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I am mainly interested in algebraic combinatorics, which consists in discovering the algebraic
structures behind various classes of concrete objects, called combinatorial. The most obvious
example is given by the natural numbers, which can be added or multiplied together. Roughly
speaking, combinatorial objects such as trees, graphs, various kinds of diagrams, cacti, partially
ordered sets, finite topological spaces, etc., can be considered as ”numbers” of a certain kind.
The algebra behind them, i.e. the way these objects can be combined together, is in general quite
different from the usual addition and multiplication of ordinary numbers.

Rooted trees have been considered for a long time, at least since a famous 160-years old article
by A. Cayley [2]. They figure among the most fascinating combinatorial objects. A rooted tree
can be defined as a single vertex (the root), or a finite collection of rooted trees, with repetitions
allowed, grafted on a common root. This definition must be understood recursively, the same
way a natural number is zero or the successor of a natural number. The rooted trees up to five
vertices are graphically represented below, with the root at the bottom:

Let Tn be the number of rooted trees with n vertices. The sequence

(Tn)n≥1 = (1, 1, 2, 4, 9, 20, 48, 115, 286, 719, 1842, 4766, · · · )

(number A00081 in the Sloane Online Encyclopedia of Integer Sequences) is well-known: its
generating series T (z) :=

∑

n≥1 Tnz
n is solution of the functional equation [11]

(1) T (z) = zeT (z)+ 1

2
T (z2)+ 1

3
T (z3)+···,

which leads with some care to the recursive formula:

(2) Tn+1 =
1

n

n
∑

k=1





∑

d|k

dTd



Tn+1−k,

and one has asymptotically

(3) Tn ∼
n→+∞

cωnn−3/2,

where c = 0.43993237 · · · and ω = 2.95576 · · · are Otter’s tree constants [10, 9].

Let us now focus on the algebraic aspects: There is a natural bijection B+ from the set of
forests (i.e. collections of trees with repetitions allowed) onto the set of trees, which grafts each
tree of the forest on a common root. For example,

B+( ) = .

Two forests can be multiplied together, by considering their disjoint union. This product is ob-
viously commutative and associative. This is also possible to ”make two forests out of one” by
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applying a so-called comultiplication operator ∆. Technically, for any forest F , the comultiplica-
tion ∆(F ) lives in the tensor product, i.e. the vector space freely generated by ordered pairs of
forests. The multiplication and comultiplication, together with the unit (the empty forest) and the
co-unit, endow the linear span of forests with the very rich structure of commutative connected

graded Hopf algebra [1, 5, 12, 4]. This structure plays a prominent role in numerical analysis
(Runge-Kutta approximation methods), Quantum Field Theory and Probabiliy (stochastic dif-
ferential an partial differential equations). The operator B+ can be interpreted as a Hochschild
cocycle for the coalgebra stucture, and is in some sense an initial object among such cocycles on
Hopf algebras [8].

Let us now turn to trees themselves: two trees can be multiplied using the Butcher product,
i.e. by grafting the first tree on the root of the second, for example:

◦ = .

Contrarily to addition or multiplication of numbers, this product is not commutative nor associa-
tive:

( ◦ ) ◦ = , ◦ ( ◦ ) = .

It however verifies the Non-Associative-Permutative (NAP) relation:

s ◦ (t ◦ u) = t ◦ (s ◦ u)

for any trees s, t, u. The set T of rooted trees is moreover the free NAP set with one generator [6]:
for any set E endowed with a binary product ∗ such that a ∗ (b ∗ c) = b ∗ (a ∗ c) for any a, b, c ∈ E,
for any choice of element x ∈ E, there is a unique map ϕx : T → E such that ϕx( ) = x and
ϕx(s ◦ t) = ϕx(s) ∗ ϕx(t) for any s, t ∈ T .

A second product, maybe even more interesting, can be defined on rooted trees, at the price of
grafting at all vertices instead of sticking to the root. This is only possible in the vector space T

(over some base field k) freely generated by trees, namely

s⊲ t =
∑

v∈V (t)

s⊲v t,

where s⊲v t stands for grafting the tree s on the tree t at the vertex v. For example,

⊲ = + .

The product ⊲ is bilinear. It is neither commutative nor associative:

( ⊲ )⊲ = , ⊲ ( ⊲ ) = + .

It however verifies the pre-Lie relation:

(4) s⊲ (t ◦ u)− (s⊲ t)⊲ u = t⊲ (s ◦ u)− (t⊲ s)⊲ u

for any trees s, t, u. The vector space T freely spanned by rooted trees is moreover the free pre-Lie
algebra with one generator [3]: for any pre-Lie algebra A i.e. any vector space endowed with a
bilinear product ∗ satisfying the pre-Lie relation (4), there is a unique linear map ψx : T → A

such that ψx( ) = x and ψx(s⊲ t) = ψx(s) ∗ ψx(t) for any s, t ∈ T .

The current object under investigation with two colleagues at UiB [7] consists in aromatic trees

and forests, a natural generalization allowing for loops: an aroma is obtained from a rooted tree
by drawing an extra edge between two vertices (distinct or not) and forgetting about the root,
an aromatic tree is a collection of trees and aromas with only one tree in it, an aromatic forest
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is a collection of trees and aromas with some trees (possibly zero) in it. The vector space of
aromatic trees carries a structure of pre-Lie-Rinehart algebra, which is the algebraic counterpart
of the notion of flat torsion-free Lie algebroid. We prove that the aromatic forest pre-Lie-Rinehart
algebra is the free pre-Lie-Rinehart algebra with one generator. As usual in these matters, we
can generalize to several generators by putting decorations on the vertices.
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