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1 Introduction

Let φ(x) denote Euler’s totient function. Defining φ0(x) = x, the iterated totient function
is defined recursively for n > 0 by φn(x) = φ(φn−1(x)). For x > 1, φ(x) < x. Hence, for
some n we will have φn(x) = 2. That x is said to be in class n, and we define the function
C(x) = n. We define C(1) = 0.

New results about the totient iteration are in the paper [2]. Recently, Theorem 4 of that
paper was disproved, which put many of the paper’s computational results in question. The
purpose of this paper is to introduce a new method for computing the smallest numbers in
each class of the totient iteration. We use this method to calculate the least number in each
class up to 1000, enabling us to check the results in the original paper.

2 Section I Numbers

The numbers in class n between 2n and 2n+1 are called section I numbers. Because the
smallest numbers in a class are all section I numbers, we will concentrate on those numbers.
Many properties of numbers in classes of the totient iteration are listed in Noe [2, Section 2].
Two theorems are key to generating section I numbers:

Theorem 1 (Noe [2, Theorem 1]). Suppose p is an odd prime and p = 1 + 2km, with k > 0
and m odd. Then p is in section I of its class if and only if m is in section I of its class.

Theorem 2. If integers x and y are in section I of their respective classes C(x) and C(y),
and if xy < 2C(x)+C(y)+1, then xy is in section I of class C(x) + C(y).

Proof. Because x and y are in section I, they are odd numbers. Hence C(xy) = C(x)+C(y).
By definition, any number in class n and less than 2n+1 is in section I. Hence, xy is in
section I.

By Shapiro [4, Theorem 15], the factors of every section I number are section I numbers.
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3 Section I Algorithm

These two theorems enable us to construct an algorithm for generating section I numbers.
Let’s stipulate that the number 1 is in section I of class 0. Also suppose that the sets Si

contain the section I numbers in class i for 0 ≤ i < n. Given a set S, we denote by P (S) the
set of primes in S and by L(S, x) the set numbers in S less than x. Now consider how the
prime and composite numbers in section I of class n can be generated.

By theorem 1, the prime numbers in section I of class n are

L
(

P
(

n
⋃

k=1

(

1 + 2kSn−k

))

, 2n+1
)

,

where the notation 1 + 2kSn−k means that each element of the set Sn−k is multiplied by 2k

and then incremented by 1. By theorem 2, the composite numbers in section I of class n are

L
(

n
⋃

k=1

(

Sk Sn−k

)

, 2n+1
)

,

where Sk Sn−k is the set of all products of two numbers, one from each set. Hence, the set
of section I numbers in class n is the union, which can be written

Sn = L
(

P
(

n
⋃

k=1

(

1 + 2kSn−k

))

⋃

(

n
⋃

k=1

(

Sk Sn−k

))

, 2n+1
)

.

In the implementation of this algorithm, for efficiency, the L and P functions would be
applied to each element of 1 + 2kSn−k and Sk Sn−k when the element is computed.

This algorithm works well for about n ≤ 80. It is certainly much faster than the naive
approach of computing φ(x) for every x between 2n and 2n+1. However, as shown by sequence
A092878 in Sloane [5], the size of the set Sn grows almost exponentially. Therefore, to have
any chance of computing the smallest 100 numbers in S1000, we need a different algorithm.

4 Section α Numbers

For a positive number α ≤ 1, let’s define the numbers in class n between 2n and 2n+α to be
section α numbers. For α = 1, we obtain the usual section I numbers. Indeed, for a given
class n, every section α number is a section I number. Hence, all the properties of section I
numbers can be extended to section α numbers. For example, all section α numbers are odd.
Theorems 1 and 2 are easy to extend to section α:

Theorem 3. Suppose p is an odd prime and p = 1 + 2km, with k > 0 and m odd. Then p

is in section α of its class if and only if m is in section α of its class.

Theorem 4. If integers x and y are in section α of their respective classes C(x) and C(y),
and if xy < 2C(x)+C(y)+α, then xy is in section α of class C(x) + C(y).
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The proofs of these two theorems is an easy exercise. Below we state and prove the analogue
of Shapiro’s Theorem 15. The proof is essentially the same as Shapiro’s, but with 1 replaced
by α.

Theorem 5. If integer x is in section α of its class, then every divisor of x is in section α

of its class.

Proof. Since x is in section α of its class, it is odd. The theorem is obviously true for prime
x, so we need consider only composite x. Let d be a proper divisor of x so that x > d and
x = ds. The fact that x is in section α implies

2C(x)+α = 2C(ds)+α > x > 2C(ds) = 2C(x).

Since both d and s are odd, we have

ds < 2C(ds)+α = 2C(d)+C(s)+α.

Suppose that d is not in section α of its class. Then by definition, we would have d > 2C(d)+α.
However, since s > 2C(s), we would have ds > 2C(s)+C(s)+α, which is a contradiction.

5 Section α Algorithm

These new theorems enable us to construct an algorithm for generating section α numbers.
Again, the number 1 is in section α of class 0. Also suppose that the sets Sα

i contain the
section α numbers in class i for 0 ≤ i < n. As before, given a set S, we denote by P (S) the
set of primes in S and by L(S, x) the set numbers in S less than x. The prime and composite
numbers in section α of class n can be generated in a similar way as before.

By theorem 3, the prime numbers in section α of class n are

L
(

P
(

n
⋃

k=1

(

1 + 2kSα
n−k

))

, 2n+α
)

.

By theorem 4, the composite numbers in section α of class n are

L
(

n
⋃

k=1

(

Sα
k Sα

n−k

)

, 2n+α
)

.

The set of section α numbers in class n is the union

Sn = L
(

P
(

n
⋃

k=1

(

1 + 2kSα
n−k

))

⋃

(

n
⋃

k=1

(

Sα
k Sα

n−k

))

, 2n+α
)

.

For a fixed n, as we make α smaller, this algorithm produces smaller and smaller sets Sα
n .

In fact, it is easy to see that if α < β, then Sα
n ⊆ Sβ

n . However, for a fixed value of α,
we eventually see the same sort of exponential-like growth of the size of the sets Sα

n as n

increases. Note that if 65537 is the last Fermat prime, any α < log2 65537 − 16 ≈ 0.000022.
will generate only empty sets.
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6 Using Nonincreasing Values of α

Suppose that we want to compute only the M smallest numbers in Sn, the numbers in
section I of class n. How can we accomplish this task? We propose the following algorithm:

1. Start with n = 0 and α = 1.

2. Increment n and compute Sα
n .

3. If the size of Sα
n is greater than M , decrease α.

4. Go to step 2.

Note that this algorithm requires that successive values of α be nonincreasing (otherwise,
for example, we could switch to α = 1 at any time and compute all the section I numbers).
The key to the successful operation of this algorithm is step 3. However, if the choice of
α generates a set Sα

n+1 with too few elements, α can be adjusted upwards and Sα
n+1 can be

recomputed.

This algorithm was implemented in Mathematica. We chose M = 400 in order to find
the smallest prime number in all classes n ≤ 1000. The final value of α was 0.00047.
The computation required several hours on a Macintosh G5 computer. In addition, all
primes were proved prime by either Mathematica’s ProvablePrimeQ function or the PRIMO
software [3], a task requiring several more hours. The results were added to OEIS sequences
A007755, A060611, A092873, A098196, A136040, A145443 as b-files. Sequences A092873
and A136040 were corrected and sequences A092878 and A135833 were extended.

References

[1] P. A. Catlin, Concerning the iterated φ function, Amer. Math. Monthly, 77 (1970), 60–61.

[2] Tony D. Noe, Primes in classes of the iterated totient function, J. Integer Sequences, 11

(2008), Article 08.1.2.

[3] Marcel Martin, Primo 3.0.5 prime proving software, (2008).

[4] Harold Shapiro, An arithmetic function arising from the φ function, Amer. Math. Monthly

50 (1943), 18–30.

[5] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, published electronically
at www.research.att.com/∼njas/sequences.

4

http://www.research.att.com/projects/OEIS?Anum=A007755
http://www.research.att.com/projects/OEIS?Anum=A060611
http://www.research.att.com/projects/OEIS?Anum=A092873
http://www.research.att.com/projects/OEIS?Anum=A098196
http://www.research.att.com/projects/OEIS?Anum=A136040
http://www.research.att.com/projects/OEIS?Anum=A145443
http://www.research.att.com/projects/OEIS?Anum=A092873
http://www.research.att.com/projects/OEIS?Anum=A136040
http://www.research.att.com/projects/OEIS?Anum=A092878
http://www.research.att.com/projects/OEIS?Anum=A135833
http://www.cs.uwaterloo.ca/journals/JIS/VOL11/Noe/noe080107.html
http://www.ellipsa.net/
http://www.research.att.com/~njas/sequences

	Introduction
	Section I Numbers
	Section I Algorithm
	Section  Numbers
	Section  Algorithm
	Using Nonincreasing Values of 

