Effects of Different Remediation Treatments and Rice Intercropping on the Integrated Quality of Paddy Soils Mildly Contaminated by Cadmium and Copper
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Field Design
2.2. Field Management and Sampling
2.3. Chemical Analysis
2.4. Assessment of Soil Heavy Metal Pollution
2.5. Assessment of Soil Fertility
2.6. Comprehensive Evaluation of Soil Quality
2.7. Data Processing and Statistical Analysis
3. Results
3.1. Effects of In Situ Remediation Treatments on the Heavy Metal Pollution Indices of the Paddy Soils
3.2. Effects of In Situ Remediation Treatments on the Soil Fertility Indices of the Paddy Soils
3.3. The Minimum Data Set (MDS) and Soil Quality Indices (SQIs) of Paddy Soils Under Different In Situ Remediation Treatments
3.4. Effects of Different In Situ Remediation Treatments on the Comprehensive Quality of Paddy Soils
4. Discussion
4.1. Rice Intercropping Reduces Heavy Metal Pollution and Enhances the Quality of Paddy Soils
4.2. The Application of Different Additives for In Situ Remediation Techniques Has Diverse Effects on Heavy Metal Pollution and the Fertility of Paddy Soils
4.3. The Potential Mechanism by Which In Situ Remediation Techniques Affect the Quality of Paddy Soils
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Y.; Gao, Y.; Chen, W.; Zhang, W.; Lu, X. Shifts in Bacterial Diversity, Interactions and Microbial Elemental Cycling Genes under Cadmium Contamination in Paddy Soil: Implications for Altered Ecological Function. J. Hazard. Mater. 2024, 461, 132544. [Google Scholar] [CrossRef] [PubMed]
- Yao, C.; Yang, Y.; Li, C.; Shen, Z.; Li, J.; Mei, N.; Luo, C.; Wang, Y.; Zhang, C.; Wang, D. Heavy metal pollution in agricultural soils from surrounding industries with low emissions: Assessing contamination levels and sources. Sci. Total Environ. 2024, 917, 170610. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Wang, P.; Xu, Z.; Hu, T.; Li, D.; Wei, X.; Chen, C.; Li, Y.; Zhang, Y. Contaminated soil remediation with Nano-FeS loaded lignin hydrogel: A novel strategy to produce safe rice grains while reducing cadmium in paddy field. J. Hazard. Mater. 2024, 469, 133965. [Google Scholar] [CrossRef]
- Guo, Y.; Cheng, S.; Fang, H.; Yang, Y.; Li, Y.; Zhou, Y. Responses of soil fungal taxonomic attributes and enzyme activities to copper and cadmium co-contamination in paddy soils. Sci. Total Environ. 2022, 844, 157119. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Cui, J.; Xu, Y.; Li, J.; Lei, X.; Gao, W.; Chen, Y. Social Life Cycle Assessment of Major Staple Grain Crops in China. Agriculture 2022, 12, 535. [Google Scholar] [CrossRef]
- Li, Y.; Phonexay, M.; Zhang, Z.; Li, C.; Li, J.; Zhang, W. Status of rice-fish farming and rice field fisheries in Northern Laos. Front. Sustain. Food Syst. 2023, 7, 1174172. [Google Scholar] [CrossRef]
- Tuncel, N.Y. Stabilization of Rice Bran: A Review. Foods 2023, 12, 1924. [Google Scholar] [CrossRef]
- Liu, L.; Lian, Z.; Ouyang, W.; Yan, L.; Liu, H.; Hao, F. Potential of optimizing irrigation and fertilization management for sustainable rice production in China. J. Clean. Prod. 2023, 432, 139738. [Google Scholar] [CrossRef]
- Wu, F.; Wang, Y.; Liu, Y.; Liu, Y.; Zhang, Y. Simulated responses of global rice trade to variations in yield under climate change: Evidence from main rice-producing countries. J. Clean. Prod. 2021, 281, 124690. [Google Scholar] [CrossRef]
- Wu, Y.; Li, X.; Yu, L.; Wang, T.; Wang, J.; Liu, T. Review of soil heavy metal pollution in China: Spatial distribution, primary sources, and remediation alternatives. Resour. Conserv. Recycl. 2022, 181, 106261. [Google Scholar] [CrossRef]
- Batool, F.; Hussain, M.I.; Nazar, S.; Bashir, H.; Khan, Z.I.; Ahmad, K.; Alnuwaiser, M.A.; Yang, H.-H. Potential of sewage irrigation for heavy metal contamination in soil–wheat grain system: Ecological risk and environmental fate. Agric. Water Manag. 2023, 278, 108144. [Google Scholar] [CrossRef]
- Qin, G.; Niu, Z.; Yu, J.; Li, Z.; Ma, J.; Xiang, P. Soil heavy metal pollution and food safety in China: Effects, sources and removing technology. Chemosphere 2021, 267, 129205. [Google Scholar] [CrossRef] [PubMed]
- Ćwieląg-Drabek, M.; Piekut, A.; Gut, K.; Grabowski, M. Risk of cadmium, lead and zinc exposure from consumption of vegetables produced in areas with mining and smelting past. Sci. Rep. 2020, 10, 3363. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Carey, M.; Meharg, C.; Williams, P.N.; Signes-Pastor, A.J.; Triwardhani, E.A.; Pandiangan, F.I.; Campbell, K.; Elliott, C.; Marwa, E.M.; et al. Rice grain cadmium concentrations in the global supply-chain. Expo. Health 2020, 12, 869–876. [Google Scholar] [CrossRef]
- Zheng, K.; Zeng, Z.; Tian, Q.; Huang, J.; Zhong, Q.; Huo, X. Epidemiological evidence for the effect of environmental heavy metal exposure on the immune system in children. Sci. Total Environ. 2023, 868, 161691. [Google Scholar] [CrossRef]
- Wang, M.; Yan, L.; Dou, S.; Yang, L.; Zhang, Y.; Huang, W.; Li, S.; Lu, P.; Guo, Y. Blood multiple heavy metals exposure and lung function in young adults: A prospective cohort study in China. J. Hazard. Mater. 2023, 459, 132064. [Google Scholar] [CrossRef] [PubMed]
- Al Osman, M.; Yang, F.; Massey, I. Exposure routes and health effects of heavy metals on children. BioMetals 2019, 32, 563–573. [Google Scholar] [CrossRef]
- Zhang, Y.; Zeng, H.; Dong, X.; Huang, H.; Zheng, Q.; Dai, Z.; Zhang, Z.; Li, Z.; Feng, Q.; Xiong, S.; et al. In situ cadmium removal from paddy soils by a reusable remediation device and its health risk assessment in rice. Environ. Technol. Innov. 2021, 23, 101713. [Google Scholar] [CrossRef]
- Kumar, V.; Pandita, S.; Singh Sidhu, G.P.; Sharma, A.; Khanna, K.; Kaur, P.; Bali, A.S.; Setia, R. Copper bioavailability, uptake, toxicity and tolerance in plants: A comprehensive review. Chemosphere 2021, 262, 127810. [Google Scholar] [CrossRef]
- Mishra, S.; Dwivedi, S.; Gupta, A.; Tiwari, R.K. Evaluating the efficacy and feasibility of post harvest methods for arsenic removal from rice grain and reduction of arsenic induced cancer risk from rice-based diet. Sci. Total Environ. 2023, 874, 162443. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhou, Y.; Zhang, J. Status and associated human health risk of zinc accumulation in agricultural soils across China. Process Saf. Environ. 2021, 146, 867–876. [Google Scholar] [CrossRef]
- Wang, B.; Chen, M.; Ding, L.; Zhao, Y.; Man, Y.; Feng, L.; Li, P.; Zhang, L.; Feng, X. Fish, rice, and human hair mercury concentrations and health risks in typical Hg-contaminated areas and fish-rich areas, China. Environ. Int. 2021, 154, 106561. [Google Scholar] [CrossRef] [PubMed]
- Navaretnam, R.; Hassan, H.N.; Isa, N.M.; Aris, A.Z.; Looi, L.J. Metal(loid) Analysis of Commercial Rice from Malaysia using ICP-MS: Potential Health Risk Evaluation. Environ. Sci. Pollut. Res. 2023, 30, 87695–87720. [Google Scholar] [CrossRef] [PubMed]
- Ali, W.; Zhang, H.; Mao, K.; Shafeeque, M.; Aslam, M.W.; Yang, X.; Zhong, L.; Feng, X.; Podgorski, J. Chromium contamination in paddy soil-rice systems and associated human health risks in Pakistan. Sci. Total Environ. 2022, 826, 153910. [Google Scholar] [CrossRef] [PubMed]
- Infante, E.F.; Dulfo, C.P.; Dicen, G.P.; Hseu, Z.-Y.; Navarrete, I.A. Bioaccumulation and human health risk assessment of chromium and nickel in paddy rice grown in serpentine soils. Environ. Sci. Pollut. Res. 2021, 28, 17146–17157. [Google Scholar] [CrossRef] [PubMed]
- Mlangeni, A.T.; Chinthenga, E.; Kapito, N.J.; Namaumbo, S.; Feldmann, J.; Raab, A. Safety of African grown rice: Comparative review of As, Cd, and Pb contamination in African rice and paddy fields. Heliyon 2023, 9, e18314. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Yuan, X.; Li, T.; Hu, S.; Ji, J.; Wang, C. Characteristics of heavy metal transfer and their influencing factors in different soil–crop systems of the industrialization region, China. Ecotoxicol. Environ. Saf. 2016, 126, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Wan, M.; Hu, W.; Wang, H.; Tian, K.; Huang, B. Comprehensive assessment of heavy metal risk in soil-crop systems along the Yangtze River in Nanjing, Southeast China. Sci. Total Environ. 2021, 780, 146567. [Google Scholar] [CrossRef] [PubMed]
- Shabbir, Z.; Sardar, A.; Shabbir, A.; Abbas, G.; Shamshad, S.; Khalid, S.; Natasha; Murtaza, G.; Dumat, C.; Shahid, M. Copper uptake, essentiality, toxicity, detoxification and risk assessment in soil-plant environment. Chemosphere 2020, 259, 127436. [Google Scholar] [CrossRef]
- Arif, N.; Sharma, N.C.; Yadav, V.; Ramawat, N.; Dubey, N.K.; Tripathi, D.K.; Chauhan, D.K.; Sahi, S. Understanding Heavy Metal Stress in a Rice Crop: Toxicity, Tolerance Mechanisms, and Amelioration Strategies. J. Plant Biol. 2019, 62, 239–253. [Google Scholar] [CrossRef]
- Gao, J.; Han, H.; Gao, C.; Wang, Y.; Dong, B.; Xu, Z. Organic amendments for in situ immobilization of heavy metals in soil: A review. Chemosphere 2023, 335, 139088. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Xiao, J.; Zhao, Z.; Zhong, D.; Chen, J.; Xiao, B.; Xiao, W.; Wang, W.; Crittenden, J.C.; Wang, L. Reduction of cadmium bioavailability in paddy soil and its accumulation in brown rice by FeCl3 washing combined with biochar: A field study. Sci. Total Environ. 2022, 851, 158186. [Google Scholar] [CrossRef]
- Li, L.; Wang, S.; Li, X.; Li, T.; He, X.; Tao, Y. Effects of Pseudomonas chenduensis and biochar on cadmium availability and microbial community in the paddy soil. Sci. Total Environ. 2018, 640, 1034–1043. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Guo, Z.; Peng, C.; Xiao, X.; Feng, W.; Huang, B.; Ran, H. Immobilization of cadmium and improvement of bacterial community in contaminated soil following a continuous amendment with lime mixed with fertilizers: A four-season field experiment. Ecotoxicol. Environ. Saf. 2019, 171, 425–434. [Google Scholar] [CrossRef]
- Gao, M.; Zhou, J.; Liu, H.L.; Hu, Y.M.; Xu, L.; Liang, J.N.; Huang, G.F.; Zhou, J. Effect of silica and selenite foliar sprays on the uptake and transport of cadmium by rice under water management. J. Agro-Environ. Sci. 2018, 37, 215–222. [Google Scholar]
- Chen, W.; Kang, Z.; Yang, Y.; Li, Y.; Qiu, R.; Qin, J.; Li, H. Interplanting of rice cultivars with high and low Cd accumulation can achieve the goal of “repairing while producing” in Cd-contaminated soil. Sci. Total Environ. 2022, 851, 158229. [Google Scholar] [CrossRef]
- Peng, H.; Deng, K.; Shi, Y.; Liu, S.; Jian, Z.; Li, C.; Ji, X.; Li, S. Alleviation of Cd-polluted paddy soils through Si fertilizer application and its effects on the soil microbial community. Sci. Total Environ. 2023, 855, 158735. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Wang, W.; Sardans, J.; Lan, X.; Fang, Y.; Singh, B.P.; Xu, X.; Wiesmeier, M.; Tariq, A.; Zeng, F. Effects of slag and biochar amendments on microorganisms and fractions of soil organic carbon during flooding in a paddy field after two years in southeastern China. Sci. Total Environ. 2022, 824, 153783. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Ye, G.; Gao, Y.; Wang, H.; Zhou, S.; Liu, Y.; Yan, C. Cadmium adsorption by thermal-activated sepiolite: Application to in-situ remediation of artificially contaminated soil. J. Hazard. Mater. 2022, 423, 127104. [Google Scholar] [CrossRef] [PubMed]
- Chu, L.; Cang, L.; Sun, Z.; Wang, X.; Chen, H.; Fang, G.; Gao, J. Mechanism of nitro-byproducts formation during persulfate-based electrokinetic in situ oxidation for remediation of anthracene contaminated soil. J. Hazard. Mater. 2023, 453, 131396. [Google Scholar] [CrossRef]
- Parhi, P.K.; Mishra, S.; Mohapatra, R.K.; Singh, P.K.; Verma, S.K.; Kumar, P.; Adhya, T.K. Arsenic Contamination: Sources, Chemistry and Remediation Strategies. In Metal, Metal-Oxides and Metal-Organic Frameworks for Environmental Remediation; Springer International Publishing: Cham, Switzerland, 2021; Volume 64, pp. 219–238. [Google Scholar]
- Zhao, C.; Hu, L.; Zhang, C.; Wang, S.; Huo, Z. Preparation of biochar-interpenetrated iron-alginate hydrogel as a pH-independent sorbent for removal of Cr(VI) and Pb(II). Environ. Pollut. 2021, 287, 117303. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Zhao, M.; Oba, B.T.; Ding, H. Effects of organo-mineral complexes on Cd migration and transformation: From pot practice to adsorption mechanism. Int. J. Environ. Sci. Technol. 2023, 20, 579–586. [Google Scholar] [CrossRef]
- Li, Y.; Gong, X. Effects of Dissolved Organic Matter on the Bioavailability of Heavy Metals During Microbial Dissimilatory Iron Reduction: A Review. Rev. Environ. Contam. Toxicol. 2021, 257, 69–92. [Google Scholar]
- Doran, J.W.; Parkin, T.B. Defining and Assessing Soil Quality. In Defining Soil Quality for a Sustainable Environment; SSSA Special Publications: Madison, WI, USA, 1994; Volume 35, pp. 3–21. [Google Scholar]
- Nakajima, T.; Lal, R.; Jiang, S. Soil quality index of a crosby silt loam in central Ohio. Soil Tillage Res. 2015, 146, 323–328. [Google Scholar] [CrossRef]
- Li, Q.; Jia, Z.; Liu, T.; Feng, L.; He, L. Effects of different plantation types on soil properties after vegetation restoration in an alpine sandy land on the Tibetan Plateau, China. J. Arid Land 2017, 9, 200–209. [Google Scholar] [CrossRef]
- Wu, J.; Chen, Y.; Ma, J.; Cao, J.; Jiang, Y. Sustainable Strategies for the Agricultural Development of Shaanxi Province Based on the Risk Assessment of Heavy Metal Pollution. Foods 2022, 11, 1409. [Google Scholar] [CrossRef]
- Mamut, A.; Eziz, M.; Mohammad, A. Pollution and Ecological Risk Assessment of Heavy Metals in Farmland Soils in Yanqi County, Xinjiang, Northwest China. Eurasian Soil Sci. 2018, 51, 985–993. [Google Scholar] [CrossRef]
- Cao, H.; Jia, M.; Song, J.; Xun, M.; Fan, W.; Yang, H. Rice-straw mat mulching improves the soil integrated fertility index of apple orchards on cinnamon soil and fluvo-aquic soil. Sci. Hortic. 2021, 278, 109837. [Google Scholar] [CrossRef]
- Zheng, C.; Yang, X.; Liu, Z.; Liu, K.; Huang, Y. Spatial distribution of soil nutrients and evaluation of cultivated land in Xuwen county. PeerJ 2022, 10, e13239. [Google Scholar] [CrossRef]
- Hu, H.; Tian, G.; Wu, Z.; Xia, Q. Cross-regional ecological compensation under the composite index of water quality and quantity: A case study of the Yellow River Basin. Environ. Res. 2023, 238, 117152. [Google Scholar] [CrossRef] [PubMed]
- Aqdam, K.K.; Asadzadeh, F.; Rezapour, S.; Nouri, A. Comparative assessment of soil fertility across varying elevations. Environ. Monit. Assess. 2023, 195, 1007. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, L.; Jiang, J.; Zhang, J.; Zhang, Z.; Zhang, M. Application of soil quality index to determine the effects of different vegetation types on soil quality in the Yellow River Delta wetland. Ecol. Indic. 2022, 141, 109116. [Google Scholar] [CrossRef]
- Yuan, P.; Wang, J.; Li, C.; Xiao, Q.; Liu, Q.; Sun, Z.; Wang, J.; Cao, C. Soil quality indicators of integrated rice-crayfish farming in the Jianghan Plain, China using a minimum data set. Soil Tillage Res. 2020, 204, 104732. [Google Scholar] [CrossRef]
- Yang, E.; Zhao, X.; Qin, W.; Jiao, J.; Han, J.; Zhang, M. Temporal impacts of dryland-to-paddy conversion on soil quality in the typical black soil region of China: Establishing the minimum data set. Catena 2023, 231, 107303. [Google Scholar] [CrossRef]
- GB15618-2018; Soil Environmental Quality—Risk Control Standard for Soil Contamination of Agricultural Land. Chinese Standard: Beijing, China, 2018.
- Guo, R.; Ren, R.; Wang, L.; Zhi, Q.; Yu, T.; Hou, Q.; Yang, Z. Using machine learning to predict selenium and cadmium contents in rice grains from black shale-distributed farmland area. Sci. Total Environ. 2023, 912, 168802. [Google Scholar] [CrossRef]
- Fernández, Z.H.; Álvarez, J.R.E.; Álvarez, A.M.; Ugarte, O.M.; González, I.P.; González, M.R.; Júnior, J.A.D.S.; Bezerra, M.B.C.F.; Junior, O.P.D.S. Metal contaminants in rice from Cuba analyzed by ICP-MS, ICP-AES and CVAAS. Food Addit. Contam. Part B 2021, 14, 59–65. [Google Scholar] [CrossRef]
- Lin, C.; Huang, H.; Hu, G.; Yu, R.; Hao, C.; Lin, Y. Assessment of the Speciation and Pollution of Heavy Metals in Paddy Soils from the Jiulong River Basin. Environ. Sci. 2019, 40, 453–460. [Google Scholar]
- Jia, X. Determination of Valences of As, Cr, Sb and Se in Soil Using HPLC-HG-AFS. Rock Mine Ana 2021, 40, 250–261. [Google Scholar]
- Zha, T. Soil Physicochemical Analysis; Forestry Publishing House: Beijing, China, 2017. [Google Scholar]
- Bao, S. Soil Agrochemical Analysis Method; Agriculture Press: Beijing, China, 2000. [Google Scholar]
- Guan, S. Zea mays L.Soil Enzyme and its Research Methods; Agriculture Press: Beijing, China, 1986. [Google Scholar]
- Gong, H.; Du, Q.; Xie, S.; Hu, W.; Akram, M.A.; Hou, Q.; Dong, L.; Sun, Y.; Manan, A.; Deng, Y.; et al. Soil microbial DNA concentration is a powerful indicator for estimating soil microbial biomass C and N across arid and semi-arid regions in northern China. Appl. Soil Ecol. 2021, 160, 103869. [Google Scholar] [CrossRef]
- Teng, Y.; Liu, L.; Zheng, N.; Liu, H.; Wu, L.; Yue, W. Application of Different Indices for Soil Heavy Metal Pollution Risk Assessment Comparison and Uncertainty: A Case Study of a Copper Mine Tailing Site. Minerals 2022, 12, 1074. [Google Scholar] [CrossRef]
- Huo, A.; Wang, X.; Zhao, Z.; Yang, L.; Zhong, F.; Zheng, C.; Gao, N. Risk Assessment of Heavy Metal Pollution in Farmland Soils at the Northern Foot of the Qinling Mountains, China. Int. J. Environ. Res. Public Health 2022, 19, 14962. [Google Scholar] [CrossRef]
- Lai, L.; Li, B.; Li, Z.-r.; He, Y.-m.; Hu, W.-y.; Zu, Y.-q.; Zhan, F.-d. Pollution and Health Risk Assessment of Heavy Metals in Farmlands and Vegetables Surrounding a Lead-Zinc Mine in Yunnan Province, China. Soil Sediment Contam. 2022, 31, 483–497. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, S.; Xu, J.; Huang, T.; Huang, J. Spatial distribution and potential ecological risk of metal(loid)s in cultivated land from Xianjia Town in Fujian, Southeast China. Environ. Monit. Assess. 2022, 194, 763. [Google Scholar] [CrossRef] [PubMed]
- Amoakwah, E.; Shim, J.; Kim, S.; Lee, Y.; Kwon, S.; Sangho, J.; Park, S. Impact of silicate and lime application on soil fertility and temporal changes in soil properties and carbon stocks in a temperate ecosystem. Geoderma 2023, 433, 116431. [Google Scholar] [CrossRef]
- Brar, S.K.; Dhaliwal, S.S.; Sharma, V.; Sharma, S.; Kaur, M. Soil Quality Assessment in Diversified Long-Term Experimentation Under Different Agriculturally Based Cropping Systems. J. Soil Sci. Plant Nutr. 2023, 23, 1727–1739. [Google Scholar] [CrossRef]
- Vasu, D.; Tiwari, G.; Sahoo, S.; Dash, B.; Jangir, A.; Sharma, R.P.; Naitam, R.; Tiwary, P.; Karthikeyan, K.; Chandran, P. A minimum data set of soil morphological properties for quantifying soil quality in coastal agroecosystems. Catena 2021, 198, 105042. [Google Scholar] [CrossRef]
- Thakur, P.; Paliyal, S.S.; Dev, P.; Datt, N. Methods and Approaches—Soil Quality Indexing, Minimum Data Set Selection & Interpretation—A Critical Review. Commun. Soil Sci. Plant Anal. 2022, 53, 1849–1864. [Google Scholar]
- Yu, P.; Liu, J.; Tang, H.; Sun, X.; Liu, S.; Tang, X.; Ding, Z.; Ma, M.; Ci, E. Establishing a soil quality index to evaluate soil quality after afforestation in a karst region of Southwest China. Catena 2023, 230, 107237. [Google Scholar] [CrossRef]
- Martin-Guay, M.-O.; Paquette, A.; Dupras, J.; Rivest, D. The new Green Revolution: Sustainable intensification of agriculture by intercropping. Sci. Total Environ. 2018, 615, 767–772. [Google Scholar] [CrossRef]
- Wang, J.; Lu, X.; Zhang, J.; Ouyang, Y.; Wei, G.; Xiong, Y. Rice intercropping with alligator flag (Thalia dealbata): A novel model to produce safe cereal grains while remediating cadmium contaminated paddy soil. J. Hazard. Mater. 2020, 394, 122505. [Google Scholar] [CrossRef]
- Xue, T.; Liao, X.; Li, H.; Xie, Y.; Wei, W.; Chen, J.; Liu, Z.; Ji, X. Remediation of Cd contaminated paddy fields by intercropping of the high- and low- Cd-accumulating rice cultivars. Sci. Total Environ. 2023, 878, 163133. [Google Scholar] [CrossRef]
- Li, X.; Sun, M.; Zhang, H.; Xu, N.; Sun, G. Use of mulberry-soybean intercropping in salt-alkali soil impacts the diversity of the soil bacterial community. Microb. Biotechnol. 2016, 9, 293–304. [Google Scholar] [CrossRef]
- Pang, Z.; Yin, W.; Wang, Y.; Zeng, W.; Peng, H.; Liang, Y. Silicon-phosphorus pathway mitigates heavy metal stress by buffering rhizosphere acidification. Sci. Total Environ. 2023, 904, 166887. [Google Scholar] [CrossRef] [PubMed]
- Bastia, D.K.; Behera, S.K.; Panda, M.R. Impacts of soil fertility management on productivity and economics of rice and fodder intercropping systems under rainfed conditions in Odisha, India. J. Integr. Agric. 2021, 20, 3114–3126. [Google Scholar] [CrossRef]
- Liu, C.; Yan, P.; Liu, Z.; Zhang, J.; Zhang, G.; Cui, L. Strip intercropping with local crops increased Aconitum carmichaeli yield and soil quality. Front. Plant Sci. 2023, 14, 1147671. [Google Scholar] [CrossRef]
- Razakatiana, A.T.E.; Becquer, T.; Randriambanona, H.; Baohanta, R.H.; Andrianandrasana, M.D.; Roux, C.L.; Duponnois, R.; Ramanankierana, H. Microbial symbionts and nutrients (N and P) sharing: Effect on soil microbial activity in the upland rice (Oriza sativa) and bean (Phaseolus vulgaris) intercropping. Sci. Pap.-Ser. A-Agron. 2020, 63, 490–499. [Google Scholar]
- Yang, X.; Qin, J.; Li, J.; Lai, Z.; Li, H. Upland rice intercropping with Solanum nigrum inoculated with arbuscular mycorrhizal fungi reduces grain Cd while promoting phytoremediation of Cd-contaminated soil. J. Hazard. Mater. 2021, 406, 124325. [Google Scholar] [CrossRef] [PubMed]
- Ning, C.; Wang, L.; Liu, R.; Pan, T.; Cai, Y.; Tian, J.; Luo, S.; Cai, K. Plant-mediated rhizospheric interactions in rice and water spinach intercropping enhance Si uptake by rice. Plant Soil 2022, 477, 183–199. [Google Scholar] [CrossRef]
- Wang, G.; Du, W.; Xu, M.; Ai, F.; Yin, Y.; Guo, H. Integrated Assessment of Cd-contaminated Paddy Soil with Application of Combined Ameliorants: A Three-Year Field Study. Bull. Environ. Contam. Toxical. 2021, 107, 1236–1242. [Google Scholar] [CrossRef]
- Jiang, Y.; Hu, T.; Peng, O.; Chen, A.; Tie, B.; Shao, J. Responses of microbial community and soil enzyme to heavy metal passivators in cadmium contaminated paddy soils: An in situ field experiment. Int. Biodeterior. Biodegrad. 2021, 164, 105292. [Google Scholar] [CrossRef]
- Joshi, S.; Gangola, S.; Bhandari, G.; Bhandari, N.S.; Nainwal, D.; Rani, A.; Malik, S.; Slama, P. Rhizospheric bacteria: The key to sustainable heavy metal detoxification strategies. Front. Microbiol. 2023, 14, 1229828. [Google Scholar] [CrossRef] [PubMed]
- Harindintwali, J.D.; Zhou, J.; Yang, W.; Gu, Q.; Yu, X. Biochar-bacteria-plant partnerships: Eco-solutions for tackling heavy metal pollution. Ecotoxicol. Environ. Saf. 2020, 204, 111020. [Google Scholar] [CrossRef]
- Sun, H.; Chen, J.; Xiong, D.; Long, M. Detoxification of Selenium Yeast on Mycotoxins and Heavy Metals: A Review. Biol. Trace Elem. Res. 2023, 201, 5441–5454. [Google Scholar] [CrossRef] [PubMed]
- Etteieb, S.; Magdouli, S.; Komtchou, S.P.; Zolfaghari, M.; Tanabene, R.; Brar, K.K.; Calugaru, L.L.; Brar, S.K. Selenium speciation and bioavailability from mine discharge to the environment: A field study in Northern Quebec, Canada. Environ. Sci. Pollut. Res. 2021, 28, 50799–50812. [Google Scholar] [CrossRef] [PubMed]
- Liang, M.; Lu, L.; He, H.; Li, J.; Zhu, Z.; Zhu, Y. Applications of Biochar and Modified Biochar in Heavy Metal Contaminated Soil: A Descriptive Review. Sustainability 2021, 13, 14041. [Google Scholar] [CrossRef]
- Park, J.H.; Choppala, G.K.; Bolan, N.S.; Chung, J.W.; Chuasavathi, T. Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant Soil 2011, 348, 439–451. [Google Scholar] [CrossRef]
- Wang, S.; Xu, Y.; Norbu, N.; Wang, Z. Remediation of biochar on heavy metal polluted soils. In IOP Conference Series: Earth and Environmental Science; IOP Publishing Ltd.: Bristol, UK, 2018; Volume 108, p. 42113. [Google Scholar]
- Usevičiūtė, L.; Baltrėnaitė-Gedienė, E.; Feizienė, D. The Combined Effect of Biochar and Mineral Fertilizer on Triticale Yield, Soil Properties under Different Tillage Systems. Plants 2021, 11, 111. [Google Scholar] [CrossRef] [PubMed]
- Alkharabsheh, H.M.; Seleiman, M.F.; Battaglia, M.L.; Shami, A.; Jalal, R.S.; Alhammad, B.A.; Almutairi, K.F.; Al-Saif, A.M.; Trakal, L. Biochar and Its Broad Impacts in Soil Quality and Fertility, Nutrient Leaching and Crop Productivity: A Review. Agronomy 2021, 11, 993. [Google Scholar] [CrossRef]
- Yuan, J.; Xu, R.; Zhang, H. The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour. Technol. 2011, 102, 3488–3497. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.Y.; Zhou, H.; Gu, J.F.; Huang, F.; Liao, B.H. Effects of Nano-Fe3O4-Modified Biochar on Iron Plaque Formation and Cd Accumulation in Rice (Oryza sativa L.). Environ. Pollut. 2020, 260, 113970. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Ge, L.; Zhang, X.; Chen, H.; Shen, Y.; Xiao, J.; Lu, H.; Zhu, Y.; Han, J.; Li, R. Rice straw biochar and lime regulate the availability of heavy metals by managing colloid-associated- but dissolved-heavy metals. Chemosphere 2024, 349, 140813. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, X.; He, X.; Lü, Q.; Qian, X.; Xiao, Q.; Lin, R. Effects of Pseudomonas TCd-1 on rice (Oryza sativa) cadmium uptake, rhizosphere soils enzyme activities and cadmium bioavailability under cadmium contamination. Ecotoxicol. Environ. Saf. 2021, 218, 112249. [Google Scholar] [CrossRef]
- Wang, D.; Zheng, X.; Xiao, Q.; Wang, W.; Lin, R. Effects of Pseudomonas aeruginosa on root activity and leaf physiological characteristics in rice (Oryza sativa L.) seedling under cadmium stress. J. Appl. Ecol. 2019, 30, 2767–2774. [Google Scholar]
- Caracciolo, A.B.; Terenzi, V. Rhizosphere Microbial Communities and Heavy Metals. Microorganisms 2021, 9, 1462. [Google Scholar] [CrossRef] [PubMed]
- Qian, X.; Lü, Q.; He, X.; Wang, Y.; Li, H.; Xiao, Q.; Zheng, X.; Lin, R. Pseudomonas sp. TCd-1 significantly alters the rhizosphere bacterial community of rice in Cd contaminated paddy field. Chemosphere 2022, 290, 133257. [Google Scholar] [CrossRef] [PubMed]
- Lahori, A.; Zhang, Z.; Guo, Z.; Mahar, A.; Li, R.; Awasthi, M.; Sial, T.; Kumbhar, F.; Wang, P.; Shen, F. Potential use of lime combined with additives on (im)mobilization and phytoavailability of heavy metals from Pb/Zn smelter contaminated soils. Ecotoxicol. Environ. Saf. 2017, 145, 313–323. [Google Scholar] [CrossRef]
- Xu, D.; Fu, R.; Wang, J.; Shi, Y.; Guo, X. Chemical stabilization remediation for heavy metals in contaminated soils on the latest decade: Available stabilizing materials and associated evaluation methods—A critical review. J. Clean. Prod. 2021, 321, 128730. [Google Scholar] [CrossRef]
- Siepel, H.; Bobbink, R.; van de Riet, B.P.; van den Burg, A.B.; Jongejans, E. Long-term effects of liming on soil physico-chemical properties and micro-arthropod communities in Scotch pine forest. Biol. Fertil. Soils 2019, 55, 675–683. [Google Scholar] [CrossRef]
- Lee, M.; Lee, Y.; Yang, M.; Kim, J.; Wang, S. Lime (CaO) and Limestone Treatment as the Stabilization Process for Contaminated Farmland Soil around Abandoned Mine, Korea. Econ. Environ. Geol. 2008, 41, 201–210. [Google Scholar]
- Hartley, W.; Lepp, N.W. Remediation of arsenic contaminated soils by iron-oxide application, evaluated in terms of plant productivity, arsenic and phytotoxic metal uptake. Sci. Total Environ. 2008, 390, 35–44. [Google Scholar] [CrossRef]
- Qi, M.; Liu, Y.; Li, Y.; Wang, M.; Liu, N.; Kleawsampanjai, P.; Zhou, F.; Zhai, H.; Wang, M.; Dinh, Q.T.; et al. Detoxification difference of cadmium between the application of selenate and selenite in native cadmium-contaminated soil. Environ. Sci. Pollut. Res. 2021, 28, 64475–64487. [Google Scholar] [CrossRef]
- Li, H.; Dong, X.; da Silva, E.; de Oliveira, L.; Chen, Y.; Ma, L. Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. Chemosphere 2017, 178, 466–478. [Google Scholar] [CrossRef]
- Park, J.; Wang, J.J.; Kim, S.; Kang, S.; Jeong, C.Y.; Jeon, J.; Park, K.H.; Cho, J.; Delaune, R.D.; Seo, D. Cadmium adsorption characteristics of biochars derived using various pine tree residues and pyrolysis temperatures. J. Colloid Interf. Sci. 2019, 553, 298–307. [Google Scholar] [CrossRef]
- Aruna Olasekan, A.; Taiwo Michael, A.; Adeniyi, O.; Wutem Sunny, E.; Timothy A, A.; Titilayo Tolulope, A.; Jerry Femi, A. Effect of Biochar on Soil Properties, Soil Loss, and Cocoyam Yield on a Tropical Sandy Loam Alfisol. Sci. World J. 2020, 2020, 9391630. [Google Scholar]
- Shi, P.; Zhu, K.; Zhang, Y.; Chai, T. Growth and Cadmium Accumulation of Solanum nigrum L. Seedling were Enhanced by Heavy Metal-Tolerant Strains of Pseudomonas aeruginosa. Water Air Soil Pollut. 2016, 227, 459. [Google Scholar] [CrossRef]
- Liao, P.; Huang, S.; Zeng, Y.; Shao, H.; Zhang, J.; van Groenigen, K.J. Liming increases yield and reduces grain cadmium concentration in rice paddies: A meta-analysis. Plant Soil 2021, 465, 157–169. [Google Scholar] [CrossRef]
- Liu, Z.; Huang, Y.; Ji, X.; Xie, Y.; Peng, J.; Eissa, M.A.; Fahmy, A.E.; Abou-Elwafa, S.F. Effects and Mechanism of Continuous Liming on Cadmium Immobilization and Uptake by Rice Grown on Acid Paddy Soils. J. Soil Sci. Plant Nutr. 2020, 20, 2316–2328. [Google Scholar] [CrossRef]
- Hu, H.; Gao, L.; Zhang, H.; Zhou, X.; Zheng, J.; Hu, J.; Hu, H.; Ma, Y. Effectiveness of Passivator Amendments and Optimized Fertilization for Ensuring the Food Safety of Rice and Wheat from Cadmium-Contaminated Farmland. Sustainability 2022, 14, 15026. [Google Scholar] [CrossRef]
- Hamid, Y.; Tang, L.; Hussain, B.; Usman, M.; Gurajala, H.K.; Rashid, M.S.; He, Z.; Yang, X. Efficiency of lime, biochar, Fe containing biochar and composite amendments for Cd and Pb immobilization in a co-contaminated alluvial soil. Environ. Pollut. 2020, 257, 113609. [Google Scholar] [CrossRef]
- Wan, Y.; Yu, Y.; Wang, Q.; Qiao, Y.; Li, H. Cadmium uptake dynamics and translocation in rice seedling: Influence of different forms of selenium. Ecotoxicol. Environ. Saf. 2016, 133, 127–134. [Google Scholar] [CrossRef]
- Jiang, C.; Zu, C.; Lu, D.; Zheng, Q.; Shen, J.; Wang, H.; Li, D. Effect of exogenous selenium supply on photosynthesis, Na+ accumulation and antioxidative capacity of maize (Zea mays L.) under salinity stress. Sci. Rep. 2017, 7, 42039. [Google Scholar] [CrossRef]
- Wang, W.; Man, Z.; Li, X.; Chen, R.; You, Z.; Pan, T.; Dai, X.; Xiao, H.; Liu, F. Response mechanism and rapid detection of phenotypic information in rice root under heavy metal stress. J. Hazard. Mater. 2023, 449, 131010. [Google Scholar] [CrossRef] [PubMed]
- Zou, M.; Qin, W.; Wang, Q.; Qiu, Y.; Yin, Q.; Zhou, S. Translocation pattern of heavy metals in soil-rice systems at different growth stages: A case study in the Taihu region, Eastern China. Chemosphere 2023, 330, 138558. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, Q.; Wang, S.; Nan, Z.; Long, S.; Wu, Y.; Dong, S. Bioavailability, transfer, toxicological effects, and contamination assessment of arsenic and mercury in soil-corn systems. Environ. Sci. Pollut. Res. 2023, 30, 10063–10078. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Huang, Q.; Guo, G.; Qin, J.; Luo, J.; Zhu, Z.; Hong, Y.; Xu, Y.; Hu, S.; Hu, W.; et al. Reducing bioavailability of heavy metals in contaminated soil and uptake by maize using organic-inorganic mixed fertilizer. Chemosphere 2020, 261, 128122. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Bai, J.; Wang, W.; Zhang, G.; Cui, B.; Liu, X.; Li, X. Comprehensive assessment of soil quality for different wetlands in a Chinese delta. Land Degrad. Dev. 2018, 29, 3783–3794. [Google Scholar] [CrossRef]
- Yang, W.; Zhou, H.; Gu, J.; Liao, B.; Zhang, J.; Wu, P. Application of rapeseed residue increases soil organic matter, microbial biomass, and enzyme activity and mitigates cadmium pollution risk in paddy fields. Environ. Pollut. 2020, 264, 114681. [Google Scholar] [CrossRef]
- Hei, Z.; Xiang, H.; Zhang, J.; Liang, K.; Zhong, J.; Li, M.; Lu, Y. Rice intercropping with water mimosa (Neptunia oleracea Lour.) can facilitate soil N utilization and alleviate apparent N loss. Agric. Ecosyst. Environ. 2021, 313, 107378. [Google Scholar] [CrossRef]
Treatments | SFPICd | SFPICu | SFPIAs | SFPIZn | SFPIHg | SFPICr | SFPINi | SFPIPb | Pave | NCPI | Rank of NCPI |
---|---|---|---|---|---|---|---|---|---|---|---|
BLK | 1.523 | 2.275 | 0.950 | 0.771 | 0.250 | 0.188 | 0.256 | 0.579 | 0.849 | 1.717 ± 0.025 a | 2 |
CK1 | 1.387 | 2.280 | 0.742 | 0.769 | 0.176 | 0.150 | 0.223 | 0.583 | 0.789 | 1.706 ± 0.055 ab | 3 |
CK2 | 1.505 | 2.231 | 0.754 | 0.788 | 0.145 | 0.152 | 0.220 | 0.592 | 0.798 | 1.675 ± 0.075 abcde | 7 |
CK3 | 1.419 | 2.147 | 0.804 | 0.737 | 0.212 | 0.147 | 0.214 | 0.558 | 0.780 | 1.615 ± 0.057 bcde | 13 |
BC1 | 1.449 | 2.250 | 0.883 | 0.744 | 0.098 | 0.167 | 0.233 | 0.550 | 0.797 | 1.688 ± 0.049 abcd | 5 |
BC2 | 1.436 | 2.172 | 0.882 | 0.771 | 0.125 | 0.172 | 0.254 | 0.545 | 0.795 | 1.636 ± 0.031 abcde | 11 |
BC3 | 1.481 | 2.230 | 0.915 | 0.720 | 0.110 | 0.172 | 0.247 | 0.544 | 0.802 | 1.676 ± 0.075 abcde | 6 |
MA1 | 1.465 | 2.180 | 0.895 | 0.725 | 0.137 | 0.177 | 0.252 | 0.547 | 0.797 | 1.641 ± 0.053 abcde | 10 |
MA2 | 1.412 | 2.123 | 0.856 | 0.730 | 0.079 | 0.175 | 0.252 | 0.531 | 0.770 | 1.597 ± 0.089 de | 15 |
MA3 | 1.395 | 2.259 | 0.874 | 0.761 | 0.126 | 0.173 | 0.253 | 0.555 | 0.800 | 1.695 ± 0.043 abc | 4 |
LM1 | 1.263 | 2.217 | 0.888 | 0.720 | 0.205 | 0.162 | 0.242 | 0.518 | 0.777 | 1.661 ± 0.08 abcde | 9 |
LM2 | 1.330 | 2.297 | 0.936 | 0.752 | 0.178 | 0.173 | 0.250 | 0.519 | 0.804 | 1.721 ± 0.052 a | 1 |
LM3 | 1.322 | 2.218 | 0.908 | 0.737 | 0.174 | 0.163 | 0.241 | 0.512 | 0.784 | 1.663 ± 0.089 abcde | 8 |
SE1 | 1.225 | 2.183 | 0.830 | 0.726 | 0.180 | 0.156 | 0.224 | 0.527 | 0.756 | 1.634 ± 0.075 abcde | 12 |
SE2 | 1.291 | 2.141 | 0.840 | 0.743 | 0.169 | 0.157 | 0.227 | 0.522 | 0.761 | 1.607 ± 0.085 cde | 14 |
SE3 | 1.204 | 2.112 | 0.797 | 0.686 | 0.206 | 0.150 | 0.211 | 0.512 | 0.735 | 1.581 ± 0.095 e | 16 |
Average | |||||||||||
BLK | 1.523 | 2.275 | 0.950 | 0.771 | 0.250 | 0.188 | 0.256 | 0.579 | 0.849 | 1.717 ± 0.025 a | 1 |
CK | 1.437 | 2.219 | 0.767 | 0.764 | 0.178 | 0.149 | 0.219 | 0.577 | 0.789 | 1.666 ± 0.068 abc | 4 |
BC | 1.455 | 2.217 | 0.893 | 0.745 | 0.111 | 0.171 | 0.244 | 0.546 | 0.798 | 1.666 ± 0.058 abc | 3 |
MA | 1.424 | 2.187 | 0.875 | 0.739 | 0.114 | 0.175 | 0.252 | 0.544 | 0.789 | 1.644 ± 0.074 bc | 5 |
LM | 1.305 | 2.244 | 0.911 | 0.736 | 0.186 | 0.166 | 0.244 | 0.516 | 0.789 | 1.682 ± 0.078 ab | 2 |
SE | 1.240 | 2.145 | 0.822 | 0.718 | 0.185 | 0.155 | 0.221 | 0.521 | 0.751 | 1.607 ± 0.085 c | 6 |
Total | 1.382 | 2.207 | 0.860 | 0.742 | 0.161 | 0.165 | 0.237 | 0.543 | 0.787 |
Treatments | FpH | FCEC | FTN | FTP | FTK | FAN | FAP | FAK | FOM | Fave | Rank of IFI | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
BLK | 2.000 | 0.514 | 0.686 | 3.797 | 0.433 | 1.593 | 2.440 | 2.762 | 1.510 | 1.748 | 1.132 ± 0.033 bcd | 8 |
CK1 | 2.000 | 0.469 | 0.606 | 3.237 | 0.401 | 1.684 | 2.501 | 1.497 | 1.657 | 1.561 | 1.013 ± 0.005 e | 15 |
CK2 | 2.000 | 0.447 | 0.689 | 3.469 | 0.424 | 1.822 | 2.146 | 1.151 | 1.649 | 1.533 | 0.999 ± 0.025 e | 16 |
CK3 | 2.000 | 0.449 | 0.908 | 3.028 | 0.398 | 1.689 | 2.897 | 1.415 | 1.565 | 1.594 | 1.033 ± 0.056 de | 14 |
BC1 | 2.444 | 0.476 | 1.076 | 2.859 | 0.405 | 1.737 | 2.425 | 1.898 | 1.744 | 1.674 | 1.081 ± 0.093 cde | 10 |
BC2 | 2.889 | 0.622 | 1.024 | 3.294 | 0.405 | 1.969 | 2.189 | 2.410 | 2.164 | 1.885 | 1.212 ± 0.105 ab | 4 |
BC3 | 2.778 | 0.615 | 0.985 | 3.414 | 0.390 | 1.711 | 1.895 | 2.495 | 2.020 | 1.811 | 1.165 ± 0.060 abc | 5 |
MA1 | 2.222 | 0.469 | 0.944 | 3.392 | 0.404 | 1.624 | 2.077 | 1.806 | 1.473 | 1.601 | 1.037 ± 0.063 de | 13 |
MA2 | 2.222 | 0.480 | 0.849 | 3.362 | 0.402 | 1.731 | 3.760 | 2.014 | 1.440 | 1.807 | 1.163 ± 0.085 abc | 6 |
MA3 | 2.222 | 0.448 | 0.905 | 3.190 | 0.425 | 1.861 | 2.719 | 1.878 | 1.513 | 1.684 | 1.090 ± 0.112 cde | 9 |
LM1 | 2.944 | 0.602 | 0.593 | 3.145 | 0.438 | 1.960 | 2.423 | 3.373 | 1.612 | 1.899 | 1.223 ± 0.049 ab | 3 |
LM2 | 3.000 | 0.644 | 0.644 | 3.192 | 0.465 | 1.721 | 2.241 | 3.786 | 1.602 | 1.922 | 1.243 ± 0.096 a | 2 |
LM3 | 2.667 | 0.734 | 0.644 | 2.676 | 0.507 | 1.795 | 2.885 | 3.726 | 1.626 | 1.918 | 1.247 ± 0.067 a | 1 |
SE1 | 2.111 | 0.542 | 0.784 | 2.846 | 0.436 | 1.692 | 2.838 | 1.958 | 1.512 | 1.635 | 1.062 ± 0.075 cde | 12 |
SE2 | 2.389 | 0.561 | 0.953 | 3.004 | 0.440 | 1.668 | 2.054 | 2.338 | 1.490 | 1.655 | 1.077 ± 0.090 cde | 11 |
SE3 | 2.278 | 0.491 | 1.014 | 3.333 | 0.432 | 1.470 | 2.955 | 2.530 | 1.504 | 1.778 | 1.150 ± 0.076 abc | 7 |
Average | ||||||||||||
BLK | 2.000 | 0.514 | 0.686 | 3.800 | 0.433 | 1.593 | 2.440 | 2.762 | 1.510 | 1.660 | 1.132 ± 0.033 b | 3 |
CK | 2.000 | 0.455 | 0.734 | 3.245 | 0.408 | 1.732 | 2.514 | 1.354 | 1.624 | 1.563 | 1.015 ± 0.034 c | 6 |
BC | 2.704 | 0.571 | 1.028 | 3.189 | 0.400 | 1.806 | 2.170 | 2.268 | 1.976 | 1.790 | 1.153 ± 0.101 b | 2 |
MA | 2.222 | 0.466 | 0.899 | 3.315 | 0.410 | 1.739 | 2.852 | 1.899 | 1.475 | 1.697 | 1.097 ± 0.100 b | 4 |
LM | 2.870 | 0.660 | 0.627 | 3.004 | 0.470 | 1.825 | 2.516 | 3.628 | 1.613 | 1.913 | 1.238 ± 0.0701 a | 1 |
SE | 2.259 | 0.531 | 0.917 | 3.061 | 0.436 | 1.610 | 2.615 | 2.275 | 1.502 | 1.690 | 1.096 ± 0.087 b | 5 |
Total | 2.385 | 0.535 | 0.832 | 3.202 | 0.425 | 1.733 | 2.528 | 2.315 | 1.630 | 1.732 |
Indicators | Principal Components | Norm Value | Communalities | Group | |||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | ||||
T-Cd | −0.156 | 0.829 | 0.346 | −0.322 | 0.004 | −0.119 | 2.441 | 0.950 | 2 |
T-Cu | 0.314 | 0.662 | −0.204 | −0.186 | −0.089 | 0.194 | 2.140 | 0.658 | 2 |
T-As | 0.449 | 0.854 | −0.049 | −0.137 | 0.088 | −0.026 | 2.748 | 0.960 | 2 |
T-Zn | −0.048 | 0.647 | −0.172 | −0.099 | −0.149 | 0.548 | 1.893 | 0.783 | 6 |
T-Hg | 0.100 | 0.021 | −0.874 | 0.140 | 0.304 | −0.049 | 1.882 | 0.888 | 3 |
T-Cr | −0.067 | 0.933 | 0.208 | −0.013 | 0.168 | −0.065 | 2.517 | 0.951 | 2 |
T-Ni | 0.138 | 0.845 | 0.329 | 0.065 | 0.155 | 0.217 | 2.401 | 0.916 | 2 |
T-Pb | −0.502 | 0.762 | 0.030 | −0.320 | 0.020 | 0.061 | 2.721 | 0.940 | 1 |
A-Cd | −0.301 | 0.892 | −0.103 | 0.135 | −0.025 | 0.020 | 2.590 | 0.915 | 2 |
A-Cu | −0.509 | 0.759 | 0.041 | 0.287 | −0.032 | −0.006 | 2.718 | 0.921 | 1 |
A-As | −0.939 | −0.006 | 0.114 | 0.175 | 0.174 | −0.002 | 3.270 | 0.956 | 1 |
A-Zn | −0.852 | 0.235 | −0.161 | 0.383 | 0.048 | −0.112 | 3.109 | 0.968 | 1 |
A-Ni | −0.888 | 0.234 | 0.016 | 0.331 | 0.083 | −0.134 | 3.191 | 0.978 | 1 |
A-Pb | −0.934 | 0.065 | 0.104 | 0.028 | 0.061 | 0.054 | 3.232 | 0.894 | 1 |
pH | 0.967 | 0.047 | −0.047 | −0.049 | −0.074 | 0.198 | 3.349 | 0.987 | 1 |
CEC | 0.879 | −0.029 | −0.246 | −0.160 | −0.096 | 0.132 | 3.095 | 0.887 | 1 |
OM | 0.355 | 0.059 | 0.293 | −0.761 | 0.108 | 0.270 | 2.022 | 0.878 | 4 |
DOC | 0.783 | −0.040 | −0.373 | 0.285 | −0.363 | −0.070 | 2.899 | 0.972 | 1 |
TN | −0.486 | −0.298 | 0.419 | −0.571 | −0.072 | −0.152 | 2.318 | 0.855 | 4 |
TP | −0.323 | 0.484 | 0.013 | −0.077 | 0.702 | −0.265 | 1.954 | 0.907 | 5 |
TK | 0.609 | −0.096 | −0.579 | 0.390 | −0.292 | 0.016 | 2.561 | 0.953 | 3 |
AN | 0.358 | 0.125 | 0.337 | −0.046 | −0.044 | 0.795 | 1.751 | 0.892 | 6 |
AP | −0.136 | −0.161 | 0.166 | 0.738 | −0.209 | −0.079 | 1.598 | 0.666 | 4 |
AK | 0.869 | 0.069 | −0.389 | 0.177 | 0.200 | 0.008 | 3.135 | 0.983 | 1 |
CAT | 0.956 | 0.131 | −0.112 | 0.062 | −0.026 | −0.028 | 3.323 | 0.949 | 1 |
URE | 0.752 | −0.231 | −0.558 | 0.207 | −0.072 | 0.076 | 2.928 | 0.985 | 3 |
SUC | 0.830 | −0.113 | 0.034 | −0.110 | 0.373 | 0.243 | 2.941 | 0.914 | 1 |
CUE | 0.096 | 0.002 | −0.447 | 0.724 | 0.360 | 0.026 | 1.745 | 0.863 | 4 |
PRO | 0.883 | −0.116 | 0.255 | 0.045 | 0.056 | 0.158 | 3.111 | 0.888 | 1 |
POD | 0.061 | 0.403 | 0.725 | −0.121 | 0.050 | 0.189 | 1.866 | 0.744 | 3 |
PPO | 0.092 | 0.540 | 0.265 | −0.713 | 0.008 | −0.230 | 2.080 | 0.931 | 4 |
ACP | −0.739 | −0.285 | 0.063 | −0.233 | 0.508 | 0.144 | 2.781 | 0.965 | 5 |
MBC | −0.276 | 0.025 | 0.856 | −0.046 | 0.273 | 0.040 | 2.028 | 0.888 | 3 |
Eigenvalue | 11.883 | 6.943 | 4.185 | 3.596 | 1.666 | 1.513 | |||
VCR% Variance contribution rate | 36.01 | 21.04 | 12.68 | 10.90 | 5.05 | 4.58 | |||
CVCR% Cumulative contribution rate | 36.01 | 57.05 | 69.73 | 80.63 | 85.68 | 90.26 |
Treatments | IT-As | IT-Zn | IpH | ITN | IAN | IURE | IACP | SQI | Rank of SQI |
---|---|---|---|---|---|---|---|---|---|
BLK | 0.045 | 0.064 | 0.042 | 0.049 | 0.049 | 0.051 | 0.083 | 0.384 ± 0.055 d | 16 |
CK1 | 0.133 | 0.065 | 0.027 | 0.041 | 0.057 | 0.051 | 0.108 | 0.482 ± 0.036 abc | 7 |
CK2 | 0.128 | 0.059 | 0.030 | 0.049 | 0.069 | 0.054 | 0.087 | 0.476 ± 0.041 abc | 10 |
CK3 | 0.107 | 0.077 | 0.018 | 0.070 | 0.058 | 0.044 | 0.092 | 0.466 ± 0.035 abc | 12 |
BC1 | 0.073 | 0.074 | 0.052 | 0.086 | 0.062 | 0.040 | 0.085 | 0.473 ± 0.066 abc | 11 |
BC2 | 0.074 | 0.065 | 0.090 | 0.081 | 0.082 | 0.047 | 0.090 | 0.528 ± 0.099 a | 2 |
BC3 | 0.060 | 0.083 | 0.078 | 0.077 | 0.060 | 0.042 | 0.081 | 0.481 ± 0.066 abc | 9 |
MA1 | 0.068 | 0.081 | 0.037 | 0.073 | 0.052 | 0.024 | 0.085 | 0.422 ± 0.043 cd | 15 |
MA2 | 0.085 | 0.079 | 0.040 | 0.064 | 0.061 | 0.033 | 0.080 | 0.444 ± 0.06 bcd | 14 |
MA3 | 0.077 | 0.068 | 0.043 | 0.070 | 0.073 | 0.033 | 0.087 | 0.451 ± 0.045 abcd | 13 |
LM1 | 0.071 | 0.083 | 0.097 | 0.040 | 0.081 | 0.075 | 0.086 | 0.532 ± 0.046 a | 1 |
LM2 | 0.051 | 0.071 | 0.109 | 0.045 | 0.061 | 0.090 | 0.071 | 0.497 ± 0.047 abc | 6 |
LM3 | 0.063 | 0.076 | 0.138 | 0.045 | 0.067 | 0.100 | 0.037 | 0.526 ± 0.048 a | 3 |
SE1 | 0.096 | 0.080 | 0.040 | 0.058 | 0.058 | 0.058 | 0.091 | 0.482 ± 0.069 abc | 7 |
SE2 | 0.092 | 0.074 | 0.048 | 0.074 | 0.056 | 0.065 | 0.088 | 0.498 ± 0.067 abc | 5 |
SE3 | 0.110 | 0.095 | 0.039 | 0.080 | 0.039 | 0.061 | 0.099 | 0.523 ± 0.042 ab | 4 |
Average | |||||||||
BLK | 0.045 | 0.064 | 0.042 | 0.049 | 0.049 | 0.051 | 0.083 | 0.384 ± 0.055 c | 6 |
CK | 0.123 | 0.067 | 0.025 | 0.053 | 0.061 | 0.050 | 0.095 | 0.475 ± 0.033 b | 4 |
BC | 0.069 | 0.074 | 0.073 | 0.081 | 0.068 | 0.043 | 0.085 | 0.494 ± 0.080 a | 3 |
MA | 0.077 | 0.076 | 0.040 | 0.069 | 0.062 | 0.030 | 0.084 | 0.439 ± 0.050 b | 5 |
LM | 0.062 | 0.077 | 0.115 | 0.043 | 0.070 | 0.088 | 0.065 | 0.518 ± 0.048 a | 1 |
SE | 0.099 | 0.083 | 0.043 | 0.071 | 0.051 | 0.061 | 0.093 | 0.501 ± 0.061 a | 2 |
Total | 0.083 | 0.075 | 0.058 | 0.063 | 0.062 | 0.054 | 0.084 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, L.; Lin, J.; Huang, M.; Hong, Y.; Zhong, X.; Guo, Y.; You, W.; Xiao, Q.; Lin, R. Effects of Different Remediation Treatments and Rice Intercropping on the Integrated Quality of Paddy Soils Mildly Contaminated by Cadmium and Copper. Sustainability 2024, 16, 11120. https://doi.org/10.3390/su162411120
Cai L, Lin J, Huang M, Hong Y, Zhong X, Guo Y, You W, Xiao Q, Lin R. Effects of Different Remediation Treatments and Rice Intercropping on the Integrated Quality of Paddy Soils Mildly Contaminated by Cadmium and Copper. Sustainability. 2024; 16(24):11120. https://doi.org/10.3390/su162411120
Chicago/Turabian StyleCai, Luxiang, Jinlun Lin, Mingtian Huang, Yong Hong, Xuemeng Zhong, Yourui Guo, Wu You, Qingtie Xiao, and Ruiyu Lin. 2024. "Effects of Different Remediation Treatments and Rice Intercropping on the Integrated Quality of Paddy Soils Mildly Contaminated by Cadmium and Copper" Sustainability 16, no. 24: 11120. https://doi.org/10.3390/su162411120
APA StyleCai, L., Lin, J., Huang, M., Hong, Y., Zhong, X., Guo, Y., You, W., Xiao, Q., & Lin, R. (2024). Effects of Different Remediation Treatments and Rice Intercropping on the Integrated Quality of Paddy Soils Mildly Contaminated by Cadmium and Copper. Sustainability, 16(24), 11120. https://doi.org/10.3390/su162411120