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Abstract

For any distinct odd primes p and q, a certain simple bijection
of Z/(pq) onto Z/(p) × Z/(q) embodies the hypotheses of Gauss’s
lemma for both ( qp) and (pq ). With the help of an elementary counting
argument, the quadratic reciprocity law follows.

Throughout, p = 2a + 1 and q = 2b + 1 are distinct odd primes. For
x, y ∈ Z, [x,y] will denote the interval {z ∈ Z|x ≤ z ≤ y} of Z. For a prime
r and an integer m, (m

r
) is the Legendre symbol, equal to 0 if r|m , to 1 if m

is a nonzero square mod r, and to −1 otherwise.
The quadratic reciprocity law is:
Proposition (Gauss). With the above notation,(

p

q

)(
q

p

)
= (−1)ab

We will use the following well-known lemma, for which see e.g. [1, p.9].
Gauss’s lemma. Let m be an integer not divisible by p, and let u be the

number of elements of {m, 2m, . . . , am} which are congruent mod p to some

element of {−a,−a + 1, . . . ,−1}. Then
(

m
p

)
= (−1)u.

There exist unique functions

f : Z→ [−a, a]

g : Z→ [−b, b]
such that for all m ∈ Z

f(m) ≡ m (mod p)
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g(m) ≡ m (mod q).

Denote by R the interval [−(pq− 1)/2, (pq− 1)/2] of Z, and by S the subset
[−a, a]× [−b, b] of Z×Z. Denote by h the mapping m 7→ (f(m), g(m)) of R
into S. The Chinese remainder theorem shows that h is a bijection. Let P
be the image of the restriction of h to [1, (pq − 1)/2]. We will examine how
the elements of P are distributed among the quadrants and semiaxes of S.

Write

P0 = {(x, y) ∈ P |x > 0, y > 0}
P1 = {(x, y) ∈ P |x < 0, y ≥ 0}
P2 = {(x, y) ∈ P |x ≥ 0, y < 0}

and let Ni be the cardinal of Pi for each i.
There are a elements of P on the axis g = 0, namely h(mq) for each

m ∈ [1, a]. Denote by u the number of such points having f < 0. Likewise
P has b elements on the axis f = 0, and we denote by v the number of them
which have g < 0.

P has ab + a elements in the region g > 0, namely h(m) for all m of the
form k + lp with 1 ≤ k ≤ a and 0 ≤ l ≤ b. Thus

N0 + N1 = ab + b− (b− v) + u

i.e.

N0 + N1 = ab + u + v. (1)

In the same way,

N0 + N2 = ab + u + v. (2)

For any m ∈ Z,
f(−m) = −f(m)

g(−m) = −g(m).

It follows that for any (x, y) ∈ S other than (0, 0), either (x, y) or (−x,−y)
is in P , but not both. Therefore

N1 + N2 = ab + u + v. (3)
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Adding (1), (2), and (3) gives us

0 ≡ ab + u + v (mod 2)

so
(−1)ab = (−1)u(−1)v

which, in view of Gauss’s lemma, is the desired conclusion.
Reference
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Postscript
G. Rousseau (On the quadratic reciprocity law, J. Austral. Math. Soc. 51
(1991), 423-425) has given a proof of the QRL which uses, instead of additive
groups, the multiplicative groups of invertible residue classes mod p, mod q,
and mod pq. It is shorter than the above, and does not lean on Gauss’s
lemma.

If we define a fourth region

P3 = {(x, y) ∈ P |x ≤ 0, y ≤ 0}

with, let us say, N3 elements, then a linear calculation gives

Ni = k/2

for all four values of i, where k = ab + u + v. This again shows k ≡ 0
(mod 2). But moreover k ≡ 0 (mod 4). Let me just sketch a proof. The
lower left region P3 is symmetric under a half-turn around its center. One
verifies

– the half-turn maps elements of P to elements of P
– the half-turn has no fixed points except its centre
– the centre, if it is a lattice point, is not in P .

Thus the k/2 elements in the region fall into orbits each of which contains
two elements.

More is true. Let’s say that a point (x, y) ∈ P is “verticle” (resp. “hor-
izontal”) if (x,−y) ∈ P (resp. (−x, y) ∈ P ). It is easy to see that every
element of P is verticle or horizontal and not both. But in fact each of the
sets Pi contains k/4 verticle and k/4 horizontal elements. The proof is not
easy.
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We cannot define h simply as “the” mapping

m 7→ (m,m) (4)

Z/(pq) → Z/(p)× Z/(q), (5)

like a curve on a torus, because the bijection (5) is not canonical.
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