
Kyra Seevers

Partitioning :visited links:
What, like it's hard?
Sept 25, 2024

bit.ly/visited-links

http://bit.ly/visited-links

Proprietary + Confidential

Background

Current Status

Implementation and Challenges

Frames, Frames, and More Frames

The Future

Call for Input

01

02

03

04

05

06

Agenda

Proprietary + Confidential

Background
01

Proprietary + ConfidentialProprietary + Confidential

Improve user privacy by
eliminating :visited links history

leaks.

Proprietary + Confidential

The renderer styles a link as visited, if and only if we have visited that link from
this top-level site and frame-origin previously.

Our Proposal:

Proprietary + Confidential

Current Status
02

Proprietary + Confidential

Phase 1

● Storing triple-key partitioned state in the new VisitedLinkDatabase
○ Enabled by Default since Chrome 121

Proprietary + Confidential

Phase 1

● Storing triple-key partitioned state in the new VisitedLinkDatabase
○ Enabled by Default since Chrome 121

Phase 2

● User-facing partitioned :visited links
○ Stable 1% Experiment Completed in Chrome 128

■ Android: 4.0% Partitioned vs. 5.5% Unpartitioned
■ Desktop: 6.4% Partitioned vs. 9.4% Unpartitioned
■ Great Performance Metrics on Both Platforms

○ Multi-armed Experiment with Self-Links in Chrome 130

Proprietary + Confidential

Phase 1

● Storing triple-key partitioned state in the new VisitedLinkDatabase
○ Enabled by Default since Chrome 121

Phase 2

● User-facing partitioned :visited links
○ Stable 1% Experiment Completed in Chrome 128

■ Android: 4.0% Partitioned vs. 5.5% Unpartitioned
■ Desktop: 6.4% Partitioned vs. 9.4% Unpartitioned
■ Great Performance Metrics on Both Platforms

○ Multi-armed Experiment with Self-Links in Chrome 130

Phase 3

● Incremental improvements post launch

Proprietary + Confidential

Implementation and Challenges
03

Proprietary + ConfidentialProprietary + Confidential

“But what about self-links?”

Proprietary + Confidential

Chrome Case Study: Self-Links

Link URL wikipedia.org/paris

Top Level google.com

Frame Origin google.com

Link URL wikipedia.org/paris

Top Level wikipedia.org

Frame Origin wikipedia.org

Proprietary + Confidential

However, this conflicts with our proposal of styling links as :visited if and only
if we have visited them from this context before.

But we had a lot of feedback from external stakeholders that “self-links” can be
valuable.

So the question became: “How do we implement self-links without
compromising our privacy and security boundary?”

Chrome Case Study: Self-Links

Proprietary + Confidential

Chrome Case Study: Self-Links

Proprietary + Confidential

Chrome Case Study: Self-Links
Solution:
We only support self-links for top-level frames and same-origin subframes.

Self-Link Key

Proprietary + ConfidentialProprietary + Confidential

“But what about renderer
compromises?”

Proprietary + Confidential

Chrome Case Study: Renderer Compromises

Proprietary + Confidential

Chrome Case Study: Renderer Compromises

 Chrome’s :visited links are stored in a hashtable in memory.

A shared memory handle is sent via IPC to each Renderer Process.

Browser Process Renderer Process
(bar.com)

VisitedLinks
hashtable
(Memory)

IPC

Renderer Process
(foo.com)

IPC Shared
Memory
Handle

Shared
Memory
Handle

Proprietary + Confidential

Chrome Case Study: Renderer Compromises

Browser Process Renderer Process
(bar.com)

VisitedLinks
hashtable
(Memory)

IPC

Renderer Process
(foo.com)

IPC {<link, foo, foo>}

 We pitched several mitigations including “pre-filtering” or only
sending each navigation request the links which matched its

own triple-key.
Unfortunately, these were all too inefficient for Chrome.

{<link, foo, foo>} {<link, foo, bar>,
 <link, bar, bar>}

Proprietary + Confidential

Chrome Case Study: Renderer Compromises

 Our solution is “per-origin salts” where each triple-key gets hashed
with an additional salt corresponding to its frame origin.

Each Render Process receives the salt corresponding to its origin prior
to load, so it has the ability to “read” only its own origin’s hashes.

Browser Process Renderer Process
(bar.com)

<link url, top level
site, frame origin>

+
origin salt

IPC

Renderer Process
(foo.com)

IPC Shared Memory
Handle

+ Salt for foo.com

Shared Memory
Handle

+ Salt for bar.com

Proprietary + Confidential

Chrome Case Study: Renderer Compromises

 To avoid race conditions, we do not determine or send per-origin salts
during hashtable build.

Once build completes, we query every RenderProcessHost for its origin
(or pending cross-document origin commits) and IPC its per-origin salt.

Browser Process Renderer Process
(bar.com)

<link url, top level
site, frame origin>

+
origin salt

IPC

Renderer Process
(foo.com)

IPC Shared Memory
Handle

+ Salt for foo.com

Shared Memory
Handle

+ Salt for bar.com

Proprietary + Confidential

Frames, Frames,
and More Frames

04

Proprietary + ConfidentialProprietary + Confidential

“But what about
other types of frames?”

Proprietary + ConfidentialProprietary + Confidential

Frame Type Click #1:
Iframe

Click #2:
Credentialless

Click #3:
Sandboxed

Click #4:
Fenced

iframe click visited visited unvisited unvisited

credentialless visited click visited unvisited unvisited

sandboxed unvisited unvisited click unvisited unvisited

fenced visited visited unvisited click unvisited

The experiment contains four frames
that all share the same triple-partition key.

Chrome Case Study: Special Frames

Proprietary + Confidential

Chrome Case Study: Special Frames

Partitioned Visited Links can be understood in 2 parts:

(1) What we store
(2) What we style

Iframe Credentialless Sandbox Fenced

Store Yes Currently, Yes
Plans to make No

No No

Style Yes Currently, Yes
Plans to make No

No Currently, Yes
Plans to Make No

Proprietary + Confidential

The Future
05

Proprietary + Confidential

The Future

Phase 3 - Still open for suggestions!

● Incremental improvements post launch

○ Potentially integrating blink::StorageKey for reliable nonce calculations
and maybe capturing even more “state lost”

○ Potentially improving corner cases with BFCache + restores

○ Potentially shipping on iOS

Proprietary + Confidential

Call for Input
06

Proprietary + Confidential

The Future

CSS Selectors Level 4:

● “Since it is possible for style sheet authors to abuse the :link and :visited
pseudo-classes to determine which sites a user has visited without the
user’s consent, UAs may treat all links as unvisited links or implement other
measures to preserve the user’s privacy while rendering visited and
unvisited links differently.”

● <link url, top-level site, frame origin> vs. blink::StorageKey

● Any other implementation questions, concerns, struggles that other
browsers have come across?

Proprietary + Confidential

What did we miss?
We would love your feedback, thoughts, questions or concerns!

Special Thanks To:
Artur Janc, Mike Taylor, WebAppSec WG, and Legally Blonde

Where To Give Feedback:
File an issue on the explainer

https://github.com/kyraseevers/Partitioning-visited-links-history/issues

