
ServiceWorker for Performance
bit.ly/sw-breakout-tpac2024

IRC: #serviceworkers

Shunya Shishido sisidovski@chromium.org
Keita Suzuki suzukikeita@chromium.org

Breakout in TPAC 2024 Anaheim, CA

1

https://bit.ly/sw-breakout-tpac2024

Agenda

1. Recap: Why ServiceWorker?
2. Updates from last year, Static Routing API
3. Newly incubated ideas

○ SWAutoPreload
○ SW Synthetic Response

4. Q&A, discussion

2

Recap: How ServiceWorker works

example.com/article/page.html

ServiceWorker

Network

CacheThe bootstrap is required
if it’s not started yet.

3

ServiceWorker is on the critical path of the navigation!

Cost of ServiceWorker Bootstrap

Android

● 3ms in p50
● 70ms in p75
● 436ms in p95

Windows

● 1ms p50
● 27ms in p75
● 350ms in p95

4

Cost of ServiceWorker

● What percentage of navigation needs to bootstrap service worker?
○ About 30% of ServiceWorker are not running

○ For cross origin navigation, it’s about 50%

● What percentage of fetch handlers result in fallback*?
○ On Windows, the fallback rate is 13%.

○ On Android, the fallback rate is 46%.

*fallback: fetch handler is executed, but the fetch handler never respond the content. The browser ends up
sending the network request with the regular network stack.

5

Recent Updates

6

Static Routing API

// Go straight to the network and bypass invoking fetch

handlers for all URLs that start with '/images/'.

addEventListener('install', (event) => {

 event.addRoutes({

 condition: {

 urlPattern: {pathname: "/images/*"}

 },

 source: "network"

 });

});

● Allows developers to register routing rules.
● Offload ServiceWorker tasks from the

loading critical path.

7https://github.com/WICG/service-worker-static-routing-api/

https://github.com/WICG/service-worker-static-routing-api/

Static Routing API

addEventListener('install', (event) => {

 event.addRoutes({

 condition: {

 urlPattern: {pathname: "/images/*"}

 },

 source: "network"

 });

});

In the install event handler, register routing
info to the data structure associated with
service worker.

example.com

addEventListener('install', (event) => {

 event.addRoutes({

 condition: {

 urlPattern: {pathname: "/images/*"}

 },

 source: "network"

 });

});

Static Routing API

Check if the request is matched
with the registered routing rules.

example.com

GET example.com/images/test.pngl

If matched, the fetch event is not
dispatched. The request goes
directly to the network.

addEventListener('install', (event) => {

 event.addRoutes({

 condition: {

 urlPattern: {pathname: "/images/*"}

 },

 source: "network"

 });

});

Static Routing API

example.com

GET example.com/article/page.html Network

Cache

If not matched, just go the through
regular ServiceWorker fetch
handler path.

10

Conditions and Sources

RouterCondition

● urlPattern
● requestMethod
● requestMode
● requestDestination
● runningStatus

RouterSource

● fetch-event
● network
● cache
● race-network-and-fetch-handler

11

Syntax Sugar

● “or” condition
● “not” condition

Static Routing API common use case

Skip POST requests in matched URLs
If the request url starts from “form”
and method is POST, goes directly to
the network.

Otherwise goes to the ServiceWorker.

addEventListener('install', (event) => {
 event.addRoutes({
 condition: {
 urlPattern: {pathname: "/form/*"},
 requestMethod: "post"
 },
 source: "network"
 });
});

12

Static Routing API common use case

addEventListener('install', (event) => {

 event.addRoutes([

 {

 condition: {requestMode: "navigate"},

 source: "network"

 },

 {

 condition: {

 urlPattern: {pathname: "/images/*"}

 },

 source: "cache"

 }

]);

});

Skip SW for navigation requests.
Directly to the cache for subresources.

Main resource (navigation request)
goes directly to the network.

Images goes directly to the Cache
storage.

13

addEventListener('install', (event) => {
 event.addRoutes({
 condition: {
 requestMode: “navigate”,
 runningStatus: “not-running”,
 },
 source: "race-network-and-fetch-handler"
 });
});

“race-network-and-fetch-handler” is the router souce
starting the race between the network request and the
ServiceWorker fetch handler.

The browser uses the result of whichever was faster.

Static Routing API common use case

If the request is a navigation request and the SW
is not running, starts the race between the
network and fetch handlers.

14

Static Routing API common use case

addEventListener('install', (event) => {
 event.addRoutes([
 {
 condition: {
 or: [{urlPattern: "/**/*.png"}, {urlPattern: "/**/*.css"}]
 },
 source: 'cache'
 },
 {
 condition: {
 not: {urlPattern: "/app-shell/*"}
 },
 source: 'network'
 }
])
});

Cache for png or css resources.
Network for the URL is not /app-shell/*

Non-app shell resource goes to the
network.

PNG or CSS goes to the Cache
storage.

15

How Static Routing API is used today

As of Sep 2024, more than 1.5% of page loads
use Static Routing API in Chrome.

One of the partner websites improved LCP by
80ms by enabling the API with
‘race-network-and-fetch-handler’ for navigation
requests.

16

https://chromestatus.com/metrics/feature/timeline/popularity/4711

https://chromestatus.com/metrics/feature/timeline/popularity/4711

Current Status

17

https://chromestatus.com/feature/5185352976826368 https://github.com/w3c/ServiceWorker/pull/1701

https://chromestatus.com/feature/5185352976826368
https://github.com/w3c/ServiceWorker/pull/1701

Our Recent Focus

Improving developer experience

● More visibility in DevTools
● Resource Timing API

More features are explored on the
Static Routing API infra

18

Many components exist in static routing API

19

/form

How long router
eval took?

Which path is
used?

How long did cache
lookup take?

Hard to understand how the components
are actually behaving

Extending Resource Timing API

● Provide loading-related behaviors to developers via resource timing API
○ Developers can optimize their websites by using this data

20From https://developer.mozilla.org/en-US/docs/Web/API/PerformanceResourceTiming

https://developer.mozilla.org/en-US/docs/Web/API/PerformanceResourceTiming

● Provide loading-related behaviors to developers via resource timing API
○ Developers can optimize their websites by using this data

From https://developer.mozilla.org/en-US/docs/Web/API/PerformanceResourceTiming

Extending Resource Timing API

21

Start time of
router eval

Start time of
cache lookup

Which route was
used

https://developer.mozilla.org/en-US/docs/Web/API/PerformanceResourceTiming

Proposal in Resource Timing API (In discussion)

✓ Two new timings
○ workerRouterEvaluationStart
○ workerCacheLookupStart

✓ Two new fields
○ matchedRouterSourceType
○ actualRouterSourceType

Explainer

Currently in discussion at the Web Performance WG
Discussion session 9/26 9:00AM ~

Feedback is welcomed

We need more feedback in general, but specifically…

● How to handle unsupported router features issue28
● The depth limit for the router registration issue6
● Visibility of registered router rules
● Interoperability

23

https://github.com/WICG/service-worker-static-routing-api/issues/28
https://github.com/WICG/service-worker-static-routing-api/issues/6

New Ideas

24

ServiceWorkerAutoPreload

1. About half of SW fetch result is fallback.
2. Many websites just path-through responses

from the network.

What if…
1. Automatically dispatches a network request

before starting the SW?
2. Consumes the response inside the fetch

handler, or as a fallback response?

25
https://github.com/explainers-by-googlers/service-worker-auto-preload

https://github.com/explainers-by-googlers/service-worker-auto-preload

How it works

26

example.com

1.The browser sends a request to
the server.

26

2.In parallel with 1), the browser
starts ServiceWorker.

3.The network response is
consumed as a result of
fetch(e.request) inside the fetch
handler.

4.The response is returned to the
browser.

Fallback

27

example.com

27

Then the browser sends a fallback
request to the server, and use its
response.

ServiceWorker is started, but the
fetch handler doesn’t return the
response with e.respondWith().

Fallback w/ SWAutoPreload

28

example.com

1.The browser sends a preload
request to the server.

28

3.The fetch handler does not call
event.respondWith().

4.The browser uses the response
from the preload request.

2.In parallel with 1), the browser
starts ServiceWorker.

Requests can be duplicated?

● The auto preload request is resolved with
fetch(e.request) in the fetch handler.

● fetch(e.request) doesn’t send a network
request. Instead, it returns a promise that is
resolved with the response from the auto
preload request.

● Technically it’s possible that requests are
duplicated e.g. request.clone()

● It can be mitigated by applying
ServiceWorkerAutoPreload only for
websites that meet an eligibility criteria.

29

self.addEventListener('fetch', (event) => {

 // This fetch() doesn't create a new network

request. Instead, resolved with the response from

the auto preload network request.

 event.respondWith(fetch(event.request));

 // This fetch() creates a network request.

 event.respondWith(fetch(event.request.clone()));

});

Eligibility Criteria

● Planned criteria: higher rates of fetch handler results are fallback.
○ e.g. 98+% fallback

● We (Google Chrome team) plan to enable SWAutoPreload automatically for
the sites met the criteria.

● The criteria may be revised in the future to behave more smartly.

30

Opt-out

● Opting out can be done via the
Static Routing API.

● By registering the router rule that
matches all requests, and asking
them to go to the fetch handler.

31

self.addEventListener('install', e => {

 e.addRoutes({

 condition: {

 urlPattern: new URLPattern({})

 },

 source: "fetch-event"

 });

});

Difference from NavigationPreload

Trying to solve the same problem, which is minimizing the cost of ServiceWorker bootstrap.

NavigationPreload

● The response is resolved with event.preloadResponse.
● Explicitly enabled via PreloadManager.enable().
● Prioritized when both features are enabled.

SerivceWorkerAutoPreload

● The response is resolved with the regular response of fetch(event.request).
● Enabled automatically by the browser criteria.

For more details, please see
https://github.com/explainers-by-googlers/service-worker-auto-preload#how-is-it-different-from-the-navigation-pr
eload-api

32

https://github.com/explainers-by-googlers/service-worker-auto-preload?tab=readme-ov-file#how-is-it-different-from-the-navigation-preload-api
https://github.com/explainers-by-googlers/service-worker-auto-preload?tab=readme-ov-file#how-is-it-different-from-the-navigation-preload-api

Current Status

Prototyping, under the experiment.

From the Chrome Beta channel
experiment, multiple loading metrics
improvements were observed e.g. LCP
on the ServiceWorker controlled page.

33

LCP on ServiceWorker controlled page

ServiceWorkerAutoPreload

● Specified as an optional optimization that the browser can apply at its
choosing.

● While it can provide performance improvements, it’s observable via the
server as additional requests.

● However, it can be mostly not observable as far as the browser limits this
optimization only to ServiceWorkers in which the fetch handler returns the
response always consistent with the network request.

34

We need more feedback

General feedback, concerns are very welcomed.

Is the current criteria reasonable?

35

ServiceWorker Synthetic Response

36

ServiceWorker
Synthetic Response

A new idea as the part of the Static
Routing API.

Synthetic Response provides faster
navigation by starting the page load
earlier in the renderer process.

37

?

How Navigation Works

38

Renderer Process

Browser's Network stack

Browser's UI Thread
Begin

Navigation

Start url
request Read response body

Find
renderer

Commit Load

Committed Load
Stop

Redirects

Currently, the renderer process starts the commit after receiving the response from the server.

● (Android) The commit navigation task takes median 40ms, 78ms in p75, 194ms in p95.
● (Android) From the navigation start to receive the response, it takes median 360ms, p75

759ms, p95 2350ms.

Can we parallelize sending a network request and the commit navigation?

ServiceWorker Synthetic Response

What if the browser could know the set of HTTP response headers in advance for the upcoming
navigation request? e.g.

● content-type is text/html
● Non-204 response
● No content disposition
● COOP/COEP headers
● etc

=> The renderer process can speculatively start the navigation commit without waiting
for the response from the network.

39

ServiceWorker Synthetic Response

We can extend the Static Routing API so that it
can store the set of response headers in the
install phase.

40

self.addEventListener("install", e => {
 e.addRoutes({
 condition: {requestMode: "navigate"},
 source: {
 predefinedHeaders: new Headers({
 “Content-Type”: “text/html”,
 "Cache-Control": “no-cache”
 })
 }
 });
});

ServiceWorker Synthetic Response

41

self.addEventListener("install", e => {
 e.addRoutes({
 condition: {requestMode: "navigate"},
 source: {
 predefinedHeaders: new Headers({
 “Content-Type”: “text/html”,
 "Cache-Control": “no-cache”
 })
 }
 });
});

?
Response headers

Response body

Stream response

ServiceWorker Synthetic Response

42

?
Response headers

Response body

Stream response

onfetch = (event) => {
 event.respondWith(
 new Response(synthetic_header, synthetic_body)
);
 fetch(event.request)
 .then(res => { plumb res.body to synthetic_body; })
 .catch(e => { Set error_text to synthetic_body; });
};

Possible polyfill:

How Navigation Works

43

Renderer Process

Browser's Network stack

Browser's UI Thread Begin
Navig
ation

Start url
request Read response body

SW
Router

Commit Load

Committed Load
Stop

Redir
ects

The Static Routing API returns an early part of the response without waiting for the network
response. The rest of response from the network will be appended to the stream.

Note: The SW router lookup doesn’t involve the SW bootstrap in the navigation critical path.

ServiceWorker Synthetic Response traces

44

w/o Synthetic Response w Synthetic Response

App Shell via Synthetic Response?

More beneficial if the cached response
contains the body, in addition to headers
e.g. App Shell.

45source: https://developer.chrome.com/blog/app-shell

https://developer.chrome.com/blog/app-shell

How Navigation Works

46

Renderer Process

Browser's Network stack

Browser's UI Thread Begin
Navig
ation

Start url
request Read response body

SW
Router

Com
mit Load

Committed Load
Stop

Redir
ects

ServiceWorker Synthetic Response

● Chrome team is exploring, under prototyping.
● Very early stage, still we have lots of unclear points.

○ What are necessary headers for the navigation commit?
○ Are headers be merged?
○ etc

● Open to any feedback, comments.
● Participate:

https://github.com/WICG/service-worker-static-routing-api/issues/32

47

https://github.com/WICG/service-worker-static-routing-api/issues/32

Resources

Static Routing API

● Explainer
● Spec
● Explainer for the Resource Timing
● Developer Instructions | Chrome

for Developers
● DEMO

48

ServiceWorkerAutoPreload

● Explainer
● chromestatus

Synthetic Response

● Github Issue

https://github.com/WICG/service-worker-static-routing-api
https://w3c.github.io/ServiceWorker/
https://github.com/WICG/service-worker-static-routing-api/blob/main/resource-timing-api.md
https://developer.chrome.com/blog/service-worker-static-routing
https://developer.chrome.com/blog/service-worker-static-routing
https://sw-static-routing-demo.glitch.me/
https://github.com/explainers-by-googlers/service-worker-auto-preload
https://chromestatus.com/feature/5194817700364288
https://github.com/WICG/service-worker-static-routing-api/issues/32

