Camera Effects Coordination

Breakout Session - TPAC 2024

Mark A. Foltz ()
September 25, 2024

mailto:mfoltz@google.com

Ground Rules

This meeting operates under

e The W3C Code of Ethics and Professional Conduct
e The W3C Antitrust and Competition Guidance

e Forin-person attendees, this year's TPAC health policies

https://www.w3.org/Consortium/cepc/
https://www.w3.org/Consortium/Legal/2017/antitrust-guidance
https://www.w3.org/2024/09/TPAC/health.html

g kW=

Context & problem statement

Effects Coordination strategies

Proposed solution

Comparison with constraint based approach
Next steps and discussion

Context & Problem Statement

https://learn.microsoft.com/en-us/windows/ai/studio-effects/
https://docs.google.com/file/d/1V7eDq6JtsicgDeQTVjvhhoSJmta7_fEh/preview

Appears when you're
in a FaceTime call.

> Q & MonJun10 9:41AM

Jenny Court
FaceTime Video >

‘& Background

2 Desk View...

Mic Mode Wide Spectrum

Lists available video effects
for the selected camera.

https://support.apple.com/guide/facetime/use-video-effects-fctm81f99179/mac

v L# Meet - Catch-up chat X + o X

&« C 23 meet.google.com/jmx-zgoh-jka?authuser=0 w D o -

& W Meet - Catch-up chat

X
Improve
lighting

Background blur

[\

¥ Google Meet Catch-up chat off

@® G M B O ® P D .L & v @ © octs 1230WR

https://blog.google/products/chromebooks/chromebook-plus/

Effects X SStings

Background settings

Backgrounds Filters Appearance
Adijust video lighting
Makes it easier to see you against a bright Choose Background #)
background
None Blur = k- — A
Portrait touch-up W N

Lightly touch up your appearance

-~
e teams.microsoft.com

Puts you in the center of the screen

Mirror my video

app.zoom.us

Styles

[)] & Bl «a
meet.google.com

Application Provided Effects

Double effects, double controls

ChromeOS background + Meet blur

Coordination Strategies

Feature Detection & Observing State

e Allow the application to know if blur is supported on the track

e Allow the application to know blur status

o MediaStreamTrack property
o Event “soon” after a state change takes place (disabled => enabled, enabled => disabled)
o Frame by frame state

e Can notify the user, disable redundant effects, etc.

Capabilities

Allow the application to know how much control they have over effects.

e Canthey enable the effect if it's disabled?
e Can they disable the effect if it's enabled?

v) getUserMedia ® Xx =+

< C e webrtc.github.io

Disable Blur? Yes, Disable

Ask the user

Direct Control

e Direct control of effect state (enable/disable)

e Problems
o Effects today are per-camera or per-browser
o Changes affect all sites simultaneously accessing the camera
o Changes affect the next site that uses the camera

o Sites could “fight” over the setting

Effect Intermediate Data

e Access to per-frame intermediate data used in effects processing
e Separate from whether pixels are actually modified
e Add background segmentation mask mediacapture-extensions#142

https://github.com/w3c/mediacapture-extensions/pull/142

Proposed Solution

All code snippets from:

https://markafoltz.github.io/camera-effects/

Goals

e Allow Web developers to easily access and monitor changes in platform
blur.

e Enable Web developers to build new features that respond to changes in
background blur.

e Provide a consistent and easy-to-use API for accessing platform effect
state.

Non-goals

e This API does not provide a way to control platform effects. That
functionality may be exposed in a future API.

e This API does not attempt to polyfill effects in platforms/browsers that do
not support them.

e This APl doesn't include all possible platform effects. More effects may be
exposed as future extensions of the API.

const stream =

await navigator.mediaDevices.getUserMedia({ video: true });
const videoTrack = stream.getVideoTracks()[O];

if (videoTrack.backgroundBlur) {
const effect = videoTrack.backgroundBlur;

console.log("Background blur state:", effect.state);
effect.addEventListener("change", (event) => {

console.log("Background blur state changed:", event.target.state);
3);

co
co
a5

}

nst stream = await navigator.mediaDevices.getUserMedia({ video: true });
nst videoTrack = stream.getVideoTracks()[0];
(videoTrack.backgroundBlur)|4¢—— Feature Detection
const effect = videoTrack.backgroundBlur;
console.log("Background blur state:", effect.state);
effect.addEventListener('"change", (event) => {

console.log("Background blur state changed:", event.target.state);

1);

const stream = await navigator.mediaDevices.getUserMedia({ video: true });
const videoTrack = stream.getVideoTracks()[O];

if (videoTrack.backgroundBlur) {
const effect = videoTrack.backgroundBlur;
console.log("Background blur state:"{ effect.state);
effect.addEventListener('"change", (event) {
console.log("Background blur state chagsiged:", event.target.state);

3)i Read State
} Two value enum: “enabled” or “disabled”

const stream = await navigator.mediaDevices.getUserMedia({ video: true });
const videoTrack = stream.getVideoTracks()[O];

if (videoTrack.backgroundBlur) {

const effect = videoTrack.backgroundBlur;

console.log("Background blur state:", effect.state);

effect.addEventListener("change", |[gevert—— Change event
console.log("Background blur state changed:", event.target.state);

});

i

Observing State (on each frame)

1st transformer = new TransformStream({
isync transform(videoFrame, controller)

{

console.log("Background blur state:',
Controller.enqueue(videoFraTEl;,/’/)"

Iy

}); Blur state

videoFrame.metadata().backgroundBlur);

Constraint based approach

Code snippets from:

https://googlechrome.github.io/samples/image-capture/background-blur.html

Feature Detection & Observing State

const settings = track.getSettings();

if (!

"backgroundBlur" in setting_s}q—{— Feature Detection

throw Error(Background blur is not supported by ${track.label}’);

}

log(Background blur is ${settings.backgroundBlur

4

? IION" : IIOFFII}‘);

Read State (true/false) /

Observing State Changes

// Listen to background blur changes.
track.addEventListener("configurationchange", configurationChange);

function configurationChange(event) {
const settings = event.target.getSettings() j<— Change event

if ("backgroundBIur™ in settings) {
log('Background blur changed to ${settings.backgroundBlur ? "ON" : "OFF"}),
}
}

Detecting Capabilities

// Check whether the user can toggle background blur in the web app.
if (capabilities.backgroundBlur?.length !== 2) {
throw Error(Background blur toggle is not supported by ${track.label});

}

Direct Control

const constraints = {

¥

advanced: [{ backgroundBlur: !settings.backgroundBlur }],

txy {

await track.applyConstraints(constraints); |<«—— Change State

}

}

const settlngs = track.getSettings(),

log(Background blur is now ${settings.backgroundBlur ? "ON" : "OFF"}");
catch (error) {

log("Argh!", "${error}),

Comparison of approaches

Property Event Per-frame Capabilities | Ask the User | Direct
status Control
Constraints
Proposal

- Not compatible
- Supported

Empty - Possible extension

Next Steps & Discussion

Can we combine the best of both?

n u

“Enabled”, “Disabled” enums instead of booleans?

Improve eventing when stream settings change?

Add a Promise-based API to allow “ask the user” scenarios

Add effect status to VideoFrameMetadata

Continue to pursue exposing intermediate data (face landmarks,
segmentation)

Open & Future Questions

e Per-stream effects support throughout the stack (browser and OS)
e Access to effects-free streams

