2" baseProfile="tiny"
xmlns:ev="http://www.w3.0rg/2001/xml-events”
width="6cm” height="5cm"” viewBox="0 @ 600 500">

<desc>Example: invoke an ECMAScript function from a DOMActivate event</desc>

<!-- ECMAScript to change the radius -->
<script type="application/ecmascript”><![CDATAL
function change(evt) {
var circle = evt.target;
var currentRadius = circle.getFloatTrait("r");
if (currentRadius == 100)
circle.setFloatTrait("r", currentRadius * 2);
else
circle.setFloatTrait("r", currentRadius * 0.5);

¥
11></script>

<!-- Act on each DOMActivate event -->
<circle cx="300" cy="225" r="100" fill="red">

<handler type="application/ecmascript” ev:event="DOMActivate”> change(evt); </handler>
</circle>

<text x="300" y="480" font-family="Verdana” font-size="35" text-anchor="middle">
Activate the circle to change its size
</text>
</svg>

13.4 Pointer events

Note: The W3C's Web Content Accessibility Guidelines (WCAG) advise content creators to create device-inde-
pendent content; in particular, content should not require that the user has access to a pointer device.

User interface events that occur because of user actions performed on a pointer device are called pointer events.

Many systems support pointer devices such as a mouse, trackball, stylus or joypad. On systems which use a
mouse, pointer events consist of actions such as mouse movements and mouse clicks. On systems with a different
pointer device, the pointing device often emulates the behavior of the mouse by providing a mechanism for equi-
valent user actions, such as a button to press which is equivalent to a mouse click.

One difference between stylus-based pointers and mouse-based pointers is that for a mouse, the cursor always
has a position; for a stylus which may be lifted, the cursor may only have a position when the stylus is tapped on the
screen. Thus, content which assumes that all pointer devices will generate mouseover and mouseout events will not
work on all devices.

13.5 Text events

User interface events that occur because of user actions that generate text are called text events. They are usually
generated by a keyboard, but can also be generated by a different input method such as an IME (for Japanese text,
for example), by speech input, etc. The event is dispatched whenever a string of Unicode characters is sent to the
document and is thus independent of the input device or method used.

13.6 Key events

Note: The W3C's Web Content Accessibility Guidelines (WCAG) advise content creators to create device-inde-
pendent content; in particular, content should not require that the user has access to a (full-size) keyboard.

178

/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/examples/activate.svg
http://www.w3.org/TR/WCAG/
http://www.w3.org/TR/WCAG/
http://www.w3.org/TR/WCAG/
http://www.w3.org/TR/WCAG/
http://www.w3.org/TR/WCAG/
http://www.w3.org/TR/WCAG/

SVG Tiny 1.2 Specification 13 Interactivity

User interface events that occur because of user actions that generate key presses (as opposed to text — for ex-
ample, function keys, key presses for a game, etc.) are called key events.

13.7 Event flow

DOM Level 2 Events defines the event flow model ((DOM2EVENTS], section 1.2), which defines three phases in which
event listeners in the document are triggered: capture, at target and bubbling. An SVG Tiny 1.2 user agent is not re-
quired to support the capture phase of the event flow model. If the capture phase is not supported:

+ Registering an event listener for the capture phase by passing true for the useCapture parameter of
EventTarget: :addEventListener() Will result in that listener never being triggered. Since there is no way with the
SVG uDOM to determine whether a listener has been registered on a node or not, such calls to
EventTarget::addEventListener() Can be ignored.

+ Registering an event listener for the capture phase by specifying phase="capture" on a 'listener' will result in an
event listener being registered for the at target and default phases, since a value of 'capture' will be ignored,
resulting in the lacuna value of 'default' being used. Conforming SVG documents must use 'default' as the value
of the 'phase’ attribute if it is specified.

+ Any keydown event that corresponds to an accessKey-value in an animation timing specifier list will never cause
any appropriate listeners to be triggered, since, as described in the definition of the accessKey-value syntax, the
SVG user agent behaves as if stopPropagation() and preventbefault() had been invoked on the event object in the
capture phase.

13.8 Event dispatching

For each pointer event, text event or key event, the SVG user agent determines the target object of a given event.
The target object must be the topmost graphics element or svGElementInstance object whose relevant graphical con-
tent is under the pointer (for pointer events) or has focus (for text and key events) at the time of the event. (See
property 'pointer-events' for a description of how to determine whether an element's relevant graphical content is
under the pointer, and thus in which circumstances that graphics element can be the target object for a pointer
event.) When an element is not displayed (i.e.,, when the 'display' property on that element or one of its ancestors
has a value of none), that element must not be the target of pointer events.

The decision on whether to dispatch the event to the target object or to one of the target elements ancestors
shall depend on the following:

. Ifthereis no target object, the event is not dispatched.

« Otherwise, if the target object has an appropriate event handler for the given event, the event is dispatched to
the target object.

« Otherwise, each ancestor of the target object (starting with its immediate parent) is checked to see if it has an
appropriate event handler. If an ancestor is found with an appropriate event handler, the event is dispatched to
that ancestor element.

« Otherwise, the event is discarded.

If an event is defined to bubble ([DOM2EVENTS], section 1.2.3), bubbling occurs up to all direct ancestors of the tar-
get object. Descendant elements receive events before their ancestors. Thus, if a ‘path’ element is a child of a 'g’ ele-
ment and they both have event listeners for click events, then the event will be dispatched to the 'path’ element be-
fore the 'g' element.

After an event is initially dispatched to a particular element, unless an appropriate action has been taken to pre-
vent further processing, the event must be passed to the appropriate event handlers (if any) for that element's an-
cestors (in the case of event bubbling) for further processing.

13.9 Processing order for user interface events

The processing order for user interface events shall be as follows:

« Event handlers assigned to the topmost graphics element under the pointer (and the various ancestors of that
graphics element via potential event bubbling) receive the event first. If none of the activation event handlers
take an explicit action to prevent further processing of the given event, then the event is passed on for:

+ (For those user interface events which invoke hyperlinks, such as mouse clicks in some user agents) Link
processing. If a hyperlink is invoked in response to a user interface event, the hyperlink typically will disable
further activation event processing (e.g., often, the link will define a hyperlink to another Web page). If link
processing does not disable further processing of the given event, then the event is passed on for:

179

http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/
http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/events.html#Events-flow
http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/events.html#Events-flow-bubbling

SVG Tiny 1.2 Specification 13 Interactivity

+ (For those user interface events which can select text, such as mouse clicks and drags on 'text' elements) Text
selection processing. When a text selection operation occurs, typically it will disable further processing of the
given event; otherwise, the event is passed on for:

- Document-wide event processing, such as user agent facilities to allow zooming and panning of an SVG
document fragment.

The 'use' element creates shadow content which can be the target of user interface events.

User interface events within the shadow content shall participate in the processing of user interface events in
the same manner as if the shadow content were part of the main document. In other words, if shadow content con-
tains a graphics element that renders above other content at the current pointer location, then it represents the
topmost graphics element and will receive the pointer events before other elements. In this case, the user interface
events bubble up through the target's ancestors, and then across the document border into the referencing ele-
ment, and then through the ancestors of the referencing element. This process continues as necessary if there are
multiple levels of nested shadow trees.

13.10 The 'pointer-events' property

In different circumstances, authors may want to control under what circumstances particular graphics element can
become the target of pointer events. For example, the author might want a given element to receive pointer events
only when the pointer is over the stroked perimeter of a given shape. In other cases, the author might want a given
element to ignore pointer events under all circumstances so that graphics elements underneath the given element
will become the target of pointer events.

For example, suppose a ‘circle’ with a 'stroke' of red (i.e., the outline is solid red) and a "fill' of none (i.e., the interi-
or is not painted) is rendered directly on top of a 'rect’ with a 'fill' of blue. The author might want the ‘circle’ to be the
target of pointer events only when the pointer is over the perimeter of the ‘circle’. When the pointer is over the in-
terior of the 'circle’, the author might want the underlying 'rect’ to be the target element of pointer events.

The 'pointer-events' property specifies under what circumstances a given graphics element can be the target ele-
ment for a pointer event. It affects the circumstances under which the following are processed:

- user interface events, such as a key press
+ hyperlinks (see the 'a' element)

'pointer-events'

Value: boundingBox | visiblePainted | visibleFill | visibleStroke | visible |
painted | fill | stroke | all | none | inherit

Initial: visiblePainted

Applies to: graphics elements

Inherited: yes

Percentages: N/A

Media: visual

Animatable: yes

Computed value: Specified value, except inherit

boundingBox
The given element must be a target element for pointer events when the pointer is over the bounding box of
the element.

visiblePainted
The given element must only be a target element for pointer events when the 'visibility' property is set to
visible and when the pointer is over a "painted" area. The pointer is over a painted area if it is over the interior
(i.e., 'fill') of the element and the 'fill' property is set to a value other than none or it is over the perimeter (i.e.,
'stroke’) of the element and the 'stroke’ property is set to a value other than none.

visibleFill
The given element must only be a target element for pointer events when the 'visibility' property is set to
visible and when the pointer is over the interior (i.e., 'fill') of the element. The value of the 'fill' property does
not effect event processing.

180

http://www.w3.org/TR/CSS2/cascade.html#value-def-inherit

SVG Tiny 1.2 Specification 13 Interactivity

visibleStroke
The given element must only be a target element for pointer events when the 'visibility' property is set to
visible and when the pointer is over the perimeter (i.e., 'stroke’) of the element. The value of the 'stroke’
property does not effect event processing.

visible
The given element must only be a target element for pointer events when the 'visibility' property is set to
visible and the pointer is over either the interior (i.e., 'fill') or the perimeter (i.e., 'stroke’) of the element. The
values of the 'fill' and 'stroke' do not effect event processing.

painted
The given element must only be a target element for pointer events when the pointer is over a "painted” area.
The pointer is over a painted area if it is over the interior (i.e., "fill') of the element and the "fill' property is set to
a value other than 'none’ or it is over the perimeter (i.e., 'stroke) of the element and the 'stroke' property is set
to a value other than none. The value of the 'visibility' property does not effect event processing.

fill
The given element must only be a target element for pointer events when the pointer is over the interior (i.e.,
'fill') of the element. The values of the 'fill' and 'visibility' properties do not effect event processing.

stroke
The given element must only be a target element for pointer events when the pointer is over the perimeter
(i.e., 'stroke') of the element. The values of the 'stroke' and 'visibility' properties do not effect event processing.

all
The given element must be a target element for pointer events whenever the pointer is over either the interior
(i.e., 'fill') or the perimeter (i.e., 'stroke') of the element. The values of the 'fill', 'stroke' and 'visibility' properties
do not effect event processing.

none
The given element must not receive pointer events.

For text elements, hit detection shall be performed on a character cell basis:

« The value visiblePainted means that the text string can receive events anywhere within the character cell if
either the 'fill' property is set to a value other than none or the 'stroke' property is set to a value other than none,
with the additional requirement that the 'visibility' property is set to visible.

« The values visibleFill, visibleStroke and visible are equivalent and indicate that the text string can receive events
anywhere within the character cell if the 'visibility' property is set to visible. The values of the 'fill' and 'stroke'
properties do not effect event processing.

+ The value painted means that the text string can receive events anywhere within the character cell if either the
'fill' property is set to a value other than none or the 'stroke' property is set to a value other than none. The value
of the 'visibility' property does not effect event processing.

+ The values fill, stroke and all are equivalent and indicate that the text string can receive events anywhere within
the character cell. The values of the 'fill', 'stroke' and 'visibility' properties do not effect event processing.

« The value none indicates that the given text does not receive pointer events.

For raster images, hit detection shall either be performed on a whole-image basis (i.e., the rectangular area for the
image is one of the determinants for whether the image receives the event) or on a per-pixel basic (i.e., the alpha
values for pixels under the pointer help determine whether the image receives the event). The following rules must
be adhered to:

+ The value visiblePainted means that the raster image can receive events anywhere within the bounds of the
image if any pixel from the raster image which is under the pointer is not fully transparent, with the additional
requirement that the 'visibility' property is set to visible.

« The values visibleFill, visibleStroke and visible are equivalent and indicate that the image can receive events
anywhere within the rectangular area for the image if the 'visibility' property is set to visible.

+ The value painted means that the raster image can receive events anywhere within the bounds of the image if
any pixel from the raster image which is under the pointer is not fully transparent. The value of the 'visibility'
property does not effect event processing.

+ The values fill, stroke and all are equivalent and indicate that the image can receive events anywhere within the
rectangular area for the image. The value of the ‘visibility' property does not effect event processing.

« The value none indicates that the image does not receive pointer events.

Note that for raster images, the values of properties 'fill-opacity', 'stroke-opacity’, 'fill' and 'stroke’ do not effect event
processing.

181

SVG Tiny 1.2 Specification 13 Interactivity

13.11 Magnification and panning

Magnification represents a complete, uniform transformation on an SVG document fragment, where the magnify
operation scales all graphical elements by the same amount. A magnify operation has the effect of a supplemental
scale and translate transformation placed at the rootmost level on the SVG document fragment (i.e. outside the
rootmost 'svg' element).

Panning represents a translation (i.e., a shift) transformation on an SVG document fragment in response to a user
interface action.

SVG user agents that operate in interaction-capable user environments are required to support the ability to
magnify and pan.

Attribute definition:

zoomAndPan = "magnify" | "disable"
Can be specified on the 'svg' element. The attribute is intended for applications where SVG is used for both the
content and for the user interface, e.g. a mapping application. The default zoom might move critical user
interface components from view, confusing the user; disabling the default zoom, pan and rotate while
providing zoom, pan and rotate controls for a smaller content area would give a better user experience. The
effect of 'zoomAndPan' applies solely to user interface aspects, and must not disable script-initiated zooming
and panning on the corresponding element.

The attribute value can be one of the following:

magnify
The lacuna value. If magnify, in environments that support user interactivity, the user agent must provide
controls to allow the user to perform a "magnify" operation on the document fragment.

disable
If disable, the user agent shall in its default interaction mode disable any magnification and panning
controls and not allow the user to magnify or pan on the given document fragment. The SVG user agent
may provide another mode which continues to allow zoom and pan at user option.

Animatable: no.

13.12 Element focus

13.12.1 The 'focusable' attribute

In many cases, such as text editing, the user is required to place focus on a particular element, ensuring that input
events, such as keyboard input, are sent to that element.

All renderable elements are required to be able to accept focus if specified by the author, including container
elements (except 'defs'), graphics elements, 'tspan' and 'foreignObject'. A focusable container element may contain
focusable descendants.

Attribute definition:

focusable ="true" | "false" | "auto"
Defines if an element can get keyboard focus (i.e. receive keyboard events) and be a target for field-to-field
navigation actions. (Note: in some environments, field-to-field navigation can be accomplished with the tab
key.)
The attribute value can be one of the following:

true
The element is keyboard-aware and must be treated as any other Ul component that can get focus.

false
The element is not focusable.

auto
The lacuna value. Equivalent to 'false’, except that it must be treated like 'true' for the following cases:
+ The'a'element.
- Text content block elements with 'editable’ set to 'simple’.

182

SVG Tiny 1.2 Specification 13 Interactivity

« Elements that are the target of an animation whose begin or end lists include an eventbase timing
specifier triggered by the following user interface events: DoMFocusIn, DOMFocusOut, DOMActivate.

« Elements that have an event listener registered on one of the following user interface events:
DOMFocusIn, DOMFocusOut, DOMActivate.

Informative note: Event listeners for the listed events can be added to elements that are the
'target’ or 'observer' of a 'listener' element, the parent element of a 'handler' element if it has an
‘evievent' attribute as well as by using script.
Animatable: yes.

13.13 Navigation

13.13.1 Navigation behavior

System-dependent input facilities (e.g., the tab key on most desktop computers) should be supported to allow nav-
igation between elements that can obtain focus (i.e. elements for which the value of the 'focusable' attribute is
'true’).

The document has the concept of a focus ring, which is the order in which elements obtain focus. By default the
focus ring shall be obtained using document order. All focusable elements must be part of the default focus ring. A
document's focus ring includes any focusable objects within shadow trees for 'use' elements. The focus attributes
may be used to modify the default focus ring.

The SVG language supports a flattened notion of field navigation between focusable elements where an author
may define field navigation between any two focusable elements defined within a given SVG document without re-
gard to document hierarchy. For example:

<rect xml:id="r1" focusable="true" .../>
<g xml:id="gl" focusable="true">

<circle xml:id="cl1"” focusable="true" .../>
</g>

In the above example, the author may specify field-to-field navigation such the user can navigate directly from any
of the three elements. Thus, assuming a desktop computer which uses the tab key for field navigation, the author
may specify focus navigation order such that the tab key takes the user from "r1" to "c1" to "g1".

When navigating to an element that is not visible on the canvas the following rules shall apply:

« The SVG user agent must not navigate to an element which has display="none". (An element which has
display="none" is not focusable.)

« The SVG user agent must allow navigation to elements which are not visible (i.e. which has a 100% transparency
or which is hidden by another element).

« The SVG user agent must allow navigation to elements which are located outside of the current viewport. In this
case it is recommended that the SVG user agent should change the current viewport so that the focused
element becomes visible.

SVG's flattened notion of field navigation shall extend to referenced content and shadow trees as follows:

« Focusable elements within the content referenced by a 'use' element participate in field navigation operations
using the flattened focus model. (Note: If a referenced group contains a focusable element, and that group is
referenced by two 'use' elements, then the document will have two separate focusable fields, not just one.)

+ If an'animation’ element references an SVG document, then all of the focusable fields defined within the
referenced SVG document participate in field navigation operations using the flattened focus model.

Focus navigation shall behave as specified:

1. When the document is loaded the focus is first offered to the SVG user agent.

2. Once the SVG user agent releases focus, then focus passes to the entity that first matches the following criteria:
1. therootmost 'svg' element if it is focusable,
2. the element referenced by the 'nav-next' attribute on the rootmost 'svg' element, if the attribute is present,
3. thefirst focusable element in the document starting from the rootmost 'svg' element,
4. the SVG user agent

3. Ifthefocus is held by an element in the document, then the next element in navigation order shall be the entity
that first matches the following criteria:
1. the element referenced by the 'nav-next' attribute on the focused element,
2. the next focusable element in document order,

3. the SVG user agent

183

SVG Tiny 1.2 Specification 13 Interactivity

4. If the focus is held by an element in the document, then the previous element in navigation order shall be the
entity that first matches the following criteria:

1. the element referenced by the 'nav-prev' attribute on the focused element,

2. the previous focusable element in document order,

3. the SVG user agent
For stand-alone SVG documents, the SVG user agent must always have a currently focused object. If focus is not
held by any object in the document tree, the SVG user agent must give focus to the svepocument object.

For SVG documents which are referenced by a non-SVG host document (e.g., XHTML), the SVG document may
participate within the host document's focus ring, which would allow direct navigation from an SVG focusable ele-
ment onto a focusable element within the host document. Other compound document specifications may define
supplemental SVG focus navigation rules for situations when SVG content is used as a component within a com-
pound document.

User agents should provide a mechanism for a user to escape from a focus ring. When the user activates this
mechanism, the user agent should change focus to the user agent, sending the appropriate focusout event to the
element currently in focus.

13.13.2 Specifying navigation

Navigation order can be specified using the ten navigation attributes defined below.
Attribute definitions:

nav-next,
nav-prev = "<FuncIRI>" | "auto" | "self"
Specifies the next element (when using 'nav-next') or previous element (when using 'nav-prev') in the focus
ring.
The attribute value for 'nav-next' and 'nav-prev' can be one of the following:

<FuncIRI>
Specifies the element that must receive focus when navigation in the next direction (for 'nav-next’) or
previous direction (for 'nav-prev') is triggered. The specified element must be within the current SVG
document fragment.

auto
The lacuna value. Means that the behavior shall be as if the attribute was not specified (navigation must
follow the rules specified in Navigation behavior).

self
The focus must stay on the element itself.
Animatable: yes.

nav-up,

nav-up-right,

nav-right,

nav-down-right,

nav-down,

nav-down-left,

nav-left,

nav-up-left ="<FuncIRI>" | "auto" | "self"
Each of these eight attributes specifies an element to receive focus when navigating in a particular direction.
For each of the attributes, the direction for which an element is being specified for navigation is suggested by
the name of the attribute. The following table lists these directions explicitly:

Attribute name | Direction

'nav-up' t upward
'nav-up-right' 7 up-and-rightward
'nav-right' - rightward

184

SVG Tiny 1.2 Specification 13 Interactivity

'nav-down-right' | \ down-and-rightward
‘nav-down’ | downward
‘nav-down-left' | » down-and-leftward
'nav-left' « leftward

'nav-up-left' N up-and-leftward

The value for each of these attributes can be one of the following:

<FuncIRI>
Specifies the element that must receive focus when navigation in the given direction is triggered. The
specified element must be within the current SVG document fragment.

auto
The lacuna value. Means that the behavior is left up to the SVG user agent.

self
The focus must stay on the element itself.
Animatable: yes.

Example: navigation.svg

<svg xmlns="http://www.w3.0rg/2000/svg"
xmlns:xlink="http://www.w3.0rg/1999/x1ink"
version="1.2" baseProfile="tiny"
viewBox="0 @ 220 40">

<title>Media Channel Navigation User Interface</title>
<desc>An example which illustrates the use of nav-* attributes</desc>

<!-- List of available channels -->
<rect x="0" y="0" width="100" height="20" fill="#fb@" stroke="#000" stroke-width="2" />
<text x="50" y="13" font-size="8" font-family="Arial Black”

fill="#fff" text-anchor="middle"”>Channel 1</text>
<rect x="0" y="20" width="100" height="20" fill="#fbo" stroke="#000" stroke-width="2" />
<text x="50" y="33" font-size="8" font-family="Arial Black”

fill="#fff" text-anchor="middle"”>Channel 2</text>
<rect x="0" y="40" width="100" height="20" fill="#fb0" stroke="#000" stroke-width="2" />
<text x="50" y="53" font-size="8" font-family="Arial Black”

fill="#fff" text-anchor="middle"”>Channel 3</text>

<!-- List of programs for channel nb 1 -->
<g xml:id="ChanlProgl” focusable="true"” nav-left="self"” nav-right="url(#ChanlProg2)"
nav-up="self"” nav-down="url(#Chan2Progl)">
<rect x="100" y="0" width="100" height="20" fill="#fd0" stroke="#000" stroke-width="2">
<set attributeName="fill" begin="ChanlProgl.focusin” end="ChanlProgl.focusout” to="#fa@"/>
</rect>
<text x="150" y="13" font-size="8" font-family="Arial Black”
fill="#fff" text-anchor="middle">Weather</text>
</g>
<g xml:id="ChanlProg2" focusable="true" nav-left="url(#ChanlProgl)" nav-right="url(#ChanlProg3)"
nav-up="self"” nav-down="auto">
<rect x="200" y="0" width="120" height="20" fill="#fd0" stroke="#000" stroke-width="2">
<set attributeName="fill" begin="ChanlProg2.focusin” end="ChanlProg2.focusout” to="#fa0"/>
</rect>
<text x="260" y="13" font-size="8" font-family="Arial Black”
fill="#fff" text-anchor="middle"”>The news</text>
</g>
<g xml:id="ChanlProg3" focusable="true"” nav-left="url(#ChanlProg2)" nav-right="self"
nav-up="self"” nav-down="auto” nav-next="self">
<rect x="320" y="0" width="120" height="20" fill="#fd0" stroke="#000" stroke-width="2">
<set attributeName="fill" begin="ChanlProg3.focusin” end="ChanlProg3.focusout” to="#fa@"/>
</rect>
<text x="380" y="13" font-size="8" font-family="Arial Black”
fill="#fff" text-anchor="middle"”>Football</text>
</g>

185

/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/examples/navigation.svg

SVG Tiny 1.2 Specification 13 Interactivity

<!-- List of programs for channel nb 2 -->

<g xml:id="Chan2Progl” focusable="true" nav-left="self" nav-right="auto”
nav-up="url(#ChanlProgl)"” nav-down="auto” nav-prev="url(#ChanlProgl)" nav-next="auto">
<rect x="100" y="20" width="150" height="20" fill="#fd@" stroke="#000" stroke-width="2">

<set attributeName="fill" begin="Chan2Progl.focusin” end="Chan2Progl.focusout” to="#fa0"/>
</rect>
<text x="175" y="33" font-size="8" font-family="Arial Black”
fill="#fff" text-anchor="middle">Long Movie</text>
</g>
</svg>

This example illustrates how it is possible for an author to control the focus order between several focusable ele-
ments displayed on the canvas.

On a device which provides a 2-way navigation system (a TAB mechanism for instance), here are the interesting
behaviors:

« Whenever the focus is located on a program which is at the beginning of the timeline of a given channel, there
are 3 options when the user wants to go to the previous focusable item (i.e., the user presses the "Reverse-Tab"
key on most desktop computers):

« option 1: the focus goes up to the first program of the previous channel
+ option 2: the focus goes up to the last program of the previous channel
-« option 3: the focus remains at the same place
Here, in this example, for channel 2, because there is nav-prev="url(#Chan1Prog1)" attribute in element 'g' with
id="Chan2Prog1", option 1 will be applied.
In order to apply option 2, we could have set nav-prev="url(#Chan1Prog3)" instead.
In order to apply option 3, we could have set nav-prev="self" instead.

+ Whenever the focus is located on a program which is at the end of the timeline of a given channel, there are 2
options when the user wants to go to the next focusable item (i.e., the user presses the "Tab" key on most
desktop computers):

« option 1: the focus goes down to the first program of the next channel
+ option 2: the focus remains at the same place
Here, in this example, for channel 1, because there is nav-next="self" attribute in element 'g' with
id="Chan1Prog3", option 2 will be applied.
In order to apply option 1, we could have set nav-next="url(#Chan2Prog1)" instead.

« Whenever the focus is located on "chan2Progl” container, if the user wants to go to the next focusable element,
the concept of a focus ring will apply because of value nav-next="auto". Here, according to the focus ring
navigation rules, focus will be offered to the SVG user agent because there is no more focusable element in the
document order.

On a device which provides a 4-way navigation system (i.e. a joystick for instance), here are the interesting
behaviors:

« Whenever the focus is located at the beginning of the timeline of a given channel, when the user wants to go
"Left", focus remains on the same element because both element 'g' with id="Chan1Prog1" and element 'g' with
id="Chan2Prog1" have nav-left="self".

« Whenever the focus is located on "chaniProg1” container, if the user wants to go 'Right’, the focus will be put on
container element "chan1Prog2” because of the nav-right="url(#Chan1Prog2)" value. But, because some part of
"Chan1Prog2” bounding box is outside of the current viewport, the SVG user agent should change the current
viewport so that the new focused element becomes visible.

Before element "chan1pProg2” receives focus After element "chan1Prog2” receives focus (UA scrolls
automatically)

186

SVG Tiny 1.2 Specification 13 Interactivity

« On element'g' with id="Chan2Prog1", there is a value nav-right="auto". This value is the default one for
navigation attributes and therefore the behavior is the same as if no 'nav-right' attribute was defined. This value
'auto’ means that it's up to the SVG user agent to choose which focusable element should receive focus when
the user wants to go 'right'.

13.13.3 Specifying focus highlighting

Automated highlighting upon focus can be specified using the 'focusHighlight' attribute. This hint indicates whether
the SVG user agent should highlight an element on focus. The highlighting method is implementation dependent
and the SVG user agent should pick a method that works well for varying content. This attribute is available on all
graphical and container elements.

focusHighlight ="auto" | "none"
Specifies whether a SVG user agent should highlight an element on focus.
The attribute value can be one of the following:

auto
The lacuna value. This indicates that the element should be highlighted on focus. The highlighting
method is left up to the SVG user agent.

none
The SVG user agent should not highlight this element on focus.
Animatable: no.

Example: focusHighlight.svg

<?xml version="1.0"7>

<svg xmlns="http://www.w3.0rg/2000/svg"
xmlns:xlink="http://www.w3.0rg/1999/xlink’
version="1.2" baseProfile="tiny" viewBox="0Q @ 210 80">

<desc>An example which illustrates the use of focusHighlight attribute</desc>

<text x="5" y="10">Do you want to validate transaction ?</text>
<text x="5" y="25">You may read <a xlink:href="http://www.example.org/pay”

>this and <a xlink:href="http://www.example.org/infos">that
</text>

<a xml:id="ValidateButton” transform="translate(5,40)" focusHighlight="none" xlink:href="validate.htm">
<rect x="0" y="0" width="90" height="20" fill="#0fQ" stroke="#000" stroke-width="2">
<set attributeName="fill" begin="ValidateButton.focusin” end="ValidateButton.focusout” to="#0a@"/>
</rect>
<text x="45" y="13" font-size="8" font-family="Arial Black”
fill="#000" text-anchor="middle"”>Validate</text>

<a xml:id="AbortButton” transform="translate(100,40)" focusHighlight="none" xlink:href="abort.htm">
<rect x="0" y="0" width="90" height="20" fill="#f00" stroke="#000" stroke-width="2">
<set attributeName="fill" begin="AbortButton.focusin” end="AbortButton.focusout” to="#a00@"/>
</rect>
<text x="45" y="13" font-size="8" font-family="Arial Black”
fill="#000" text-anchor="middle">Abort</text>

</svg>

187

/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/examples/focusHighlight.svg

SVG Tiny 1.2 Specification 13 Interactivity

Do you want to validate transaction ?
You may read this and that

In the above SVG example:

« Highlight of the focus on the first two textual links is left up to the SVG user agent (underline the text, highlight
of the bounding box, change color of the text, ...) since the lacuna value is focusHighlight="auto". This text may
have been retrieved from a database where there may be no notion of graphical styling or no way to know in
advance the kind of focusable elements it contains, therefore the author doesn't handle focus highlight on that
part of the document.

+ Highlight of the focus on the two graphical buttons is designed by the author and therefore the SVG user agent
doesn't need to highlight it as well. Therefore, focusHighlight="none" is used to disable the default focus
highlight behavior.

13.13.4 Obtaining and listening to focus programmatically

When the user agent gives an element focus it receives a boMFocusIn event which has the new focused object as the
event target and a boMFocusout event which has the previously focused object as the event target.

The svesveelement interface has a setFocus method that puts the focus on the requested object. Calling setFocus
with an element that is not focusable causes focus to stay on the currently focused object.

The svesvcElement interface has a moveFocus(short motionType) wWhich moves current focus to a different object
based on the value of motionType.

SVG user agents which support pointer devices such as a mouse must allow users to put focus onto focusable
elements. For example, it should be possible to click on a focusable element in order to give focus.

Empty text fields in SVG theoretically take up no space, but they have a point or zero-width line segment that
represents the location of the empty text field. SVG user agents should allow users with pointer devices to put focus
into empty text fields by initiating a select action (e.g., a mouse click) at the location of the empty text field.

An author may change the field navigation order from a script by using the setTrait method to change the cur-
rent value of navigation attributes on a given element (see Example below).

Example: changeNavigationOrder.svg

<?xml version="1.0"7>

<svg xmlns="http://www.w3.0rg/2000/svg" version="1.2" baseProfile="tiny"
xmlns:ev="http://www.w3.0rg/2001/xml-events”>

<desc>An example of how to change the navigation order from script by

changing nav-* attribute values. In this example, "myRect2" disappears between 10 and 20 sec

and is replaced by the "myRectNew" rectangle during this period. Consequently, the navigation order

must be changed accordingly during this period and we must re-established initial order after 20s.</desc>

<rect xml:id="myRectl"” x="10" y="20" width="100" height="50" fill="red"” focusable="true"
nav-right="url(#myRect2)">
<set begin="focusin” end="focusout” attributeName="fill" to="purple”/>
</rect>

<rect xml:id="myRect2" x="120" y="20" width="100" height="50" fill="red" focusable="true"
nav-right="url(#myRect3)" nav-left="url(#myRectl)">
<set begin="focusin” end="focusout” attributeName="fill" to="purple”/>
<set begin="0" end="10" attributeName="display” to="inline"/>
<set begin="10" end="20" attributeName="display” to="none"/>

188

SVG Tiny 1.2 Specification

<set begin="20" attributeName="display"” to="inline"/>
</rect>
<rect xml:id="myRect3" x="230" y="20" width="100" height="50" fill="red"” focusable="true"
nav-left="url(#myRect2)">
<set begin="focusin” end="focusout” attributeName="fill" to="purple"/>
</rect>

<rect xml:id="myRectNew" x="120" y="20" width="100" height="50" fill="blue" focusable="true"
nav-right="url(#myRect3)"
nav-left="url(#myRectl)"” display="none" >

<set xml:id="myRectNewFillAnim" begin="focusin” end="focusout” attributeName="fill"
<set xml:id="myRectNewDisplayAnim"” begin="10" end="20" attributeName="display”
</rect>
<!-- register a listener for myRectNew.beginEvent event -->
<ev:listener event="beginEvent"” observer="myRectNew"” handler="#myAnimationHandler" />
<ev:listener event="endEvent” observer="myRectNew"” handler="#myAnimationHandler" />

<!-- handler which is called when myRect2 is replaced by myRectNew -->
<handler xml:id="myAnimationHandler" type="application/ecmascript”><![CDATAL
var myRectl = document.getElementById("myRectl");
var myRect3 = document.getElementById("myRect3");

if (evt.type == "beginEvent" && evt.target.id == "myRectNewDisplayAnim")
{
myRectl.setTrait("nav-right"”, "url(#myRectNew)");
myRect3.setTrait("nav-left”, "url(#myRectNew)");

3

else if (evt.type == "endEvent” && evt.target.id == "myRectNewDisplayAnim")

{
myRectl.setTrait("nav-right"”, "url(#myRect2)");
myRect3.setTrait("nav-left”, "url(#myRect2)");

3

]1></handler>
</svg>

13 Interactivity

to="black"/>
to="inline"/>

189

SVG Tiny 1.2 Specification 14 Linking

14 Linking

Contents

L T 2= 1= (=] T3 190
I T T V= = PPN 190
T4 1.2 RIS AN URIS . ettt et e e et ettt ettt e e e e e 190
14.1.3 Syntactic forms: IRIand FUNCIRI.o e e e 191
14.1.4 RefErENCE 1ESTIICtIONS . o\ttt ettt ettt ettt ettt e e et e e et et e et iae et eenenenns 191
14.1.5 IRl reference attribULesottt et ettt e 194
14.1.6 Processing of external references to doCUMENTS ...ttt ie e i ieaaenas 199

14.2 Links out of SVG content: the 'a' element.ttt e e et e 200
14,21 Indicating lINKS ..o e e e e e e e e e 202

14.3 Linking into SVG content: IRl fragments and SVG VIEWSottt i e e ie e eeans 203
14.3.1 Introduction: IRI fragments and SVG VIEWS v ittt ettt e e e eanenas 203
14.3.2 SVG fragment identiflerst e e i et e e e et e s 203

14.1 References

14.1.1 Overview

On the Internet, resources are identified using [RIs (Internationalized Resource Identifiers). For example, an SVG file
called someDrawing.svg located at http://example.com might have the following IRI:

http://example.com/someDrawing.svg

An IRI can also address a particular element within an XML document by including an IRI fragment identifier as part
of the IRI. An IRl which includes an IRl fragment identifier consists of an optional base IRI, followed by a "#" character,
followed by the IRI fragment identifier. For example, the following IRl can be used to specify the element whose ID is
"Lamppost" within file someDrawing.svg:

http://example.com/someDrawing. svg#Lamppost

Altering the 'xlink:href' attribute

If the xlink:href' attribute of an element in the tree is altered by any means (e.g. script, declarative animation) such
that a new resource is referenced, the new resource must replace the existing resource, and must be rendered as
appropriate. For specific effects on the scripting context when a 'script’ element's 'xlink:href' attribute is altered, see
Script processing.

14.1.2 IRIs and URIs

Internationalized Resource Identifiers (IRIs) are a more generalized complement to Uniform Resource Identifiers
(URIs). An IRl is a sequence of characters from the Universal Character Set [UNICODE]. A URI is constructed from a
much more restricted set of characters. All URIs are already conformant [RIs. A mapping from IRIs to URIs is defined
by the IRI specification, which means that IRIs can be used instead of URIs in XML documents, to identify resources.
IRIs can be converted to URIs for resolution on a network, if the protocol does not support [RIs directly.

Previous versions of SVG, following XLink, defined a IRl reference type as a URI or as a sequence of characters
which must result in a URI reference after a particular escaping procedure was applied. The escaping procedure was re-
peated in the XLink 1.0 specification [XLINK10], and in the W3C XML Schema Part 2: Datatypes specification
[SCHEMAZ2]. This copying introduced the possibility of error and divergence, but was done because the IRI specifica-
tion was not yet standardized.

In this specification, the correct term IRl is used for this "URI or sequence of characters plus an algorithm" and
the escaping method, which turns IRIs into URIs, is defined by reference to the IRl specification [RFC3987], which has
since become an IETF Proposed Standard. Other W3C specifications are expected to be revised over time to remove
these duplicate descriptions of the escaping procedure and to refer to IRI directly.

190

http://www.ietf.org/rfc/rfc3987.txt

SVG Tiny 1.2 Specification 14 Linking

14.1.3 Syntactic forms: IRl and FunclRI

IRIs are used in the 'xlink:href' attribute. Some attributes allow both IRIs and text strings as content. To disambiguate
a text string from a relative IRI, the functional notation <FuncIRI> is used. This is simply an IRl delimited with a func-
tional notation. Note: For historical reasons, the delimiters are "url(" and ")", for compatibility with the CSS specifica-
tions. The FunclRl form is used in presentation attributes and navigation attributes.

SVG makes extensive use of IRl references, both absolute and relative, to other objects. For example, to fill a rect-
angle with a linear gradient, you first define a 'linearGradient' element and give itan ID, as in:

Example: 05_07.xml ‘

<linearGradient xml:id="MyGradient">...</linearGradient>

You then reference the linear gradient as the value of the 'fill' property for the rectangle, as in the following
example:

Example: 05_08.xml ‘

<rect fill="url(#MyGradient)"/>

14.1.4 Reference restrictions

Some of the elements using IRI references have restrictions on them. Which kinds of IRI references that are allowed
on each element is listed in the table below. In SVG, IRI references can be categorized as being one (or more) of the
following five types:

+ A: Areference to a fragment within the current document (e.g. '‘#someelement’). If the referenced fragment is
not within the current SVG document fragment, then whether the reference is an invalid IRI reference or not is
defined by the host language.

- B: Areference to a fragment within an external document (e.g. 'afile.svg#anelement').

« C: Areference to an entire SVG document (e.qg. 'afile.svg').

+ D: Areference to a media resource other than SVG, with or without the use fragments (e.g. 'someimage.jpg' or
'somecontainer#fragment’). Where applicable, the table shows the supported media types.

« E:Adata: IRl (e.g. '...") [RFC2397]. Note that data: IRIs, if XML, resolve to a document
that is distinct from the referencing element's owner document, however the data is already loaded as it is part
of the IRl itself.

For each of the above five IRI types, A -E, there is a column in the reference restriction table below indicating
whether the given attribute is allowed to have a reference of the given form. An IRI reference that does not comply
to the restrictions in the table below is an invalid IRI reference.

Element Referencing A B C D E
attribute

Yes, see
Identifying
the target
‘xlink:href' element for No No No No
an animation
for reference
rules.

An animation
element

Yes, see
Identifying
the target
'discard’ 'xlink:href' element for No No No No
an animation
for reference
rules.

191

SVG Tiny 1.2 Specification

14 Linking

192

Yes, see Link-
! Yes, see Links out of SVG
‘a’ 'xlink:href' | inginto SVG Yes Yes Yes
content.
content.
xlink:role'
‘a' x ' Yes Yes Yes Yes Yes
'xlink:arcrole'
Yes, but the referenced frag-
Yes, but a . 9
ment must not contain
‘use’ element scripting, hyperlinking to
'use' ‘xlink:href' | must not ref- . P . 9. hyp 9 No No No
animations or any externally
erence an
referenced 'use’ or
'svg' element. .
'animation’ elements.
Yes, but the Yes, but the
'image’ ele- content
ment must ref- | within the
'image’ xlink:href' No No No | erence con- data: IRl ref-
tentthatisa | erence must
raster image be a raster
format. image.
'animation' xlink:href' No No Yes No Yes
'prefetch’ xlink:href' Yes Yes Yes Yes No
Yes, depend-
ing on suppor-
‘audio’ 'xlink:href' No No No ted au'dlo' Yes
formats, indic-
ated by the
‘type' attribute.
Yes, depend-
ing on suppor-
ted video
'video' 'xlink:href' No No No . Yes
formats, indic-
ated by the
'type' attribute.
‘foreignObject’ | 'xlink:href' No Yes No Yes Yes
Yes, but it
must reference
an external re-
'script’ 'xlink:href' No No No Yes
source that
provides the
script content.
Yes, but it
must reference
an external re-
'handler' xlink:href" Yes Yes No Yes
source that
provides the
script content.
'listener' 'handler' Yes No No No No
An element Yes, only ref-
. ‘fill' . y No No No No
on which erencing a

SVG Tiny 1.2 Specification 14 Linking
Element Referencing A B C D E
attribute
int ,
e
specified . P . Y
ing paint.
An element Yes, on.ly ref-
on which erencing a
. 'stroke’ paint server, No No No No
paint may be see Specify-
specified . e . U
ing paint.
An element
on which nav- A naviaation Yes, see Spe-
igation attrib- _q_ cifying No No No No
attribute o
utes may be - navigation.
specified
Yes, the refer-
ence must be
Yes, the refi t b
‘font-face-uri' | ‘xlink:href' to an SVG €5 the relerence mustbe o No Yes
to an SVG 'font' element.
'font’
element.
Yes, only ref-
'mpath’ 'xlink:href' erencinga No No No No
'path’
element.

Additionally, any IRI reference which cannot be resolved is an invalid IRI reference. Examples of reasons for an IRI ref-

erence to be unable to be resolved include:

« Theresource is an external resource and is not available (for example, the user agent cannot connect to the
location on the network which stores the resource, and the resource is not cached locally).
- The IRl reference is to a local element that does not exist (for example, a 'use' element whose 'xlink:href'

references a non-existent element).

- The [RI reference is to a resource that does not exist (for example, an 'image’ element that references an HTTP
resource that results in a 404 response code, even if the response body contains an otherwise supported raster

image resource).

Any required processing for an attribute with an invalid IRI reference is described in the attribute definition. Note

that when the 'externalResourcesRequired' attribute has been set to 'true' on the referencing element or one of its
ancestors, then an unresolved external IRI reference will result in special handling (see External resources).

A circular IRl reference is an error. Because SVG user agents may vary on when they first detect and abort a circu-
lar reference, conforming SVG document fragments must not rely upon circular references. Examples of circular ref-

erences include:

+ A'use' element that directly or indirectly references itself, as in the following SVG document fragment:

<svg xmlns='http://www.w3.0rg/2000/svg’
xmlns:xlink="http://www.w3.0rg/1999/x1link’
version='1.2" baseProfile='tiny'>

<title>Example of a circular reference with 'use’'</title>

<g id='a'>
<text>ABC</text>
<use xlink:href="#b'/>
</g>
<g id='b'>
<text>DEF</text>
<use xlink:href="#a'/>
</g>
</svg>

193

SVG Tiny 1.2 Specification 14 Linking

+ An 'animation' element that directly or indirectly references the document that contains the current SVG
document fragment, as in the following example:

<svg xmlns="http://www.w3.0rg/2000/svg’
xmlns:x1link="http://www.w3.0rg/1999/xlink’
version='1.2" baseProfile="tiny'>

<title>Example of a circular reference with 'animation’'</title>

<animation xlink:href="#' width="100' height='100"'/>
</svg>
It is recommended that, wherever possible, referenced elements be defined inside of a 'defs' element. Among the
elements that are always referenced are 'linearGradient' and 'radialGradient'. Defining these elements inside of a
'defs' element promotes understandability of the SVG content and thus promotes accessibility.

14.1.5 IRl reference attributes

IRI references are normally specified with an 'href' attribute in the XLink [XLink] namespace. For example, if the
prefix of xlink' is used for attributes in the XLink namespace, then the attribute is be specified as 'xlink:href'. The
value of this attribute forms a reference for the desired resource (or secondary resource, if there is a fragment
identifier).

The value of the 'href' attribute must be an Internationalized Resource Identifier.

If the protocol, such as HTTP, does not support IRIs directly, the IRl is converted to a URI by the SVG implementa-
tion, as described in section 3.1 of the IRI specification [RFC3987.

Because it is impractical for any application to check that a value is an |RI reference, this specification follows the
lead of the IRI Specification in this matter and imposes no such conformance testing requirement on SVG
applications.

If the IRI reference is relative, its absolute version must be computed by the method described in XML Base be-
fore use [XML-BASE].

Additional XLink attributes can be specified that provide supplemental information regarding the referenced
resource.

Schema: xlinkattr

<define name='svg.XLinkBase.attr' combine='interleave'>
<optional>
<attribute name='xlink:type' svg:animatable='true’' svg:inheritable='false’>
<value>simple</value>
</attribute>
</optional>
<optional>
<attribute name='xlink:role’' svg:animatable='false’ svg:inheritable='false'>
<ref name='IRI.datatype'/>
</attribute>
</optional>
<optional>
<attribute name='xlink:arcrole' svg:animatable='false’ svg:inheritable='false'>
<ref name='IRI.datatype'/>
</attribute>
</optional>
<optional>
<attribute name='xlink:title’ svg:animatable='false' svg:inheritable='false’'><text/></attribute>
</optional>
</define>

<define name='svg.XLinkHrefRequired.attr' combine='interleave'>
<optional>
<attribute name='xlink:href’' svg:animatable='true’' svg:inheritable='false’>
<ref name='IRI.datatype'/>
</attribute>
</optional>
</define>

<define name='svg.XLinkBaseRequired.attr' combine='interleave'>
<ref name='svg.XLinkBase.attr'/>
<ref name='svg.XLinkHrefRequired.attr'/>

</define>

194

http://www.w3.org/TR/xlink/
http://www.ietf.org/rfc/rfc3987.txt
http://www.ietf.org/rfc/rfc3986.txt
http://www.w3.org/TR/xmlbase/

SVG Tiny 1.2 Specification 14 Linking

<define name='svg.XLinkActuateOnLoad.attr' combine='interleave'>
<optional>
<attribute name='xlink:actuate' svg:animatable='false' svg:inheritable='false'>
<value>onlLoad</value>
</attribute>
</optional>
</define>

<define name='svg.XLinkShowOther.attr' combine='interleave'>
<optional>
<attribute name='xlink:show' svg:animatable='false' svg:inheritable='false’'>
<value>other</value>
</attribute>
</optional>
</define>

<define name='svg.XLinkEmbed.attr' combine='interleave'>

<optional>
<attribute name='xlink:show' svg:animatable='false' svg:inheritable='false’'>
<value>embed</value>
</attribute>
</optional>

<ref name='svg.XLinkActuateOnLoad.attr'/>
<ref name='svg.XLinkBaseRequired.attr'/>
</define>

<define name='svg.XLinkRequired.attr' combine='interleave'>
<ref name='svg.XLinkShowOther.attr'/>
<ref name='svg.XLinkActuateOnLoad.attr'/>
<ref name='svg.XLinkBaseRequired.attr'/>

</define>

<define name='svg.XLinkReplace.attr' combine='interleave'>
<optional>
<attribute name='xlink:show' svg:animatable='false' svg:inheritable='false’'>
<choice>
<value>new</value>
<value>replace</value>
</choice>
</attribute>
</optional>
<optional>
<attribute name='xlink:actuate' svg:animatable='false’ svg:inheritable='false'>
<value>onRequest</value>
</attribute>
</optional>
<ref name='svg.XLinkBaseRequired.attr'/>
</define>

<define name='svg.XLink.attr' combine="interleave'>
<optional>
<ref name='svg.XLinkHrefRequired.attr'/>
</optional>
<ref name='svg.XLinkShowOther.attr'/>
<ref name='svg.XLinkActuateOnLoad.attr'/>
<ref name='svg.XLinkBase.attr'/>
</define>

xlink:type ="simple"
Identifies the type of XLink being used. In SVG Tiny 1.2, only simple links are available. In line with the changes
proposed in XLink 1.1 [XLINK11], this attribute may be omitted on simple links. Links are simple links by
default, so the attribute xlink:type="simple" is optional and need not be explicitly stated. Refer to the XML
Linking Language (XLink) [XLINK10].
Animatable: no.

195

http://www.w3.org/TR/xlink11/
http://www.w3.org/TR/xlink/
http://www.w3.org/TR/xlink/

SVG Tiny 1.2 Specification 14 Linking

xlink:role ="<IRI>"
An optional [RI reference that identifies some resource that describes the intended property. The value must
be an IRl reference as defined in [RFC3987], except that if the |RI scheme used is allowed to have absolute and
relative forms, the IRl portion must be absolute. When no value is supplied, no particular role value shall be
inferred. Refer to the XML Linking Language (XLink) [XLINK10].
Animatable: no.

xlink:arcrole ="<IRI>"
An optional IRI reference that identifies some resource that describes the intended property. The value must
be an IRI reference as defined in [RFC3987], except that if the IRl scheme used is allowed to have absolute and
relative forms, the IRl portion must be absolute. When no value is supplied, no particular role value shall be
inferred. The arcrole attribute corresponds to the [RDF] notion of a property, where the role can be interpreted
as stating that "starting-resource HAS arc-role ending-resource.” This contextual role can differ from the
meaning of an ending resource when taken outside the context of this particular arc. For example, a resource
might generically represent a "person,” but in the context of a particular arc it might have the role of "mother"
and in the context of a different arc it might have the role of "daughter." Refer to the XML Linking Language
(XLink) [XLINK10].

Animatable: no.

xlink:title = "<string>"
The title attribute shall be used to describe the meaning of a link or resource in a human-readable fashion,
along the same lines as the role or arcrole attribute. A value is optional; if a value is supplied, it shall contain a
string that describes the resource. In general it is preferable to use a 'title’ child element rather than a 'title'
attribute. The use of this information is highly dependent on the type of processing being done. It may be
used, for example, to make titles available to applications used by visually impaired users, or to create a table
of links, or to present help text that appears when a user lets a mouse pointer hover over a starting resource.
Refer to the XML Linking Language (XLink) [XLINK10].

Animatable: no.

xlink:show ="new' | 'replace’ | 'embed' | 'other' | 'none'
This attribute is provided for backwards compatibility with SVG 1.1. It provides documentation to XLink-aware
processors. In case of a conflict, the target attribute has priority, since it can express a wider range of values.
Refer to the XML Linking Language (XLink) [XLINK10].
Animatable: no.

xlink:actuate = "onLoad'
This attribute is provided for backwards compatibility with SVG 1.1. It provides documentation to XLink-aware
processors. Refer to the XML Linking Language (XLink) [XLINK10].
Animatable: no.

In all cases, for compliance with either the "Namespaces in XML 1.0" or the "Namespaces in XML 1.1" Recommenda-
tion [XML-NS10][XML-NS], an explicit XLink namespace declaration must be provided whenever one of the above
XLink attributes is used within SVG content. One simple way to provide such an XLink namespace declaration is to
include an 'xmins' attribute for the XLink namespace on the 'svg' element for content that uses XLink attributes.

Example: XLink namespace declaration

Example: 05_09.svg

<?xml version="1.0"7>

<svg xmlns:xlink="http://www.w3.0rg/1999/x1link"
xmlns="http://www.w3.0rg/2000/svg" version="1.2" baseProfile="tiny">
<desc>Declaring the XLink namespace, as well as the SVG one</desc>
<image xlink:href="foo.png"/>

</svg>

Example: use and animation
The two files below are the referenced files in the 'use' and animation examples further down.

196

http://www.ietf.org/rfc/rfc3987.txt
http://www.w3.org/TR/xlink/
http://www.ietf.org/rfc/rfc3987.txt
http://www.w3.org/TR/xlink/
http://www.w3.org/TR/xlink/
http://www.w3.org/TR/xlink/
http://www.w3.org/TR/xlink/
http://www.w3.org/TR/xlink/
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/xml-names11/

SVG Tiny 1.2 Specification 14 Linking

Example: referencedRect.svg

<?xml version="1.0" encoding="UTF-8"7?>

<svg xmlns="http://www.w3.0rg/2000/svg"” xmlns:xlink="http://www.w3.0rg/1999/x1link"
version="1.2" baseProfile="tiny"
xml:id="animationRef"” width="150" height="50" viewBox="0 @ 150 50" fill="inherit">

<rect xml:id="aMovingRect" width="50" height="50" rx="5" ry="5" fill="inherit" stroke-width="3" stroke="black">
<animateTransform attributeName="transform” type="translate” values="0,0;0,100" begin="0" dur="2"
fill="freeze"/>
</rect>
</svg>

Example: referencedRect2.svg

<?xml version="1.0" encoding="UTF-8"7?>

<svg xmlns="http://www.w3.0rg/2000/svg” xmlns:xlink="http://www.w3.0rg/1999/x1link"
version="1.2" baseProfile="tiny"
xml:id="animationRef"” width="150" height="50" viewBox="0 @ 150 50" fill="inherit">

<rect xml:id="aMovingRect” width="50" height="50" rx="5" ry="5" fill="rgb(255,28,141)" stroke-width="3"
stroke="black">
<animateTransform attributeName="transform” type="translate” values="0,0;0,100" begin="0" dur="2"
fill="freeze"/>
</rect>
</svg>

The following example illustrates how to reference SVG content from the 'animation’ element. Different 'fill' values
are used to show the way properties are inherited on content referenced from the 'animation' element.

Example: animation.svg

<?xml version="1.0" encoding="UTF-8"7?>
<svg xmlns="http://www.w3.0rg/2000/svg" xmlns:xlink="http://www.w3.0rg/1999/xlink"
version="1.2" baseProfile="tiny"” width="100%" height="100%" viewBox="0 @ 580 400">

<g fill="rgh(157,0,79)">

<animation x="20" xlink:href="referencedRect.svg"/>

<animation x="100" xlink:href="referencedRect2.svg"/>

<animation begin="1" x="180" viewport-fill="rgb(255,28,141)" xlink:href="referencedRect.svg"/>
</g>

</svg>

The image below shows the correct rendering of the animation example above. The arrows indicates the animation.
The grayed rectangles shows the initial state (i.e. time=0), the colored rectangles shows the final state (animations

197

/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/examples/referencedRect.svg
/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/examples/referencedRect2.svg
/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/examples/animation.svg

SVG Tiny 1.2 Specification 14 Linking

are completed).

lhm&: Os lhmﬂ: 0s lhme 1s

The following example illustrates the different ways SVG content can be referenced from a 'use' element. Differ-
ent 'fill' values are used to show the way properties are inherited on content referenced from the 'use' element.

Example: use.svg

<?xml version="1.0" encoding="UTF-8"7?>
<svg xmlns="http://www.w3.0rg/2000/svg" xmlns:xlink="http://www.w3.0rg/1999/xlink"
version="1.2" baseProfile="tiny" width="100%" height="100%" viewBox="0 @ 580 400">
<defs>
<g fill="green">
<rect xml:id="aMovingRect" width="50" height="50" rx="5" ry="5" fill="inherit" stroke-width="3"
stroke="black">
<animateTransform attributeName="transform” type="translate” values="0,0;0,100" begin="0" dur="2"
fill="freeze"/>
</rect>
</g>
</defs>

<g fill="rgb(157,0,79)">
<use x="20" xlink:href="#aMovingRect"/>

<use x="100" fill="rgb(255,28,141)" xlink:href="#aMovingRect"/>
<use x="180" xlink:href="referencedRect.svg#aMovingRect"/>

<use x="260" fill="rgb(255,28,141)" xlink:href="referencedRect.svg#aMovingRect"/>
</g>

</svg>

The image below shows the correct rendering of the use example above. The arrows indicates the animation. The
grayed rectangles shows the initial state (i.e. time=0), the colored rectangles shows the final state (animations are

198

/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/examples/use.svg

SVG Tiny 1.2 Specification 14 Linking

completed).

time: Os time: Os time: Os time: Os

14.1.6 Processing of external references to documents

When an SVG user agent resolves an external reference to a document, how the document is loaded and processed
depends on how the document was referenced. As defined below, a document is classified as either a primary docu-
ment or a resource document, and this classification determines the document's processing with respect to loading
of external references.

A primary document is one that is to be presented in whole by the user agent. Specifically, the following are
classified as primary documents:

+ An entire document, be it an SVG stand-alone document or some other document that can contain SVG
document fragments, that is loaded into a user agent for presentation, such as when navigating a web browser
to an IRI, whether by typing the IRl into the browser's address bar, clicking on a link to that IRI, or having the
Location: :assign() method invoked. (In an HTML 5 user agent, this is when a document is part of a top-level
browsing context ((HTMLS5], section 4.1.1).)

+ An entire SVG document that is loaded due to it being referenced by an 'animation’ element.

« A document that is loaded due to it being referenced for inclusion by a parent non-SVG document for
presentation, such as using the HTML 'object’ or 'iframe' elements.

A resource document is a document that has been loaded because parts of it are referenced as resources by an SVG
document fragment. Specifically, the following kinds of external references, all of which are references to elements,
will cause the loaded document to be classified as a resource document:

+ The 'xlink:href attribute on a 'use’ element.

« The 'xlink:href attribute on a ‘font-face-uri' element.

« A paint server reference in a 'fill' or 'stroke’ property.

Note that neither a primary document nor a resource document need be a complete SVG document (with the root-
most 'svg' element being the document element). Both may be non-SVG documents that contain SVG document
fragments.

Each primary document maintains a dictionary that maps IRIs to resource documents. This dictionary is used
whenever a resource document is to be loaded because an SVG document fragment within the primary document
(or one of its resource documents) references it. Before loading a resource document, its IRl is first looked up in the
primary document's dictionary to determine if it has already been loaded. If so, then that already-loaded document
is used instead of creating a separate document instance. Thus, for each primary document, a given resource

199

http://www.w3.org/TR/2008/WD-html5-20080610/web-browsers.html#top-level
http://www.w3.org/TR/2008/WD-html5-20080610/web-browsers.html#top-level

SVG Tiny 1.2 Specification 14 Linking

document is loaded only once. Primary documents, however, are always separate, self-contained document in-
stances, and resource documents are not shared between different primary documents.

The IRl used as the key in the dictionary of resource documents must be the absolute [RI after resolving it against
any applicable base IRI, and comparisons of the dictionary keys must be performed using a Simple String Comparis-
on, as defined in section 5.3.1 of Internationalized Resource Identifiers [RFC3987].

Whether a document is a primary document or a resource document, its processing once loaded is the same:
each SVG document fragment within the document acts as a separate SVG processing context in which events are
fired, scripts are executed, an animation timeline is created and animations are run, stylesheets are applied (if sup-
ported by the SVG user agent), and so on. Since a resource document is not just a static DOM, any changes to it (be
they modifications by script or changing presentation values with animation) will be visible through all references
to that resource document.

Note that since IRl references to resources from different primary documents will result in logically separate re-
source documents being instantiated, an SVG user agent will in general not be able to conserve memory by having
only one instance of the resource document in memory. In the case that many primary documents all have refer-
ences to a single, large, common resource file, this will likely result in a large amount of memory consumed. If the
SVG user agent is able to prove that the primary documents will behave exactly the same if a single instance is
shared in memory (by using copy-on-write semantics for the resource documents, for example), then such an op-
timization may of course be performed.

References to any other kinds of document, such as media or external scripts, are not classified as primary or re-
source documents. Multiple references to media at a particular IRl always result in separate timelines being created.

14.2 Links out of SVG content: the 'a' element

SVG provides an 'a' element, analogous to HTML's 'a' element, to indicate links (also known as hyperlinks or Web
links). SVG uses XLink [XLINK10] for all link definitions.

SVG Tiny 1.2 only requires that user agents support XLink's notion of simple links. Each simple link associates ex-
actly two resources, one local and one remote, with an arc going from the former to the latter.

A simple link is defined for each separate rendered element contained within the 'a’ element; thus, if the 'a’ ele-
ment contains three 'circle’ elements, a link is created for each circle. For each rendered element within an 'a' ele-
ment, the given rendered element is the local resource (the source anchor for the link).

The remote resource (the destination for the link) is defined by an IRI specified by the XLink 'href' attribute on
the 'a' element. The remote resource may be any Web resource (e.g., an image, a video clip, a sound bite, a program,
another SVG document, an HTML document, etc.). By activating these links (by clicking with the mouse, through
keyboard input, voice commands, etc.), users may traverse hyperlinks to these resources.

If the IRI identifies an animation element within the current SVG document fragment, then activating the 'a' ele-
ment will hyperlink to the animation, as defined in SMIL 2.1 ([SMIL21], section 10.4.3).

Example 17_01 assigns a link to an ellipse.

Example: 17_01.svg

<?xml version="1.0"7>
<svg width="5cm” height="3cm"” viewBox="0 @ 5 3" version="1.2" baseProfile="tiny"
xmlns="http://www.w3.0rg/2000/svg" xmlns:xlink="http://www.w3.0org/1999/x1link">

<title>Example 17_01</title>
<desc>A simple link on an ellipse.</desc>
<rect x=".01" y=".01" width="4.98" height="2.98"
fill="none" stroke="blue" stroke-width=".03"/>
<a xlink:href="http://www.w3.org/">
<ellipse cx="2.5" cy="1.5" rx="2" ry="1"
fill="red" />

</svg>

200

http://tools.ietf.org/html/rfc3987
http://www.w3.org/TR/html401/struct/links.html#h-12.2
http://www.w3.org/TR/xlink/#simple-links
http://www.w3.org/TR/2005/REC-SMIL2-20051213/smil-timing.html#Timing-HyperlinksAndTiming
/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/examples/17_01.svg

SVG Tiny 1.2 Specification

14 Linking

If the above SVG file is viewed by a user agent that supports both SVG and HTML, then clicking on the ellipse will
cause the current window or frame to be replaced by the W3C home page.
The element definition schema and content model for 'a' is not defined here. It is defined in all the places it can

occur.

Schema: a.at

<define name='a.AT' combine='interleave'>
<ref name='svg.Core.attr'/>
<ref name='svg.Conditional.attr'/>
<ref name='svg.Properties.attr’'/>
<ref name='svg.FocusHighlight.attr'/>
<ref name='svg.External.attr'/>
<ref name='svg.Focus.attr'/>
<ref name='svg.Transform.attr'/>
<ref name='svg.XLinkReplace.attr'/>
<optional>

<attribute name='target' svg:animatable='true' svg:inheritable='false’'>

<choice>
<value>_replace</value>
<value>_self</value>
<value>_parent</value>
<value>_top</value>
<value>_blank</value>
<ref name='XML-Name.datatype'/>
</choice>
</attribute>
</optional>
</define>

Attribute definitions:

xlink:type ="simple"
See generic description of 'xlink:type' attribute.

xlink:role ="<IRI>"
See generic description of 'xlink:role' attribute.

xlink:arcrole ="<IRI>"
See generic description of 'xlink:arcrole' attribute.

x1link:title = "<string>"
See generic description of 'xlink:title' attribute.

x1link:show ="new" | "replace"

This attribute is provided for backwards compatibility with SVG 1.1. It provides documentation to XLink-aware
processors. If target="_blank" then use xlink:show="new" else use 'replace'. In case of a conflict, the target
attribute has priority, since it can express a wider range of values. Refer to the XML Linking Language (XLink)

[XLINK10].
Animatable: no.

xlink:actuate = "onRequest"

This attribute is provided for backwards compatibility with SVG 1.1. It provides documentation to XLink-aware
processors that an application should traverse from the starting resource to the ending resource only on a

201

http://www.w3.org/TR/xlink/

SVG Tiny 1.2 Specification 14 Linking

post-loading event triggered for the purpose of traversal. Refer to the XML Linking Language (XLink)
[XLINK10].
Animatable: no.

xlink:href ="<IRI>"
The location of the referenced object, expressed as an IRl reference.
Animatable: yes.

_replace" | "_self" | "_parent" | "_top" | "_blank" | "<XML-Name>"

This attribute should be used when there are multiple possible targets for the ending resource, such as when
the parent document is a multi-frame HTML or XHTML document. This attribute specifies the name or portion
of the target window, frame, pane, tab, or other relevant presentation context (e.g., an HTML or XHTML frame,
iframe, or object element) into which a document is to be opened when the link is activated. The values and
semantics of this attribute are the same as the WebCGM Picture Behavior values [WEBCGM]:

target =

_replace
The current SVG image is replaced by the linked content in the same rectangular area in the same frame
as the current SVG image.

_self
The current SVG image is replaced by the linked content in the same frame as the current SVG image.
This is the lacuna value, if the target attribute is not specified.

_parent
The immediate frameset parent of the SVG image is replaced by the linked content.

_top
The content of the full window or tab, including any frames, is replaced by the linked content

_blank
A new un-named window or tab is requested for the display of the linked content. If this fails, the result is
the same as _top

<XML-Name>
Specifies the name of the frame, pane, or other relevant presentation context for display of the linked
content. If this already exists, it is re-used, replacing the existing content. If it does not exist, it is created
(the same as'_blank'’, except that it now has a name).
Note: The value '_new' is not a legal value for target (use '_blank’).
Animatable: yes.

focusable = "true" | "false" | "auto"
See attribute definition for description.
Animatable: yes.

Navigation Attributes
See definition.

14.2.1 Indicating links

Typically, HTML user agents, by convention, style the content of anchor elements to indicate that they are links, for
example by underlining and changing the color of text and creating a colored border around images and other re-
placement content. Because SVG is a visual language with irregular shapes and complex link structure (e.g. allowing
links within other links), and is intended to allow more precise control over the appearance of the content, SVG user
agents should not provide default styling to child content of an 'a' element, instead allowing authors to control the
linking conventions.

However, in order to ensure that links are obvious to users and to provide detailed information about each link,
SVG user agents should provide a clear indicator when a link is in scope. A link shall be considered to be in scope if
one of the child elements of that 'a' element has a pointer device cursor hovered over it or when that element is the
currently focused element. The user agent should change the scope indicator to signal that a link is in scope (e.g.

202

http://www.w3.org/TR/xlink/
http://www.w3.org/TR/REC-WebCGM/

SVG Tiny 1.2 Specification 14 Linking

the cursor may be changed to a pointing hand, or the focus highlight may be color-coded to indicate the status of
the link), should indicate the URI of the link (by displaying it in a status bar, or reading it aloud, for example), and
should display any author-supplied information about the link (as with a tooltip). Authors should use the 'xlink:title'
attribute appropriately on links, in order to provide information about the link to users.

14.3 Linking into SVG content: IRl fragments and SVG views

14.3.1 Introduction: IRl fragments and SVG views

Because SVG content often represents a picture or drawing of something, a common need is to link into a particular
view of the document, where a view indicates the initial transformations so as to present a closeup of a particular
section of the document.

14.3.2 SVG fragment identifiers

To link into a particular view of an SVG document, the IRI fragment identifier must be a correctly formed SVG frag-
ment identifier. An SVG fragment identifier defines the meaning of the "selector" or "fragment identifier" portion of
IRIs that locate resources of MIME media type "image/svg+xml".

An SVG fragment identifier can come in two forms:

1. Shorthand bare name form of addressing (e.g., someDrawing.svg#someView). This form of addressing, which
allows addressing an SVG element by its ID, is compatible with the fragment addressing mechanism for older
versions of HTML and the shorthand bare name formulation in XPointer Framework [XPTRFW].

2. SVGview specification (e.g., someDrawing.svg#svgView(transform(scale(2))). This form of addressing specifies the
desired view of the document (e.g., the region of the document to view, the initial zoom level) completely
within the SVG fragment specification. The contents of the SVG view specification is "transform(...)" whose
parameters have the same meaning that the corresponding attribute has on a 'g' element has).

An SVG fragment identifier is defined as follows:

SVGFragmentIdentifier ::= BareName |
SVGViewSpec
BareName ::= NCName
SVGViewSpec ::= 'svgView(' SVGViewAttributes ')’
SVGViewAttributes ::= SVGViewAttribute |
SVGViewAttribute ';' SVGViewAttributes
SVGViewAttribute ::= transformSpec
transformSpec ::= 'transform(’' TransformList ')’
where:

+ NCName is an <NCName> value.

« TransformList corresponds to the TransformList value. For example, transform(scale(5)).

An SVG fragment identifier must match the specified grammar. To ensure robust content, authors are recommen-
ded to omit spaces between numeric values, or replace these spaces with percent-encoded strings or commas as
appropriate.

Note: since fragment identifiers are stripped from |RIs before resolution, there is no need to escape any charac-
ters in fragments that are outside the repertoire of US-ASCIL.

When a user agent traverses a link to an SVG document fragment, whether from within the same document or
from an external source document, then the SVG fragment identifier shall specify the initial view into the SVG docu-
ment. This applies whether the link is from an SVG 'a' element, an HTML anchor element [HTML4] (i.e., an element in HTML), or any specification using XLink [XLINK10]. The user agent shall take the following steps
in determining the effect of the link traversal:

+ If no SVG fragment identifier is provided (i.e., the specified IRl did not contain a "#" character, such as
someDrawing.svg), then the initial view into the SVG document shall be established using the view specification
attributes (i.e., viewBox, etc.) on the rootmost 'svg' element.

« If the SVG fragment identifier addresses specific SVG view (e.g., linking-
svgView-102-t.svg#svgView(transform(rotate(30, 150, 150)))), then the document fragment defined by the closest
ancestor 'svg' element is displayed in the viewport using the SVG view specification provided by the SVG
fragment identifier.

« If the SVG fragment identifier addresses any element (e.g., #rectld or someDrawing.svg#rectld) and the element
indicated by the fragment identifier is found, then the current translation of the SVG document's coordinate

203

http://www.w3.org/TR/xptr-framework/

SVG Tiny 1.2 Specification 14 Linking

system shall be adjusted such that the centerpoint of the decorated bounding box of the identified element is
positioned in the center of the viewport. If the element's decorated bounding box is too large to fit within the
current viewport, and the 'zoomAndPan' attribute of the rootmost 'svg' element is not set to 'disable’, then the
viewport shall not only reposition but also have the current scale expanded to accommodate the entire width
and height of the element's decorated bounding box. By contrast, if the bounding box of the target element is
smaller than the viewport, the viewport shall remain at the preestablished values (i.e., it will not automatically
zoom in on the element). If the specified element does not have a decorated bounding box, then the current
translate and current scale are not changed from the established values. Regardless of changes to the current
translation or scale of the viewport, the current rotation of the current coordinate system shall be preserved
(that is, the centerpoint of the target decorated bounding box shall be the centerpoint of the rotation, with a
constant rotation angle), and the existing aspect ratio shall not be altered. In the case of traversal from an
external link, the viewport shall be established by the values specified in the rootmost 'svg' element, and in the
case of an internal link, the initial viewport shall additionally be adjusted by any previous zooming operations
(e.g. previously navigated links, user zooming, script alterations of the current coordinate system, etc.) such that
any translation or scaling that happens as a result of the traversal shall use the existing coordinate system as a
starting state. If the element is not found, or does not have a decorated bounding box, then the viewport does
not move or zoom. In all cases of traversal, the view shall be established instantly, with no animated panning or
other enhanced transition toward the target element. The viewbox shall not be continually animated to match
the animations of a target element's decorated bounding box. Future specifications may allow more
customizable behavior for traversal through another mechanism.

« If the SVG fragment identifier addresses any element and the element is not found, the initial view into the SVG
document shall be established using the view specification attributes (i.e., viewBox, etc.) on the rootmost 'svg'
element, as if no fragment had been specified.

Note: In SVG Tiny 1.2, only a single 'svg' element is allowed. Thus, the closest ancestor 'svg' element and the root-
most 'svg' element are the same. This is not true in other profiles of SVG, where the distinction becomes
significant.

204

SVG Tiny 1.2 Specification 15 Scripting

15 Scripting

Contents
15.1 Specifying the sCripting langUage.ottt e e e e e et et et e et e s 205
15.1.1 Specifying the default scripting language.oi it et 205
15.1.2 Local declaration of @ scripting languagec.oniiiiii i e e ettt 205
15,2 The SCriPt ElEMENt ..t e e e e e et ettt e e 205
LT B Yol T o 1 o) o Ta(=-1] 1 T 205
153 XML EVENTS .ottt ettt e e e e e 208
15.4The listener €lemMENt.t ettt e e 210
15.5The "handler elementttt e e e e e e e 212
15.5.1 Parameters to '"handler elements.o.ouiuii it e 214
15.6 EVeNt handlingottt et e 214
15.7 Processing inline executable CONteNtt e e e 214

15.1 Specifying the scripting language

15.1.1 Specifying the default scripting language

The 'contentScriptType' attribute on the 'svg' element specifies the default scripting language for the given docu-
ment fragment.

15.1.2 Local declaration of a scripting language

It is also possible to specify the scripting language for each individual 'script' or *handler' elements by specifying a
'type' attribute on the 'script’ and 'handler' elements.

15.2 The 'script' element

A 'script’ element may either contain or point to executable content (e.g., ECMAScript [ECMA-262] or Java [JAVA]
JAR file). Executable content can come either in the form of a script (textual code) or in the form of compiled code. If
the code is textual, it can either be placed inline in the 'script’ element (as character data) or as an external resource,
referenced through 'xlink:href' attribute. Compiled code must be an external resource. If a 'script’ element has both
an 'xlink:href' attribute and child character data, the executable content for the script is retrieved from the IRI of the
'xlink:href' attribute, and the child content is not added to the scripting context.

When the executable content is inlined, it must be processed as described in Processing inline executable
content.

Some scripting languages such as ECMAScript have a notion of a "global scope" or a "global object" such that a
single global object must be associated with the document (unique for each uDOM bocument node). This object is
shared by all elements contained in that document. Thus, an ECMAScript function defined within any 'script' ele-
ment must be in the "global" scope of the entire document to which the script belongs. The global object must im-
plement the svGGlobal interface. In addition to being implemented on the global ECMAScript object, the svcelobal
object can also be obtained through the pocumentview: : defaultview attribute on the pocument object. Event listeners at-
tached through event attributes and 'handler' elements are also evaluated using the global scope of the document
in which they are defined.

For compiled languages (such as Java) that don't have a notion of "global scope”, each 'script’ element, in effect,
provides a separate scope object. This scope object must perform an initialization as described in the uDOM chapter
and serves as event listener factory for the 'handler' element.

15.2.1 Script processing

Execution of a given 'script’ element occurs at most once. There is a conceptual flag associated with each 'script' ele-
ment (referred to here as the "already processed" flag) that enforces this behavior. When a 'script' element is ex-
ecuted depends on the method by which the element was inserted into the document.

205

SVG Tiny 1.2 Specification 15 Scripting

One way for a 'script’ element to be inserted into the document is if it was inserted while parsing the document.
As mentioned in Progressive rendering, as the document is parsed if a 'script’ element is encountered then it will be
processed just after its end element event occurs, but before any more of the document is parsed and further nodes
inserted into the document. (See below for a description of what it means for a 'script’ element to be processed.)
Once processed, parsing of the document resumes.

The other way a 'script’ element can be inserted into the document is if it was inserted by something other than
the parser (such as by other script executing). In this case, as soon as one or more 'script’' elements are inserted into
the document, they must be processed one by one in document order.

A 'script’ element is processed as follows:

1. If the 'script’ element’s "already processed" flag is true or if the element is not in the document tree, then no
action is performed and these steps are ended.

2. If the 'script’ element references external script content, then the external script content using the current value
of the 'xlink:href' attribute is fetched. Further processing of the 'script' element is dependent on the external
script content, and will block here until the resource has been fetched or is determined to be an invalid IRI
reference.

3. The 'script' element'’s "already processed" flag is set to true.

4. If the script content is inline, or if it is external and was fetched successfully, then the script is executed. Note
that at this point, these steps may be re-entrant if the execution of the script results in further 'script' elements
being inserted into the document.

Note that a load event is dispatched on a 'script' element once it has been processed, unless it referenced external

script content with an invalid IRl reference and 'externalResourcesRequired' was set to 'true'.

Modifying or removing the 'script' element (or content) after the script has started its execution must have no
effect on the script execution.

Modifying a 'script’ element's 'xlink:href' attribute after its "already processed” flag is set to true will not cause
any new script content to be fetched or executed.

What it means to execute some script content depends on the script content type. SVG Tiny 1.2 does not require
support for any particular programming language. However, SVG defines the behavior for two specific script types
in the case where an implementation supports it:
application/ecmascript

This type of executable content must be source code for the ECMAScript programming language. This code
must be executed in the context of this element's owner document's global scope as explained above.

SVG implementations that load external resources through protocols such as HTTP that support content
coding must accept external script files that have been encoded using gzip compression (flagged using
"Content-Encoding: gzip" for HTTP).

application/java-archive

This type of executable content must be an external resource that contains a Java JAR archive. The manifest
file in the JAR archive must have an entry named SVG-Handler-Class. The entry's value must be a fully-qualified
Java class name for a class contained in this archive. The user agent must instantiate the class from the JAR file
and cast it to the EventListenerInitializer2 interface. Then the initializeEventListeners method must be called
with the 'script' element object itself as a parameter. If a class listed in SVG-Handler-Class does not implement
EventListenerInitializer2, itis an error.

Note that the user agent may reuse classes loaded from the same URL, so the code must not assume that
every 'script' element or every document will create its own separate class object. Thus, one cannot assume,
for instance, that static fields in the class are private to a document.

Implementations must also accept the script type 'text/ecmascript’ for backwards compatibility with SVG 1.1.

However, this type is deprecated and should not be used by content authors.

Other language bindings are encouraged to adopt a similar approach to either of the two described above.

Example 18_01 defines a function circle_click which is called when the 'circle’ element is being clicked. The
drawing below on the left is the initial image. The drawing below on the right shows the result after clicking on the
circle. The example uses the 'handler' element which is described further down in this chapter.

Note that this example demonstrates the use of the click event for explanatory purposes. The example presup-
poses the presence of an input device with the same behavioral characteristics as a mouse, which will not always be
the case. To support the widest range of users, the boMactivate event should be used instead of the click event.

206

SVG Tiny 1.2 Specification

Example: 18_01.svg

15 Scripting

<?xml version="1.0"7>
<svg width="6cm” height="5cm"” viewBox="0 0 600 500"
xmlns="http://www.w3.0rg/2000/svg" version="1.2" baseProfile="tiny"
xmlns:ev="http://www.w3.0rg/2001/xml-events">
<desc>Example: invoke an ECMAScript function from an click event
</desc>
<!-- ECMAScript to change the radius with each click -->
<script type="application/ecmascript”> <![CDATAL
function circle_click(evt) {
var circle = evt.target;
var currentRadius = circle.getFloatTrait("r");
if (currentRadius == 100)
circle.setFloatTrait("r", currentRadiusx2);
else
circle.setFloatTrait("r"”, currentRadiusx@.5);

3
11> </script>
<!-- Qutline the drawing area with a blue line -->
<rect x="1" y="1" width="598" height="498" fill="none" stroke="blue"/>
<!-- Act on each click event -->

<circle cx="300" cy="225" r="100" fill="red">
<handler type="application/ecmascript” ev:event="click">
circle_click(evt);
</handler>
</circle>

<text x="300" y="480" font-family="Verdana" font-size="35" text-anchor="middle">
Click on circle to change its size
</text>
</svg>

Click on circle to change its size Click on circle to change its size

Here the same script is invoked, this time in an external file.

Example: 18_02.svg

<?xml version="1.0"7>
<svg width="6cm" height="5cm" viewBox="0 @ 600 500"
xmlns="http://www.w3.0rg/2000/svg" version="1.2" baseProfile="tiny"
xmlns:ev="http://www.w3.0rg/2001/xml-events”>
<desc>Example: invoke an external ECMAScript function from an click event
</desc>
<!-- ECMAScript to change the radius with each click -->
<script type="application/ecmascript” xlink:href="sample.es"/>

<!-- Qutline the drawing area with a blue line -->
<rect x="1" y="1" width="598" height="498" fill="none"” stroke="blue"/>
<!-- Act on each click event -->

<circle cx="300" cy="225" r="100" fill="red">
<handler type="application/ecmascript” ev:event="click">
circle_click(evt);

207

/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/examples/18_01.svg
/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/examples/18_02.svg

SVG Tiny 1.2 Specification 15 Scripting

</handler>
</circle>

<text x="300" y="480" font-family="Verdana" font-size="35" text-anchor="middle">
Click on circle to change its size
</text>
</svg>

Schema: script

<define name='script’'>
<element name='script'>
<ref name='script.AT'/>
<ref name='script.ATCM'/>
</element>
</define>

<define name='script.AT' combine='interleave'>
<ref name='svg.CorePreserve.attr'/>
<ref name='svg.External.attr'/>
<ref name='svg.ContentType.attr'/>

</define>

<define name='script.ATCM'>
<interleave>
<choice>
<group>
<ref name='svg.XLinkRequired.attr'/>
</group>
<text/>
</choice>
<ref name='svg.Desc.group'/>
</interleave>
</define>

Attribute definitions:

type ="<content-type>"
Identifies the programming language for the 'script’ element. The "<content-type>" value specifies a media
type, per Multipurpose Internet Mail Extensions (MIME) Part Two [RFC2046]. If 'type' is not specified, the value of
'contentScriptType' on the 'svg' element shall be used, which in turn has a lacuna value of 'application/
ecmascript' [RFC4329]. If a 'script’ element is not inside an SVG document fragment, 'type' must default to
‘application/ecmascript'. This can happen for example if the 'script' element is a child of some arbitrary non-SVG
markup.

Animatable: no.

xlink:href ="<IRI>"
An IRl reference to an external resource containing the script code. If the attribute contains an invalid IRI
reference, the 'script' element will not execute any script.
Animatable: no.

15.3 XML Events

XML Events [XML-EVENTS] is an XML syntax for integrating event listeners and handlers with DOM Level 2 Events
[DOM2EVENTS]. Declarative event handling in SVG 1.1 was hardwired into the language, in that the developer was
required to embed the event handler in the element syntax (e.g. an element with an 'onclick’ attribute). SVG Tiny 1.2
does not support the event attributes (‘onload’, 'onclick’, 'onactivate’, etc.). Instead SVG Tiny 1.2 uses XML Events,
through the inclusion of the 'listener' and 'handler' elements to provide the ability to specify the event listener sep-
arately from the graphical content.

The list of events supported by SVG Tiny 1.2 is given in the Interactivity chapter.

There are two ways to place a handler in SVG Tiny 1.2 content. The first method is most suitable for simple cases:

208

http://www.ietf.org/rfc/rfc2046.txt
http://www.w3.org/TR/2003/REC-xml-events-20031014/
http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/

SVG Tiny 1.2 Specification 15 Scripting

Example: simplehandler.svg

<svg xmlns="http://www.w3.0rg/2000/svg"
xmlns:ev="http://www.w3.0rg/2001/xml-events”
version="1.2" baseProfile="tiny">

<rect x="10" y="20" width="10" height="20" fill="red">
<handler type="application/ecmascript” ev:event="click">
var theRect = evt.target;
var width = theRect.getFloatTrait("width");
theRect.setFloatTrait("width”, width + 10);
</handler>
</rect>

</svg>

In this method the 'handler' element is a child element of the observer ((XML-EVENTS], section 3.1). For instance one
can place a 'handler' as a child of a 'rect’ element, which becomes the observer. This causes the 'handler' element to
be invoked whenever the event that it is interested in (click, in this case) occurs on the 'rect'.

The following is an example of an SVG document using XML Events where the 'handler' element can be reused
on several objects. The 'listener' element from XML Events is used to specify the 'observer' and 'handler' for a particu-
lar 'event'.

Example: handler.svg

<svg xmlns="http://www.w3.0rg/2000/svg" version="1.2" baseProfile="tiny"
xmlns:ev="http://www.w3.0rg/2001/xml-events">

<desc>An example of the handler element.</desc>

<rect xml:id="theRectl” x="10" y="20" width="10" height="20" fill="red"/>
<rect xml:id="theRect2" x="10" y="40" width="10" height="20" fill="green"/>

<ev:listener event="click” observer="theRectl” handler="#theClickHandler"/>
<ev:listener event="click” observer="theRect2" handler="#theClickHandler"/>

<handler xml:id="theClickHandler" type="application/ecmascript”>
var theRect = evt.target;
var width = theRect.getFloatTrait("width");
theRect.setFloatTrait("width”, (width+10));

</handler>

</svg>

In the above example, the 'listener' element registers that the "theClickHandler" element should be invoked
whenever a click event happens on "theRect1" or "theRect2".

The combination of the XML Events syntax and the new 'handler' element allows event handling to be more eas-
ily processed in a compiled language. Below is an example of an event handler using the Java language:

Example: javahandler.svg

<svg xmlns="http://www.w3.0rg/2000/svg" version="1.2" baseProfile="tiny"
xmlns:ev="http://www.w3.0rg/2001/xml-events”
xmlns:foo="http://www.example.com/foo"
xmlns:xlink="http://www.w3.0rg/1999/x1ink">
<desc>Example of a Java handler</desc>

<rect xml:id="theRect” x="10" y="20" width="200" height="300" fill="red"/>

<!-- reference a jar containing an EventListenerInitializer2 object -->
<script type="application/java-archive” xml:id="init"” xlink:href="http://example.com/theJar.jar"/>

<!-- register a listener for a theRect.click event -->
<ev:listener event="click” observer="theRect” handler="#theClickHandler" />

<handler xml:id="theClickHandler"” type="application/java-archive” xlink:href="#init" foo:offset="10"/>

209

/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/examples/simplehandler.svg
http://www.w3.org/TR/xml-events/Overview.html#attr-listener-observer
/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/examples/handler.svg
/home/cam/work/cvs/w3/dev/SVG/profiles/1.2T/publish/examples/javahandler.svg

SVG Tiny 1.2 Specification 15 Scripting

</svg>

In this case, the 'handler' element specifies a reference to the 'script' element that specifies the location of compiled
code that conforms to the EventListenerInitializer2 interface. The user agent invokes the createEventListener method
within the targeted interface.

In this case, the MyListenerInitializer class referenced by the SVG-Handler-Class entry of the theJar.jar manifest
has the following definition:

MyListenerlnitializer

package com.example;

import org.w3c.dom.Document;

import org.w3c.dom.Element;

import org.w3c.dom.events.Event;

import org.w3c.dom.events.EventListener;

import org.w3c.dom.svg.EventListenerInitializer2;

public class MylListenerInitializer implements EventListenerInitializer2 {
Document document;

public void initializeEventListeners(Element scriptElement) {
document = scriptElement.getOwnerDocument();

}

public EventlListener createEventListener(final Element handlerElement) {
return new EventListener() {
public void handleEvent(Event event) {
Element theRect = document.getElementById("theRect");
float width = Float.parseFloat(theRect.getAttributeNS(null, "width"”));
float offset = Float.parseFloat(handlerElement.getAttributeNS("http://www.example.com/foo",
"offset");

theRect.setAttributeNS(null, "width”, "" + (width + offset));

b3

The EventListenerInitializer2 interface is currently defined in the SVG package. Future specifications may move this
package though it is guaranteed to always be available in the SVG package.

15.4 The 'listener' element

The 'listener' element from XML Events [XML-EVENTS] must be supported. The definition for the 'listener' element is
provided in [XML-EVENTS]. Any additional restrictions from this specification must also apply.

Whenever the attributes of a listener element are modified, the corresponding event listener is removed and a
new one is created. When listener elements are added or removed, the event listener is added or removed
respectively.

Please note that the 'listener' element must be specified in the XML Events namespace, and that an element in
the SVG namespace with "listener" as its local name must not be understood as being the element described in this
chapter. Furthermore, the XML Events attributes that are available on other elements only when they are in the XML
Events namespace, are only available on this element when they are in no namespace.

Schema: listener

<define name='listener'>
<element name='listener'>
<ref name='listener.AT'/>
<ref name='li