The Jordan-Schonflies Theorem
and the Classification of Surfaces

Carsten Thomassen

INTRODUCTION. The Jordan curve theorem says that a simple closed curve in
the Euclidean plane partitions the plane into precisely two parts: the interior and
the exterior of the curve. Although this fundamental result seems intuitively
obvious it is fascinatingly difficult to prove. There are several proofs in the
literature. For example, Tverberg [12] gave a proof involving only approximation
with polygons. Here, we give a short proof based only on a trivial part of
Kuratowski’s theorem on graph planarity (see Lemma 2.5, below), namely, that
K, ; is not planar.

Then we turn to another fundamental topological result: the classification of
(compact) surfaces. A surface is a connected compact topological space which is
locally homeomorphic to a disc (that is, the interior of a circle in the plane). The
classification of surfaces says that every surface is homeomorphic to a space
obtained from a sphere by adding handles or crosscaps. One of the first complete
proofs was given by Kerékjarto [4] and there are several short proofs based on the
assumption that every surface can be triangulated (see e.g. [1, 2]). Tutte [11] gave a
proof in a purely combinatorial framework. In this paper we present a self-con-
tained proof. The proof consists of two parts: a “topological” part and a “combina-
torial” part. The combinatorial part (Section 5) is very short. It differs from other
proofs in that it uses no topological results, not even the Jordan curve theorem. In
particular, it does not use Euler’s formula (which includes the Jordan curve
theorem). Thus, the combinatorial part can be read independently of the previous
results and it is of interest to those applications (for example to the Heawood
problem mentioned below) where the surfaces under consideration are already
triangulated.

The topological part is a proof of the fact that every surface S can be
triangulated, i.e., S is homeomorphic to a topological space obtained by pasting
triangles together. The idea behind this is simple: First we consider, for each point
p in S, a small disc D, around p. As S is compact, S is covered by a finite
collection of the discs D,. If § minus the boundaries of those discs consists of a
finite number of connected components, then each of these is homeomorphic to a
disc and it is then easy to triangulate S. However, the discs D, may overlap in
a complicated way. The previous proofs in the literature of the fact that every
surface can be triangulated are complicated and appeal to geometric intuition. In
Section 4 we present a short proof, which is perhaps not easy to follow, but which
is simple in the sense that it merely consists of repeated use of the following
extension of the Jordan curve theorem: If C,; and C, are simple closed Jordan
curves in the plane and f is a homeomorphism between them, then f can be
extended to a homeomorphism of the whole plane. This extension, which is called
the Jordan-Schonflies theorem is a classical result, which is of interest in its own
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right. In the present paper it forms a bridge between the Jordan curve theorem
and the classification theorem. Although the Jordan-Schonflies theorem may also
seem intuitively clear, it does not generalize to sets homeomorphic to a sphere in
R3?, as shown by the so-called Alexander’s Horned Sphere, see [5]. (The Jordan
curve theorem does generalize to spheres in R3.) We present a new (graph-theo-
retic) proof of the Jordan-Schonflies theorem in Section 3. No previous knowledge
of graph theory and only basic topological concepts will be assumed in the paper.
In order to emphasize that the proofs are rigorous, no figures (which could be an
excuse for lack of details) are included. Instead there are, inevitably, quite a
number of technical details in the topological part (Sections 3 and 4). The difficulty
in the topological part lies precisely in the details.

The classification of surfaces is not only a beautiful result of considerable
independent interest. It has turned out to be a valuable tool in combinatorial
analysis. Heawood [3] introduced the problem of determining the smallest number
h(S) such that every map on the surface S can be coloured in /(S) colours in such
a way that no two neighbouring countries receive the same colour. Heawood
established an upper bound for A(S). He claimed that his upper bound in fact
equals A(S) (except for the sphere) and that this follows by drawing a certain
complete graph on S such that no two edges cross. While this claim, which became
known as the Heawood conjecture, turned out to be correct, it took almost 80
years before Ringel and Youngs (see [6]) completed the proof. One of the main
ideas behind the proof is the following: Instead of starting out with S and drawing
the complete graph on S, we start out with the complete graph and ‘“paste” discs
on it such that we obtain a surface. By the classification theorem and Euler’s
formula, we know exactly which surface we get, and if we are clever enough,
we get S.

The solution of the Heawood problem is an example where the classification
theorem plays a role in reducing a problem with a topological content into a purely
combinatorial one.

Recently, surfaces have also played a crucial role in a purely combinatorial
result with far-reaching consequences in discrete mathematics and theoretical
computer science. Let p be a graph property satisfying the following: If G is a
graph with property p, then every graph obtained from G by deleting or contract-
ing edges also has property p. The Robertson-Seymour theory [7] implies an
efficient method (more precisely, a polynomially bounded algorithm) for testing if
an arbitrary graph has property p. In particular, for any fixed surface S, there is an
efficient algorithm for testing if an arbitrary graph G can be embedded into S, that
is, drawn on S such that no two edges cross. In contrast to this, the problem of
determining the smallest number of handles that must be added to the sphere in
order to get a surface on which G can be embedded is a very difficult one. More
precisely, it is NP-complete as shown by the author [9].

2. PLANAR GRAPHS AND THE JORDAN CURVE THEOREM. A simple arc in
a topological space X is the image of a continuous 1 — 1 map f from the real
interval [0, 1] into X. We say that f(0) and f(1) are the ends of the arc and that
the arc joins f(0) and f(1). A simple closed curve is defined analogously except
that now f(0) = f(1). We say that X is connected (more precisely, arcwise
connected) if any two elements of X are joined by a simple arc. A simple polygonal
arc or closed curve in the plane is a simple arc or closed curve which is the union
of a finite number of straight line segments.
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Lemma 2.1. If Q is an open connected set in the plane, then any two points in ) are
Jjoined by a simple polygonal arc in Q.

Proof: Let p and g be any two points in  and let f be a continuous map from
[0,1] to Q such that f(0) = p and f(1) = g. Let A consist of those numbers ¢ in
[0, 1] such that © contains a simple polygonal arc from p to f(¢). Put ¢, = sup A.
We must have ¢, = 1 since otherwise it is easy to find a ¢, in A4 such that ¢, > ¢,, a
contradiction. O

A region of an open set in the plane is a maximal connected subset. A graph G
is the union of two finite disjoint sets V(G) and E(G) (called the vertices and
edges, respectively) such that, with every edge, there are associated two distinct
vertices x and y, called the ends of the edge. We denote such an edge by xy and
say that it joins x and y or that it is incident with x and y. If more than one edge
joins x and y we speak of a multiple edge. An isomorphism between two graphs is
defined in the obvious way. A path is a graph with distinct vertices v, v,,...,0,
and edges vv,, Uy03,...,0,_U,. If n > 2 and we add an edge v,v, to this path we
obtain a cycle. We denote both the above path and cycle by v, ...v,. (It will
always be clear from the context if we are talking about a path or a cycle.) If G is a
graph and 4 € V(G) U E(G), then G — A is the graph obtained from G by
deleting all vertices of 4 and all those edges which are in A or are incident with a
vertex in A. We say that G is connected if every pair of vertices in G are joined by
a path, and G is 2-connected if it is connected and, for every vertex v, G — {v}
(which we also denote by G — v) is connected. The graph G can be embedded in
the topological space X if the vertices of G can be represented by distinct
elements in X and each edge of G can be represented by a simple arc which joins
its two ends in such a way that two edges have at most an end in common. If X is
the Euclidean plane R?, then a graph represented in X is a plane graph, and an
abstract graph which can be represented in X is a planar graph.

Lemma 2.2. If G is a planar graph, then G can be drawn (embedded) in the plane
such that all edges are simple polygonal arcs.

Proof: Let T' be a plane graph isomorphic to G. Let p be some vertex of I', and
let D, be a closed disc with p as center such that D, intersects only those edges
that are incident with p. Furthermore, assume that D, N D, = & for every pair of
distinct vertices p, q of I'. For each edge pg of I' let C,, be an arc contained in
pq such that C,,, joins D, with D, and has only its ends in common with D, U D,.
We can now redraw G such that all arcs C,,, are in the new drawing and such that

the parts of the edges in the discs D, are straight line segments. Using Lemma 2.1

it is now easy to replace each C,, by a simple polygonal arc. O

A subdivision of a graph G is a graph obtained from G by “inserting vertices on
edges.” More precisely, some (or all) edges of G are replaced by paths with the
same ends. Kuratowski’s theorem says that a graph is nonplanar if and only if it
contains a subdivision of one of the Kuratowski graph K ; or Ks. K5 is the graph
on five vertices such that every pair of vertices are joined by exactly one edge. K ;

is the graph with six vertices v, v,, v3, U, U, v; and all nine edges v;u;, 1 <i <3,
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1 <j < 3. A discussion of this fundamental result (including a short proof) can be
found in [8]. We shall use here only the simple fact that K 3,3 is nonplanar. For this
we need the following special case of the Jordan curve theorem.

Lemma 2.3. If C is a simple closed polygonal curve in the plane, then R?\ C has
precisely two regions each of which has C as boundary.

Proof: We first prove that R?\ C has at most two regions. So suppose (reductio
ad absurdum) that q,, q,, q; belong to distinct regions of R?\ C. Select a disc D
such that D N C is a straight line segment. For each i = 1,2,3 we can walk along
a simple polygonal arc (close to C but not intersecting C) from g, into D. Hence
some two of gq,, g,, g5 are connected by a simple polygonal arc, a contradiction.

Next we prove that R?\ C is not connected. For each point g in R*\ C we
consider a straight half line L starting at g. The intersection L N C is a finite
number of intervals some of which may be points. Consider such an interval Q. If
C enters and leaves Q on the same side of L we will say that C touches L at Q.
Otherwise C crosses L at Q. It is easy to see that the number of times that C
crosses L (reduced modulo 2) does not change when the direction of L is changed.
So that number depends only on g (and C) and is called the parity of q. Now, the
parity is the same for all points on a simple polygonal arc in R?\ C and hence it is
the same for all points in a region of R?\ C. By considering a half line that
intersects C precisely once we get points of different parity and hence in different
regions. 0O

The unbounded region of a closed curve C is called the exterior of C and is
denoted ext(C). The union of all other regions is the interior and is denoted
int(C). Furthermore, we write

int(C) = CuUint(C) and ext(C) = C U ext(C).
We shall extend Lemma 2.3.

Lemma 2.4. Let C be a simple closed polygonal curve and P a simple polygonal arc
in int(C) such that P joins p and q on C and has no other point in common with C.
Let P, and P, be the two arcs on C from p to q. Then R*\ (C U P) has precisely
three regions whose boundaries are C, P, U P, P, U P, respectively.

Proof: Clearly, ext(C) is a region of R?>\ (C U P). As in the proof of Lemma 2.3
we conclude that the addition of P to C partitions int(C) into at most two regions.
So, we only need to prove that P partitions int(C) into (at least) two regions. Let
L,, L, be crossing line segments such that L, is a segment of P, and L, has
precisely the point in L, N L, in common with C U P. By the proof of Lemma 2.3,
the ends of L, are in int(C) and in distinct regions of R?*\ (P U P)), hence also in
distinct regions of R\ (P U C). O

Lemma 2.4 implies that, if » and s are points on P; \ {p, ¢} and P,\ {p, g},
respectively, then it is not possible to join » and s by a simple polygonal arc in
int(C) without intersecting P. These remarks also hold when ext and int are
interchanged. Hence we get:

Lemma 2.5. K; ; is nonplanar.
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Proof: K, ; may be thought of as a cycle C: x;x,x3x,xsx, with three chords
X1Xg, X3Xs, X3%6. Now if K5 ; were planar we would have a plane drawing such
that all edges are simple polygonal arcs, by Lemma 2.2. Then C would be a simple
closed polygonal curve and two of the chords x,x,, x,xs, x3x, would either be in
int(C) or ext(C). But this would contradict the remark after Lemma 2.4. O

Everything so far is standard and trivial. Now we are ready for the Jordan curve
theorem. We remark again that the proof uses only the nonplanarity of K, ;.

Proposition 2.6. If C is a simple closed curve in the plane, then R*\ C is discon-
nected.

Proof: Let L, (respectively, L,) be a vertical straight line intersecting C such that
C is entirely in the closed right (respectively, left) half plane of L, (respectively,
L,). Let p; be the top point on L; N C for i = 1,2, and let P, and P, be the two
curves on C from p, to p,. Let L, be a vertical straight line between L, and L,.
Since P, N L; and P, N L, are compact and disjoint, L; contains an interval L,
joining P; with P, and having only its ends in common with C. Let Ls be a
polygonal arc from p,; to p, in ext(C) consisting of segments of L,, L, and a
horizontal straight line segment above C. If L, is in ext(C), then there is a simple
polygonal arc L in ext(C) from L, to L. But then C U L, U Ly U L, is a plane
graph isomorphic to Kj ;, contradicting Lemma 2.5. Hence, the midpoint of L,
does not lie in ext(C), so int(C) is nonempty. O

We shall also use the nonplanarity of K, ; to show that int(C) has only one
region. For this we need some graph theoretic facts. First a result on abstract
graphs.

Lemma 2.7. If G is a 2-connected graph and H is a 2-connected subgraph of G, then
G can be obtained from H by successively adding paths such that each of these paths
Joins two distinct vertices in the current graph and has all other vertices outside the
current graph.

Proof: The proof is by induction on the number of edges in E(G) \ E(H). If that
number is zero, that is, G = H, then there is nothing to prove. So assume that
G # H. By the induction hypothesis, Lemma 2.7 holds when the pair G, H is
replaced by another pair G’, H' such that E(G’)\ E(H') has fewer edges than
E(G)\ E(H). Now let H' be a maximal 2-connected proper subgraph of G
containing H. If H' + H we apply the induction hypothesis to H', H and then to
G, H'. So assume that H' = H. Since G is connected, there is an edge x,x, in
E(G)\ E(H) such that x, is in H. Since G — x, is connected, it has a path
P: x,x5 -+ x, such that x, isin H and all x;, 2 <i <k, are not in H. Possibly
k = 2. Since HU P U {x,x,} is 2-connected, we have H U P U {x,x,} = G and
the proof is complete. 0O

If S is a set, then |S| will denote its cardinality.
Lemma 2.8. If T is a plane 2-connected graph with at least three vertices, all of

whose edges are simple polygonal arcs, then R*\ T has |E(I)| — |V(I')| + 2 regions
each of which has a cycle of T as boundary.
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Proof: Let C be a cycle in I By Lemma 2.3, Lemma 2.8 holds if ' = C.
Otherwise, I' can be obtained from C by successively adding paths as in Lemma
2.7. Each such path is added in a region. That region is bounded by a cycle and
now we apply Lemma 2.4 to complete the proof. (Lemma 2.4 says that the number
of regions is increased by 1 when a region is subdivided). 0O

For a plane graph T, the regions of R?\ I' will also be called faces of T'. The
unbounded face is the outer face and, if ' is 2-connected, then the boundary of
the outer face is the outer cycle.

The union of two abstract graphs is defined in the obvious way. For plane
graphs we shall make use of a different type of union.

Lemma 2.9. If T, and T, are two plane graphs such that each edge is a simple
polygonal arc, then the union of I'; and T, is a graph T.

Proof: First, let I7 denote the plane graph such that I} is a subdivision of I; and
each edge of I7 is a straight line segment for i = 1,2. Secondly, let I} be the
subdivision of I} such that a point p on an edge a of I7 is a vertex of I'” if either
p is a vertex of I;_, or p is on an edge of I_; that crosses a. Then the usual

union of the graphs I'{ and I’; can play the role of I';. O

If both T'; and I', in Lemma 2.9 are 2-connected and have at least two points in
common, then also I'; is 2-connected.

Lemma 2.10. Let I'},T,, ..., I, be plane 2-connected graphs all of whose edges are
simple polygonal arcs such that T; has at least two points in common with each of
I,_, and T, , and no point in common with any other T; (i =2,3,...,k — 1).

Assume also that '), N\ T, = &. Then any point which is in the outer face of each of
Lul, ILuly --- Iy _; UL, is also in the outer face of T, UT, U --- UT,.

Proof: Suppose p is a point in a bounded face of I U --- UT,. Since
Ihu--- Ul}, is 2-connected, it follows from 2.8 that there is a cycle C in
I U .-+ UTYy such that p € int(C). Choose C suchthat Cisin LU, , U -+ U
[ and such that j — i is minimum. We shall show that j — i < 1. So assume that
J —i>2. Among all cycles in [; U --- U T; having p in the interior we assume
that C is chosen such that the number of edges in C and not in I;_, is minimum.
Since C intersects both I and I;_,, C has at least two disjoint maximal segments
in I;_;; let P be one of these; let P’ be a shortest path in I;_; from P to
C — V(P); the ends of P’ divide C into arcs P, and P,, each of which contains
segments not in I;_,. One of the cycles P’ U P, and P’ U P, contains p in its
interior; it has fewer edges not in I;_, than C has. This contradicts the minimality
of C, so a minimal C does not lie in a minimal union I; UT;,, U -+ U I} with
i<j—-2 O

Proposition 2.11. If P is a simple arc in the plane, then R*\ P is connected.
Proof: Let p, q be two points in R*>\ P and let d be a positive number such that
each of p, g has distance > 3d from P. We shall join p, g by a simple polygonal

arc in R?\ P. Since P is the image of a continuous (and hence uniformly
continuous) map we can partition P into segments P,, P,,..., P, such that P,
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joins p; and p,;,, for i = 1,2,..., k and such that each point on P, has distance
less than d from p; (i = 1,2,...,k — 1). Let d’ be the minimum distance between
P,and P,1<i<j—2 < k — 2. Note that d’ < d. For each i = 1,2,...,k, we
partition P; into segments P, ;, P, 5,..., P, ;. such that P, ; joins p; ; with p; ;,
for j =1, 2 ,k; — 1 and such that each p01nt on P, ; has distance less than
d/4to p; and let I; be the graph which is the union of the boundaries of the
squares that consist of horizontal and vertical line segments of length d’/2 and
have a point p; ; as midpoint. Then the graphs I';, I, ..., I, satisfy the assump-
tion of Lemma 2.10. Hence both of p and g are in the outer face of I'; U --- U T,
(because they are outside the disc of radius 3d and with center p; while I; U I} ;
is inside that disc) and P does not intersect that face. Therefore, p and g can be
joined by a simple polygonal arc disjoint from P. O

If C is a closed subset of the plane and Q is a region of R?\ C, then a point p
in C is accessible from Q if for some (and hence each) point g in (), there is a
simple polygonal arc from g to p having only p in common with C. If C is a
simple closed curve, then p need not be accessible from Q. However, if P is any
arc of C containing p, then Proposition 2.11 implies that R*\ (C \ P) is con-
nected and therefore contains a simple polygonal arc P’ from g to a region of
R?\ C distinct from Q. Then P’ intersects C in a point on P. Since P can be
chosen to be arbitrarily small we conclude that the points on C accessible from
are dense on C. We also get

Theorem 2.12 (The Jordan Curve Theorem). If C is a simple closed curve in the
plane, then R*\ C has precisely two regions, each of which has C as boundary.

Proof: Assume (reductio ad absurdum) that q,, q,, g5 are points in distinct regions
Q,,Q,,Q, of R*\ C. Let Q,, Q,,Q; be pairwise disjoint segments of C. By the
remark following Proposition 2.11, ; has a simple polygonal arc P, ; from g, to
Q; for i,j = 1,2,3. We can assume that P, ;NP ={q;} for j#j. (If we walk
along P, , from Q, towards g; and we hit P 1 in ql # q,, then we can modify P,
such that its last segment is close to the segment of P, from g; to g; and such
that the new P, , has only g; in common with P, ;. P, ; can be modified similarly, if
necessary.) Clearly, P, ;N P, = when i # i We can now extend (by adding a
segment in each of Ql, Q,, Q3) the union of the arcs P, ; (i,j = 1,2,3) to a plane
graph isomorphic to K, ;. This contradicts Lemma 2.5. Thus R?\ C has precisely
two regions ext(C) and int(C). As above, Proposition 2.11 implies that every point
of C is a boundary point of ext(C) and int(C). O

The Jordan Curve Theorem is a special case of the Jordan-Schonflies theorem
which we prove in the next section. For this we shall generalize some of the
previous results. First, Lemma 2.4 generalizes as follows.

Lemma 2.13. Let C be a simple closed curve and P a simple polygonal arc in int(C)
such that P joins p and q on C and has no other point in common with C. Let P, and
P, be the two arcs on C from p to q. Then R*\ (C U P) has precisely three regions
whose boundaries are C, P, U P, and P, U P, respectively.

Proof: As in the proof of Lemma 2.4 the only nontrivial part is to prove that int(C)

is partitioned into (at least) two regions. If the ends of L, (defined as in the proof
of Lemma 2.4) are in the same region of R\ (P U C), then that region contains
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a polygonal arc P; such that P, U L, is a simple closed polygonal curve. By the
proof of Lemma 2.3, the ends of L, are in distinct regions of R?\ (P; U L,). But
they are also in the same region of R?\ (P; U L,) since they are joined by a
simple arc (in P U C) not intersecting P; U L,. This contradiction proves Lemma
213. O

We also generalize Lemma 2.8.

Lemma 2.14. If T is a plane 2-connected graph containing a cycle C (which is a
simple closed curve) such that all edges in T \ C are simple polygonal arcs in int(C),
then R*\T has |E(T)| — [V(I)| + 2 regions each of which has a cycle of T as
boundary.

Proof: The proof is as that of Lemma 2.8 except that we now use Lemma 2.13
instead of Lemma 2.4. O

Finally, we shall use the fact that Lemma 2.9 remains valid if I’} and I, are
plane graphs whose intersection contains a cycle C such that all edges in I'; or I,
(not in C) are simple polygonal arcs in int(C).

3. THE JORDAN-SCHONFLIES THEOREM. If C and C’ are simple closed
curves and T and I" are 2-connected graphs consisting of C (respectively, C') and
simple polygonal arcs in int(C) (respectively, int(C")), then T' and I" are said to be
plane-isomorphic if there is an isomorphism of I' to I" such that a cycle in T is a
face boundary of T iff the image of the cycle is a face boundary of I and such
that the outer cycle of I" is mapped onto the outer cycle of I".

Theorem 3.1. If f is a homeomorphism of a simple closed curve C onto a simple
closed curve C', then f can be extended into a homeomorphism of the whole plane.

Proof: Without loss of generality we can assume that C’ is a convex polygon. We
shall first extend f to a homeomorphism of int(C) to int(C’). Let B denote a
countable dense set in int(C) (for example the points with rational coordinates).
Since the points on C accessible from int(C) are dense on C, there exists a
countable dense set 4 in C consisting of points accessible from int(C). Let
Py, P2, .. be asequence of points in 4 U B such that each point in 4 U B occurs
infinitely often in that sequence. Let I', denote any 2-connected graph consisting
of C and some simple polygonal arcs in int(C). Let T}, be a graph consisting of C’
and simple polygonal arcs in int(C’) such that T, and T} are plane-isomorphic
(with isomorphism g) such that g, and f coincide on C N V(I}). We now extend
f to C U V(T,) such that g, and f coincide on V(T)). We shall define a sequence
of 2-connected graphs I),I',, [, ... and I}, ... such that, foreach n > 1, T}, is
an extension of a subdivision of T, _,, I, is an extension of a subdivision of I _,,
there is a plane isomorphism g, of I, onto I, coinciding with g,_, on V(I _)),
and T, (respectively I) consists of C (respectively C') and simple polygonal arcs
in int(C) (respectively int(C")). Also, we shall assume that I\ C’ is connected for
each n. We then extend f to C U V(T,) such that f and g, coincide on V(T),).
Suppose we have already defined T, T,...,0T,_,, Iy I, ..., 1,_,, and
80> 815+ &n_y- We shall define T}, I, and g, as follows. We consider the point
p,- If p, € A, then we let P be a simple polygonal arc from p, to a point g, of
[,_,\C suchthat I,_, nP={p,,q,). Welet I, denote the graph [,,_, UP. P
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is drawn in a face of I,_; bounded by a cycle S, say. We add to I',_, a simple
polygonal arc P’ in the face bounded by g, _,(S) such that P’ joins f(p,) with
g,-1(q,) (f g, is a vertex of T,,_;) or a point on g,_,(a) (if a is an edge of T, _,
containing the point g,). Then we put I, = T _; U P’ and we define the plane-iso-
morphism g, from I, to I}, in the obvious way. We extend f such that f(q,) =
gda,).

If p, € B we consider the largest square which has vertical and horizontal
sides, which has p, as midpoint and which is in int(C). In this square (whose sides
we are not going to add to I',_; as they may contain infinitely many points of C)
we draw a new square with vertical and horizontal sides each of which has distance
< 1/n from the sides of the first square. Inside the new square we draw vertical
and horizontal lines such that p, is on both a vertical line and a horizontal line
and such that all regions in the square have diameter < 1/n. We let H,, be the
union of I’,_; and the new horizontal and vertical straight line segments possibly
together with an additional polygonal arc in int(C) in order to make H, 2-con-
nected and H, \ C connected. By Lemma 2.7, H, can be obtained from I,_; by
successively adding paths in faces. We add the corresponding paths to I',_; and
obtain a graph H, which is plane-isomorphic to H,. Then we add vertical and
horizontal lines in int(C’) to H, such that the resulting graph has no (bounded)
region of diameter > 1/2n. If necessary, we displace some of the lines a little such
that they intersect C’ only in f(A4) and such that all bounded regions have
diameter < 1/n and such that each of the new lines has only finite intersection
with H,. This extends H, into a graph we denote by I'.. We add to H,, polygonal
arcs such that we obtain a graph I, plane-isomorphic to I,. Then we extend f
such that it is defined on C U V(T,) and coincides with the plane-isomorphism g,
on V(T},). When we extend H, into I, and H, into T, we are adding many edges
and it is perhaps difficult to visualize what is going on. However, Lemma 2.7 tells
us that we can look at the extension of H,, into I, as the result of a sequence of
simple extensions each consisting of the addition of a path (which in this case is a
straight line segment in a face). We then just perform successively the correspond-
ing additions in H,,. Note that we have plenty of freedom for that since the current
f is only defined on the current vertex set. The images of the points on the current
edges have not been specified yet. In this way we extend f toa 1l — 1 map defined
on F=CUVIT)uVI)uU - - and with image C' U V(I U V(ITDU -+ .
These sets are dense in int(C) and int(C’), respectively. If p is a point in int(C) on
which f is not yet defined, then we consider a sequence ¢, q,, ... converging to p
and consisting of points in V(Iy) U V(I'})) U --- . We shall show that
f(q)), f(q,), ... converges and we let f(p) be the limit. Let d be the distance from
p to C and let p, be a point of B of distance < d/3 from p. Then p is inside the
largest square in int(C) having p, as midpoint (and also inside what we called the
new square if n is sufficiently large). By the construction of I, and T, it follows
that T, has a cycle S such that p € int(S) and such that both § and g,(S) are in
discs of radius < 1/n. Since f maps F N int(S) into int(g,(S)) and F N ext(S)
into ext(g,(S)), it follows in particular, that the sequence f(g,,), f(q,,.1),-.. isin
int(g,(S)) for some m. Since n can be chosen arbitrarily large, f(q,), f(g,),... isa
Cauchy sequence and hence convergent. It follows that f is well-defined. More-
over, using the above notation, f maps int(S) into int(g,(S)). Hence f is continu-
ous in int(C). Since V(1) U V(I'}) is dense in int(C’) the same argument shows
that f maps int(C) onto int(C’) that f is 1 — 1 and that f! is continuous on
int(C"). It only remains to be shown that f is continuous on C. (Then also f~' is
continuous since int(C) is compact). In order to prove this it is sufficient to
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consider a sequence q,, 4,, ... of points in int(C) converging to g on C and then
show that f(q,), f(q,),... converges to f(q). Suppose therefore that this is not the
case. Since int(C’) is compact we can assume (by considering an appropriate
subsequence, if necessary) that lim, _, . f(g,) = ¢’ # f(q). Since f~' is continuous
on int(C’), ¢’ is on C’. Since A is dense in C, f(A) is dense in C’ and hence each
of the two arcs on C’ from ¢’ to f(g) contain a point f(g,) and f(q,), respectively,
in f(A). For some n, T, has a path P from g, to g, having only g, and g, in
common with C. By Lemma 2.13, P separates int(C) into two regions. These two
regions are mapped on the two distinct regions of int(C’) \ g,(P). One of these
contains almost all the f(g,) while the other has f(g) on its boundary, but not the
boundary common to both regions. Hence we cannot have lim,, _,,, f(g,) = ¢'. This
contradiction shows that f has the appropriate extension to int(C).

By similar arguments, f can be extended to ext(C). We consider a coordinate
system in the plane. Without loss of generality we can assume that int(C) contains
the origin and that both C and C’ are in the interior of the quadrangle T with
corners (+1, + 1). Let L, L,, L, be the line segments (on lines through the
origin) from (1,1), (—1, —1) and (1, — 1), respectively, to C. Let p; be the end of
L;on C for i = 1,2,3. Let L, and L, be polygonal arcs from f(p,) to (1,1) and
from f(p,) to (=1, —1), respectively, such that L', N L', = & and L has only its
ends in common with C’ and T for i = 1,2. It is easy to see that we can find a
polygonal arc L'y from f(p,) to either (1, —1) or (—1,1) such that L} is disjoint
from L', U L/, and has only its ends in common with C’ and 7. After a reflection
of C’ in the line through (1, 1) and (—1, —1), if necessary, we can assume that L’
goes to (1, —1). Now we can use the method of the first part of the proof to extend
f to a homeomorphism of int(7") such that f is the identity on T. Then f extends
to a homeomorphism of the whole plane such that f is the identity on ext(T). O

If F is a closed set in the plane, then we say that point p in F is curve-accessi-
ble if, for each point g not in F, there is a simple arc from g to p having only p in
common with F. The Jordan-Schonflies theorem implies that every point on a
simple closed curve is curve-accessible. Hence we have the following extension of
part of Theorem 2.12.

Theorem 3.2. If F is a closed set in the plane with at least three curve-accessible
points, then R*\ F has at most two regions.

Proof: 1If p4, p,, p; are curve-accessible on F and ¢, q,,q; belong to distinct
regions of R?\ F, then we get, as in the proof of Theorem 2.12, a plane graph
isomorphic to K; ; with vertices p,, p,, P3, q,, q,, g3, a contradiction to Lemma
25. O

In Theorem 3.2, “three” cannot be replaced by “two.” To see this, we let F be
a collection of internally disjoint simple arcs between two fixed points.

Theorem 3.3. Let I' and T be 2-connected plane graphs such that g is a homeomor-
phism and plane-isomorphism of T onto 1". Then g can be extended to a homeomor-
phism of the whole plane.

Proof: The proof is by induction on the number of edges of I'. If T" is a cycle, then

Theorem 3.3 reduces to Theorem 3.1. Otherwise it follows from Lemma 2.7 that I’
has a path P and a 2-connected subgraph I'; containing the outer cycle of I’
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such that T is obtained from I, by adding P in int(C) where C bounds a face of
I';. Now we apply the induction hypothesis first to I'; and then to the two cycles of
C U P containing P.

4. TRIANGULATING A SURFACE. Consider a finite collection of pairwise dis-
joint convex polygons (together with their interiors) in the plane such that all side
lengths are 1. Form a topological space S as follows: Every side in a polygon is
identified with precisely one side in another (or in the same) polygon. This also
defines a graph G whose vertices are the corners and the edges the sides. Clearly
S is compact. Now S is a surface iff S is connected (i.e., G is connected) and S is
locally homeomorphic to a disc at every vertex v of G. If this is the case then we
say that G is a 2-cell embedding in S. If all polygons are triangles, then we say that
G is a triangulation of S and that S is a triangulated surface. In case of a
triangulation we shall assume that there are at least four triangles and that there
are no multiple edges.

Theorem 4.1. Every surface S is homeomorphic to a triangulated surface.

Proof: Since the interior of a convex polygon can be triangulated it is sufficient to
prove that S is homeomorphic to a surface with a 2-cell embedding. For each point
p on S, let D(p) be a disc in the plane which is homeomorphic to a neighbour-
hood of p on S. (Instead of specifying a homeomorphism we shall use the same
notation for a point in D(p) and the corresponding point on S.) In D(p) we draw
two quadrangles Q,(p) and Q,(p) such that p € int(Q,(p)) < int(Q,(p)). Since S
is compact, it has a finite number of points p,, p,,...,p, such that S =
U, int(Q,(p,). Viewed as subsets in the plane, D(p,),..., D(p,) can be as-
sumed to be pairwise disjoint. In what follows we are going to keep
D(py), D(p,),...,D(p,) fixed in the plane (keeping in mind, though, that they
also correspond to subsets of S). However, we shall modify the homeomorphism
between D(p;) and the corresponding set on § and consider new quadrangles
Q,(p)). More precisely, we shall show that Q,(p,), ..., Q,(p,) can be chosen such
that they form a 2-cell embedding of S.

Suppose, by induction on k, that they have been chosen such that any two of
O(p, O(p,),...,Q(p,_,) have only a finite number of points in common on .
We now focus on Q,(p,). We define a bad segment as a segment P of some
Q/(p) (1 <j <k — 1) which joins two points of Q,(p,) and which has all other
points in int(Q,( p,)). Let Q4(p,) be a square between Q,(p,) and Q,(p,). We say
that a bad segment inside Q,(p,) is very bad if it intersects Q;(p,). There may be
infinitely many bad segments but only finitely many very bad ones. The very bad
ones together with Q,(p,) form a 2-connected graph I'. We redraw I' inside
0,(p,) such that we get a graph I which is plane-isomorphic to I' and such that
all edges of I" are simple polygonal arcs. This can be done using Lemma 2.7. Now
we apply Theorem 3.3 to extend the plane-isomorphism from I' to I" to a
homeomorphism of int Q,(p,) keeping Q,(p,) fixed. This transforms Q,(p,) and
Q5(p,) into simple closed curves Q) and Q% such that p, € int Q] C int Q}. We
consider a simple closed polygonal curve Q% in int Q,(p,) such that Q| C int Q%
and such that Q% intersects no bad segments except the very bad ones (which are
now simple polygonal arcs). (The existence of Q% can be established as follows: For
every point p on Q% we let R(p) be a square with p as midpoint such that R(p)
does not intersect either Q7 nor any bad segment which is not very bad. We
consider a (minimal) finite covering of Q% by such squares. The union of those
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squares is a 2-connected plane graph whose outer cycle can play the role of Q3).
By redrawing I" U Q% (which is a 2-connected graph) and using Theorem 3.3 once
more we can assume that Qf is in fact a quadrangle having Q] in its interior. If we
let Q% be the new choice of Q(p,), then any two of Q,(p,), ..., Q,(p,) have only
finite intersection. The inductive hypothesis is proved for all k.

Thus we can assume that there are only finitely many very bad segments inside
each Q,(p,) and that those segments are simple polygonal arcs forming a 2-con-
nected plane graph. The union U ”_;Q,(p,) may be thought of as a graph I drawn
on S. Each region of S\ I' is bounded by a cycle C in I". (We may think of C as a
simple closed polygonal curve inside some Q,(p;)). Now we draw a convex polygon
C’ of side length 1 such that the corners of C’ correspond to the vertices of C. The
union of the polygons C’ forms a surface S’ with a 2-cell embedding I which is
isomorphic to I'. An isomorphism of I" to I" may be extended to a homeomor-
phism f of the point set of I' on S onto the point set of I'” on §’. In particular, the
restriction of f to the above cycle C is a homeomorphism onto C’. By Theorem
3.1, f can be extended to a homeomorphism of int(C) to int(C’). This defines a
homeomorphism of S onto §’. O

5. THE CLASSIFICATION OF SURFACES. Consider now two disjoint triangles
T,, T, (such that all six sides have the same length) in a face F of a surface S with
a 2-cell embedding G. We form a new surface S’ by deleting from F the interior
of T, and T, and identifying 7, with T, such that the clockwise orientations
around T, and T, disagree. (We recall that S consists of polygons and their
interiors in the plane. So when we speak of clockwise orientation we are simply
referring to the plane. We are not discussing orientability of surfaces.) If the
orientations agree we obtain instead a surface S”. Finally, we let $” denote the
surface obtained by deleting the interior of 7, and identifying “diametrically
opposite” points on T,. We say that §’, $”, $” are obtained from § by adding a
handle, a twisted handle, and a crosscap, respectively. It is easy to extend G to a
2-cell embedding of S’, $” and §”, respectively. Also, it is an easy exercise to show
that §’, $” and §” are independent (up to homeomorphism) of where T, and T,
are located since it is easy to continuously deform a pair of triangles into another
pair of triangles inside a given triangle. In fact, they may belong to distinct faces,
also, except that then (at this stage) we cannot distinguish between a handle and a
twisted handle. When adding a crosscap it is sufficient that 7, is a simple closed
polygonal curve, which can be continuously deformed into a point (and hence to a
triangle in a face).

We shall now consider all surfaces obtained from the sphere S, (which we here
think of as a tetrahedron) by adding handles, twisted handles and crosscaps. If we
add to S, & handles we obtain the surface S, and if we add to S, k crosscaps we
obtain N,. S, N, N, are the torus, the projective plane and the Klein bottle,
respectively. N, is also S, plus a twisted handle. One way to see this is as follows:
Let T, and T, be two disjoint tetrahedra (which are homeomorphic to S,). Select
a triangle in 7, and 7, and add in that triangle a twisted handle or two crosscaps.
This transforms 7 into 7, and 7, into T;. Now choose your favourite representa-
tion of the Klein bottle and your favourite triangulation G of it. Then for each
i =1,2,draw G on T; such that the face boundaries are the same triangles in G
in all three triangulations. Then the graph isomorphism of G on 7] to G on T,
can be extended to a homeomorphism of 7] onto T5. Moreover, if we have already
added a crosscap, then adding a handle amounts to the same, up to homeomor-
phism, as adding a twisted handle. (First observe that when we add a crosscap, it
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does not matter where we add it; we get always the same surface up to homeomor-
phism. So we only need to verify the statement when we add a crosscap and then a
handle or twisted handle inside the same triangle of the surface. This can be done
by triangulating the two surfaces by the same graph G as above). So, the surfaces
obtained from S, by adding handles, twisted handles and crosscaps are precisely
the surfaces S, (A > 0) and N, (k > 1).

Theorem 5.1. Let S be a surface and G a 2-cell embedding of S with n vertices, e
edges and f faces. Then S is homeomorphic to either S, or N, where h and k are
defined by the equations

n—e+f=2-2h=2-k.

Proof: We first show that n — e + f < 2. For this we successively delete edges
from G until we get a minimal connected subgraph of G, that is, a spanning tree
H of G. For each edge deletion the number of faces (which are now not
necessarily 2-cells) is unchanged or decreased by 1. Since H has n vertices, n — 1
edges and only one face it follows that n — e + f < 2.

We next extend G to a triangulation of S as follows: For each face F of G
which is a convex polygon with corners v, v,,...,v,, where g > 4 and their
indices are expressed modulo g, we add new vertices u,u,,...,u, in F and we
add the edges wuwv;, uv;, , uu; ,uu for i =1,2,...,9. Let n',¢,f be the
number of vertices edges and faces, respectively, of G'. Clearly, ' — ¢’ + f' = n —
e + f. Thus it is sufficient to prove the Theorem in the case where G is a
triangulation which we now assume. Suppose (reductio ad absurdum) that S, G are
a counterexample to Theorem 5.1 such that G is a triangulation with at least four
vertices and

(1)2 - n + e — f is minimum.

(2) n is minimum subject to (1), and

(3) the minimum valency m of G is minimum subject to (1), (2). (The valency of
a vertex is the number of edges incident with it.)

Let v be a vertex of minimum valency. Let v, v,,...,v,, be the neighbours of v
such that vv,v,, vU,05, ..., 00,0, are the faces incident with v and the indices are
expressed modulo m. Since v, and v,, are joined only by one edge, m > 3. If
m = 3, then G — v is a triangulation of S unless n = 4 in which case § is the
tetrahedron. This contradicts (2) or the assumption that S, G are a counterexam-
ple to the Theorem. So m > 4.

If for some i = 1,2,...,m, v; is not joined to v;,, by an edge, then we let G’
be obtained from G by deleting the edge vv,, , and adding the edge v,v; , , instead.
Clearly, G’ triangulates S, contradicting (3). So we can assume that G contains all
edges v,0,,,, i = 1,2,...,m, when v is a vertex of minimum valency.

Intuitively, we complete the proof by cutting the surface (using a pair of scissors,
say) along the triangle T: vv,v5. This transforms T into either two triangles 7, and
T, or into a hexagon H (in case S has a Mdbius strip that contains 7). We get a
new surface S’ by adding two new triangles (and their interior) or a hexagon (and
its interior which we triangulate) and identify their sides with 7| and T, or with H,
respectively. Then S’ is a triangulated surface with smaller 2 — n + e — f than S.
By the minimality of this parameter, §’ is of the form S, or N,. Then § is of that
form, too.

Formally, we argue as follows. Recall that S is a triangulated surface, i.e., S is
obtained by identifying sides of pairwise disjoint triangles in the plane. Let M
denote the topological space which is formed by using the same triangles and the
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same side identifications, except that those six sides that correspond to the edges
vvy, VU3, V50 are not identified with any other side. Let us call those six sides
boundary sides of M. Let G’ be the graph whose vertices are the corners of the
triangles of M and whose edges are the sides of the triangles. It is easy to see that
G’ has precisely six vertices which are incident with boundary sides and that each
of these six vertices is incident with precisely two boundary sides. Thus the
boundary sides are a subgraph C of G’ with vertices each of which has valency 2.
There are only two such graphs (up to isomorphism): C is either a hexagon or two
disjoint triangles. If C is two disjoint triangles, then we add to M two disjoint
triangles (and their interior) in the plane and identify their sides with the edges of
C such that we obtain a new surface S’ which is triangulated by G'. If C is a
hexagon, then we add to M a hexagon in the plane together with its interior (which
we triangulate) and then we identify the sides of this hexagon with the edges of C.
In this way M is extended to a surface S” and G’ is extended to a graph G” which
triangulates S”. Thus we have transformed G and § into a triangulation G’ with »’
vertices e’ edges and f’' faces of a surface §’, or a triangulation G” with »”
vertices ¢” edges and f” faces of a surface S”. In the former case we have

e —n+f =e—n+f+2.
In the latter case we have
e —n+fl=e—-n+f+1.

By (1), S’ or S” is homeomorphic to a surface of the form S, or N,.. (Note that G’
is obtained from G by “cutting” the triangle vv,v;. Then G’ is connected because
of the edge v,v,,. Hence also the spaces M, ', S” are connected.) If C consists of
two triangles, then clearly S is obtained from S’ by adding a handle or a twisted
handle. If C is a hexagon, then in S”, C can be continuously deformed into a
point, and hence S is obtained from S” by adding a crosscap (see the discussion
preceding Theorem 5.1). In the latter case (where C is a hexagon) S is homeomor-
phic to N,.,, or N,,,, (by the discussion preceding Theorem 5.1). This contra-
dicts the assumption that § and G are a counterexample to Theorem 5.1.
Similarly, if C is two triangles, then S is homeomorphic to either N, , or S, ; or
N, +», and again we obtain a contradiction which finally proves the theorem. O

We have now completed the proof of the classification theorem without refer-
ring to orientability of surfaces or using Euler’s formula (which consists of the
equations of Theorem 5.1 and which is therefore now a corollary of Theorem 5.1).
To complete the discussion we indicate a proof of the fact that all the surfaces
So>S1s-..5 Ny, N, ... are pairwise nonhomeomorphic. In this discussion, however,
many details will be left for the reader.

First we observe that Euler’s formula holds for all 2-cell embeddings since any
such embedding can be extended to a triangulation. Now let us consider any
connected graph G with n vertices and e edges drawn on S,,. Using Lemma 2.2 we
assume that all edges are simple polygonal arcs. Let f be the number of faces for
this drawing. If G’ is a 2-cell embedding of S, then G U G’ is a 2-cell embedding
satisfying Euler’s formula and containing a subdivision of G. By successively
deleting edges (and isolated vertices) from G U G’ until we get a subdivision of G
we conclude that

n—e+f>=2-2h.
Since
3f<2e
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we conclude that
e<3n—6+6h

with equality if and only if G is a triangulation of S,. Thus a triangulation of S,
has too many edges in order to be drawn on S,, when 4’ < A, and hence S, and S,
are nonhomeomorphic for A" < h. More generally, this argument shows that
S0, 81, .. N, Ny, ... are pairwise nonhomeomorphic except that S, and N,,
might be homeomorphic. We sketch an argument which shows that they are not.

It is easy to describe a simple closed polygonal curve C in N,, such that, when
we traverse C, left and right interchange. Also it is easy (though a little tedious) to
show that S, has no such simple closed polygonal curve C’. (It is convenient to
consider a 2-cell embedding G such that G contains no such C’ and then extend
the argument to an arbitrary C’ in S.) So it suffices to show the following: If there
exists a homeomorphism f: N,, — §,, then there exists a homeomorphism f':
N,, = S, such that f'(C) is a simple closed polygonal curve. To see this we let G
be a 2-cell embedding of N,,. Then also G U C may be regarded as a 2-cell
embedding, and G U C can be extended to a triangulation H of N,,. We
construct H such that it has no other triangles than the face boundaries. Then
¢(H) is a graph drawn on S, and we apply Lemma 2.2 to redraw ¢(H ) (resulting
in a graph H') such that all edges are simple polygonal arcs. Since H' and H are
isomorphic and H is a triangulation of N,,, it follows from Euler’s formula that
H' is a triangulation of S,. Hence the face boundaries of H' are the same as the
face boundaries of H. So, any isomorphism H — H' can be extended into a
homeomorphism ¢': N,, — S, taking C into a simple closed polygonal curve.
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Are Mathematics and Poetry Fundamentally Similar?
JoAnne S. Growney

If you doubt their intrinsic similarity, consider the following quotations. In each of the
following, the key word (“mathematics” or “poetry” or “mathematician” or “poet” or a
variation of one of these terms) has been left out, although the name of the author may provide
a give-away clue. Can you guess which art form is being described in each case? The missing
words are supplied at the end of the quotations.

1) is the art of uniting pleasure with truth. —Samuel Johnson

(2) To think is thinkable—that is the ’s aim. —Cassius J. Keyser

3) All [is] putting the infinite within the finite. —Robert Browning
(4) The moving power of invention is not reasoning but imagination.

—A. DeMorgan

(5) When you read and understand , comprehending its reach and formal meanings,

then you master chaos a little. —Stephen Spender

(6) practice absolute freedom. —Henry Adams

(7) 1 think that one possible definition of our modern culture is that it is one in which

nine-tenths of our intellectuals can’t read any . —Randall Jarrell

(8) Do not imagine that is hard and crabbed, and repulsive to common sense. It is

merely the etherealization of common sense. —Lord Kelvin

(9) The merit of , in its wildest forms, still consists in its truth; truth conveyed to the

understanding, not directly by words, but circuitously by means of imaginative associations,

which serve as conductors. —T. B. Macaulay

(10) It is a safe rule to apply that, when a or philosophical author writes with a misty

profundity, he is talking nonsense. —A. N. Whitehead

an is a habit. —C. Day-Lewis
(12) ... in you don’t understand things, you just get used to them.

—John von Neumann

(13) are all who love—who feel great truths
And tell them. —P. J. Bailey
Festus
(14) The is perfect only in so far as he is a perfect being, in so far as he perceives the
beauty of truth; only then will his work be thorough, transparent, comprehensive, pure,
clear, attractive, and even elegant. —Goethe
(15) ... [In these days] the function of as a game ... [looms] larger than its function
as a search for truth ... . —C. Day-Lewis
(16) A thorough advocate in a just cause, a penetrating facing the starry heavens,
both alike bear the semblance of divinity. —Goethe
a7 is getting something right in language. —Howard Nemerov

See pg. 133 for answers.

These quotations are taken from an article by Professor Growney entitled “Mathematics and
Poetry: Isolated or Integrated” which appeared in the Humanistic Mathematics Network Newslet-
ter #6 (May 1991), 60—69. To subscribe contact Alvin White, Harvey Mudd College.
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