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1 Chain Complexes

Definition 1.1. A chain complex (C∗, d) of R-modules is a family {Cn}n∈Z of R-modules, together with
R-modul maps dn : Cn → Cn−1 such that d ◦ d = 0. The maps dn are called the differentials of C.

Ker dn is the modul of n-cycles of C denoted Zn = Zn(C). The image of dn+1 : Cn+1 → Cn is the
module of n-boundaries of C, Bn = Bn(C).

Definition 1.2. The nth homology module of C is Hn(C) = Zn/Bn.

Definition 1.3. Let C, D be chain complexes. A morphism of complexes u : C → D is a familiy of
homomorphisms un : Cn → Dn such that un−1dn = dnun.

There is the notion of a cochain complex: A cochain complex is the same as a chain complex with the
Cns replaced by Cns, the differentials being maps dn : Cn → Cn+1 Zn(C) = Ker dn and Bn(C) = im dn−1.
Maps between cochain complexes are defined analogously.

Note that a chain map f : C → D induces a map Hn(C)→ Hn(D):

Example 1.1. Let f : C → D be a chain map. If x ∈ Ker d, then df(x) = fd(x) = 0 and if x ∈ im d,
then x = d(y) for some y ∈ D so f(x) = fd(y) = df(y) and therefore f induces a map Z(C)/B(C) →
Z(D)/B(D), [x] 7→ [f(x)].

Definition 1.4. A chain map f : C → D is null homotopic if there are maps sn : Cn → Dn+1 such that
f = ds+ sd. The maps sn are called a chain contraction of f . Two chain maps f, g from C to D are called
homotopc if f − g is null homotopic.

Lemma 1.1. If f and g are chain homotopic, then they induce the same maps in homology.

Proof. We show that f − g induces the zero map. Suppose f − g = ds+ sd. If x ∈ Hn(C), then f − g(x) =
ds(x) + sd(x) = ds(x). Hence f − g(x) is a n-boundary and thus represents 0 in Hn(D).

Definition 1.5. A chain complex C∗ is exact if it is exact at every Cn, i.e ∀n : Bn(C) = Zn(C).
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2 Resolutions

Definition 2.1. A module P is projective if given a surjection g : B → C and a map γ : P → C there exists
a map β : P → B such that γ = gβ.

P

γ

��

β

~~
B g

// C

Proposition 2.1. An R-modul is projective iff it is a direct summand of a free R-modul.

Definition 2.2. Let M be an R-module. A left resolution P
ε //M of M is a complex P with Pi = 0 for

i < 0 together with a map ε : P0 :→M so that the augmented complex

· · · d // P2
d // P1

d // P0
ε //M // 0

is exact. It is a projective resolution if Pi is projective for all i.

Lemma 2.1. Every R-Modul has a projective resolution.

Proof. Let M be a R-modul. There is a free modul F0 and an exact sequence

0 // K1
i1 // F0

ε //M // 0

Similarly, we get a exact sequence

0 // K2
i2 // F1

ε1 // K1
// 0

Let d1 : F1 → F2 be the map i1ε1. We have im d1 = K1 and ker d1 = K2, so the row

F1
d1 //

ε1   B
BB

BB
BB

B F0
ε // A // 0

0 // K2

>>||||||||
K1

i1

OO

is exact. Iterating this procedure yields a free resolution which is a projective resolution.

Theorem 2.1 (Comparison Theorem). Let P
ε //M be a projective resolution of M and f ′ : M → N

a map. Then for every resolution of Q
η // N of N there is a chain map f : P → Q lifting f ′ in the sense

that η ◦ f0 = f ′ ◦ ε. The chain map f is unique up to chain homotopy equivalence.

· · · // P1
//

��

P0
ε //

��

M //

f ′

��

0

· · · // Q1
// Q0

η // N // 0
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Proof. We will construct the fn and show their uniqueness by induction on n, thinking of f1 as f ′. In-
ductively, suppose fi has been constructed for i ≤ n so that fi−1d = dfi. In order to construct fn+1 we
consider the n-cycles of P and Q. If n = −1 we set Z−1(P ) = M and Z−1(Q) = N ; if n ≥ 0, the fact that
fn−1d = dfn means that fn induces a map f ′n from Zn(P ) to Zn(Q). We have the following two diagrams
with exact rows:

· · · // Pn+1
//

��

Zn(P ) //

f ′n
��

0 0 // Zn(P ) //

f ′n
��

Pn //

fn

��

Pn−1

fn−1

��
· · · // Qn+1

// Zn(Q) // 0 0 // Zn(Q) // Qn // Qn−1

The universal lifting property of the projective Pn+1 yields a map fn+1 from Pn+1 to Qn+1 so that dfn+1 =
f ′nd = fnd. This finishes the inductive step and proves that a chain map f : P → Q exists.

To see uniqueness of f up to chain homotopy, suppose that g : P → Q is another lift of f ′ and set
h = f − g; we will construct a chain contraction sn : Pn → Qn+1 of h by induction on n. If n < 0, then
Pn = 0 and thus set sn = 0. If n = 0, note that since ηh0 = η(f ′− f ′) = 0, P0 is mapped to Z0(Q) = d(Q1).
We use the lifting property of P0 to get a map s0 such that h0 = ds0 = ds0 + s−1d. Inductively, suppose
that si has been constructed for i < n such that dnsn−1 = hn−1 +sn−2dn−1 and consider the map hn−sn−1d

from Pn to Qn. We compute that

d(hn − sn−1d) = dhn − (hn−1 − sn−2d)d = 0

. Therefore, hn − sn−1d lands in Zn(Q), a quotient of Qn+1. The lifting property of Pn yields the desired
map sn : Pn → Qn+1 such that dsn = hn − sn−1d.

Pn

zz
h−sd
��

Pn

h
��

d // Pn−1

s
||yyyyyyyy

h
��

d // Pn−2

s
{{www

ww
ww

ww

Qn+1
d // Zn(Q) // 0 Qn // Qn−1

In a similar vein, we have injective resolutions:

Definition 2.3. A modul I is injective if given an injection f : A→ B and a map α : A→ I there exists a
map β : B → I such that α = β ◦ f .

0 // A
f //

α

��

B

β��
I

Definition 2.4. Let M be an R-module. A right resolution of M is a cochain complex I with Ii = 0 for
i < 0 together with a map : M :→ I0 so that the augmented complex

0 //M // I0 d // I1 d // I2 // · · ·

is exact. It is an injective resolution if Ii is injective for all i.
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Injective is the dual concept of projective. An object P in an abelian category A is projective if and
only if P is injective in Aop. The usual translation mechanism thus gives us for every result on projective
objects the dual result for injective objects. In particular, every modul has an injective resolution and there
is an analogue of the comparison theorem.

3 Derived Functors

Recall that a functor F : A→ B is left exact (right exact) if for any exact sequence 0→ A→ B → C → 0
the sequence 0→ F (A)→ F (B)→ F (C) (F (A)→ F (B)→ F (C)→ 0) is exact.

Let A be a modul. Fix a projective resolution P → A. For a right exact functor F, define LiF (A) =
H(i)(F (P )). Note that F (P1)→ F (P0)→ F (A)→ 0 is exact and thus L0F (A) ∼= F (A). We now show that
LiF (A) does not depend on the chosen projective resolution. We show that every map A → A′ induces a
map LiF (A)→ Li(A′) and thus the LiF ’s are functors.

Lemma 3.1. The objects LiF (A) are well defined up to natural isomorphism. That is, if Q→ A is a second
projective resolution, there is an isomorphism

HiF (P ) ∼= HiF (Q).

Proof. Let P → A and Q→ A be projective resolutions of A. By the comparison theorem there is a chain
map f : P → Q lifting the identity on A. As remarked above, f induces a map f∗ in homology, so we get a
map f∗ : HiF (P ) → Hi(F (Q). Any other lift f ′ of idA is homotopic to f and thus f∗ = f ′∗. Similarly, we
get a chain map g : Q→ P lifting the identity idA. As gf and idP are both chain maps lifting the identity,
we have g∗f∗ = (gf)∗ = id∗. As fg and idQ both lift idA, we find that f∗ is an isomorphism. This proves
the lemma.

Corollary 3.1. If A is projective, then LiF (A) = 0 for i 6= 0.

Lemma 3.2. If f : A→ A′ is any map, there is a natural map LiF (f) : LiF (A′)→ LiF (A).

Theorem 3.1. Each LiF is a additive functor.

Proof. The identity on P lifts the identity on A and LiF (idP ) = IdHiF (P ). Given maps f ′ : A′ → A and
g′ : A→ A′′ we get lifts f and g. The composite gf lifts g′f ′ and thus g∗f∗ = (gf)∗ as required. Additivity
follows similarly.

We can show more: if F, F’ are right exact functor that are naturally isomorphic, then the left derived
functors are naturally isomorphic. This hinges on the fact that for a right exact additive functor F, L∗F is
a universal δ-functor.

Definition 3.1. A covariant homological δ-functor between A and B is a collection of additive functors
TnA → B for n ≥ 0 together with morphisms δnTn(C) → Tn−1(A) defined for each short exact sequence
0→ A→ B → C → 0 in A. By convention, Tn = 0 for n < 0.Two conditions are imposed:
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1. For each short exact sequence as above, there is a long exact sequence

· · · // Tn+1(C) δ // Tn(A) // Tn(B) // Tn(C) δ // Tn−1(A) // · · ·

2. For each morphism of short exact sequences from 0 → A′ → B′ → C ′ → 0 to 0 → A → B → C → 0,
the δ′s give a commutative diagram

Tn(C ′) δ //

��

Tn−1(A′)

��
Tn(C) δ // Tn−1(A)

Example 3.1. Homology gives a homological δ-functor from the category of chain complexes of R-modules
to the category of R-modules.

Definition 3.2. A morphism S → T of δ-functors is a system of natural transformations Sn → Tn that
commute with δ. A homological δ-functor T is universal if, given any other δ-functor S and a natural
transformation f0 : S0 → T0 there exists a unique morphism f : S → T of δ-functors that extends f0.

Theorem 3.2. Suppose A has enough projectives and A,B are abelian categories. If F : A → B is a right
exact functor, then the left derived functor L∗F is a universal δ-functor.

Using this result, we can extend our theory to left exact and contravariant functors:
Let F be a left exact functor A → B, A,B abelian categories. Let A have enough injectives. Let A

be an object of A. Then we fix an injective resolution A → I of A and let RiF (A) = H i(F (I)). As
before, we get R0F (A) ∼= F (A). The functor F defines a right exact functor F opAop → Bop. Thus we
get a left derived functor LnF op(A) and as injective resolutions in A become projective in Aop, we have
RiF (A) = (LnF op)op(A) Using this, one can show that all the results on left derived functors hold for the
RiF , the right derived functors.

Definition 3.3. For each R-modul A, the functor F (B) = homR(A,B) is left exact. Its right derived
functors are called the Ext groups.

ExtiR = RihomR(A,−)(B).

Now, let F : A → B be a contravariant left exact functor. Then F is covariant left exact from Aop to B.
If A has enough projectives, then Aop has enough injectives. Hence we can define the right derived functors
R∗F (A) as above.

Example 3.2. G(A) = HomR(A,B) is contravariant and left exact, thus we get a right derived functor
R∗G.

Moreover, we have the following theorem:
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Theorem 3.3.
ExtnR(A,B) = RnhomR(A,−)(B) = RnhomR(−, B)(A).

Lemma 3.3. Suppose R is a commutative ring so that HomR(A,B) and Ext∗R(A,B) are R-modules. If
µ : A→ A and ν : B → B are multiplication by r ∈ R, so are the induced endomorphisms µ∗ and ν∗.

Proof. Pick a projective resolution P → A. Multiplication by r is an R-module chain map µ′ ( here we need
that r is central); the map hom(µ′, B) on Hom(P,B) is multiplication by r, because it sends f ∈ Hom(Pn, B)
to fµ′, which takes p ∈ Pn to f(rp) = rf(p). Hence the map µ∗ on the subquotient Extn(A,B) is also
multiplication by r. The argument for ν is similar.

We return to lie algebras:

4 Lie Algebra Cohomology

Definition 4.1. Let g be a Lie algebra over ground field k. A g-modul is a k-vector space M together with
a binary product g×M →M such that ∀x, y ∈M,a, b ∈ g, α ∈ k

i a(x+ y) = ax+ ay and (a+ b)x = ax+ bx

ii α(ax) = (αa)x = a(α(x))

iii (ab)x = a(bx)

A module M is a trivial g-modul if xm = 0 for all x ∈ g,m ∈M . Some more Lie theorie is needed: An
ideal of g is a k-submodule h such that [g, h] ⊂ h, that is, for all g ∈ g and h ∈ h we have [g, h] ∈ h. An
abelian Lie algebra is one in which all brackets [x, y] = 0. If g is a Lie algebra, let [g, g] be the submodule
generated by all brackets. Then [g, g] is an ideal of g. The quotient g/[g, g] is abelian and denoted by gab.

Definition 4.2. A Lie algebra g is simple if

i. g has no ideals except 0 and itself and

ii. [g, g] 6= 0

Definition 4.3. Let g be a finite dimensional Lie algebra over a field of characteristic 0. Then g is semisim-
ple if g = g1 ⊕ g2...⊕ gr with gi simple. Every ideal of g is the sum of some of these factors.

Lemma 4.1. If g is semisimple, [g, g] = g. Therefore gab = 0.

Proof. As gi is simple [gi, gi] = gi and therefore [g, g] =
∑

i,j [gi, gj ] =
∑

i gi = g.

Theorem 4.1. The category g-mod is naturally isomorphic to the category Ug−mod.

Corollary 4.1. The category g-mod has enough projectives.
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We can exploit this isomorphism. Given a g modul map g → Lie(A) there is a unique k-algebra map
Ug→ A. The map induced by the zero map in this way is denoted by ε : Ug→ k and called augmentation.
The kernel of ε is denoted by J and called augmentation ideal. We have Ug/J = k.

Definition 4.4. Let g be a Lie algebra over ground field k, M a g-modul. The nth cohomology group
Hn(g,M) of g with coefficients in M is defined as ExtnUg(k,M).

5 First Whitehead Lemma and Weyl’s Theorem

Having defined Hn(g,M), the nth cohomology group of a lie algebra g with coefficients in M , where M is a g-
module, we turn to calculations. Our goal is to prove the first Whitehead lemma, stating that H1(g,M) = 0
for semisimple Lie algebras g over fields of characteristic 0 and finite dimensional M . Our plan of attack is to
first calculate H1(g,M). The general result for these groups will give us H1(g, k) = 0 for semisimple g and
char(k) = 0. Together with the general result that Hn(g,M) vanishes for semisimple g and char(k) = 0,
M 6= k and simple, this will imply Whiteheads first lemma.

We now turn to calculating H1. Using the above notions, we get the exact sequence 0 → J → Ug →
k → 0. Applying ExtnUg(−,M) yields the long exact sequence

0→ Ext0Ug(k,M)→ Ext0Ug(Ug,M)→ Ext0Ug(J,M)→ Ext1Ug(k,M)→ Ext1Ug(Ug,M)

As Ext0Ug(−,M) ∼= HomUg(−,M) and by projectivity of Ug, one obtains the exact sequence

0→ HomUg(k,M)→ HomUg(Ug,M)→ HomUg(J,M)→ H1(g,M)→ 0

The map HomUg(Ug,M)→M , φ 7→ φ(1) is an isomorphism of abelian groups, the category of g modules
is isomorphic to Ug modules and therefore we get

0→ Homg(k,M)→M → Homg(J,M)→ H1(g,M)→ 0

As k is a trivial g module, f(gx) = gf(x) for all g ∈ g, x ∈ k and f ∈ Homg(k,M) implies the ismomorphism
Homg(k,M) ∼= {m ∈ M : xm = 0∀x ∈ g} =: Mg. Thus we are left with calculating Homg(J,M). To this
end, we introduce a further concept.

Definition 5.1. If M is a g-module, a derivation from g into M is a k-linear map D : g → M such that
the Leibnitz formula holds:

D([x, y]) = x(Dy)− y(Dx).

The set of all such derivations is denoted Der(g,M). It is a submodule of Homk(g,M)

Lemma 5.1. If M is a trivial g-module, Der(g,M) = Homk(gab,M).

Proof. If f ∈ Der(g,M) , one has [g, g] ⊂ ker f , and thus f induces a homomorphism f ′ : gab → M . If
f ∈ Homk(gab,M), we get a map g → gab → M . Clearly, these two maps are inverse two each other and
homomorphisms.
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Example 5.1 (Inner derivations). If m ∈M , define Dm(x) = xm. Dm is a derivation:

Dm([x, y]) = [x, y]m = x(ym)− y(xm).

The Dm are called the inner derivations of g into M . They form a k-submodule DerInn(g,M) of Der(g,M):

Example 5.2. If φ : J → M is a g-map, let Dφ : g → M be defined by Dφ(x) = φ(i(x)), i being the
inclusion g→ Ug. As

Dφ([x, y]) = φ(i(x)i(y)− i(y)i(x)) = xφ(i(y)− yφ(i(x)),

Dφ is a derivation.

Using this construction, we get the following lemma:

Lemma 5.2. The map φ 7→ Dφ is a natural isomorphism of k-modules:

Homg(J,M) ∼= Der(g,M).

Proof. The formula φ 7→ Dφ defines a homomorphism, thus it is enough to show that it is an isomorphism.
We have the product map Ug ⊗k g → Ugg = J. The kernel of this map is the ideal generated by all the
elements of the form u⊗ [x, y]− ux⊗ y + uy ⊗ x with u ∈ Ug, x, y ∈ g.

Given a derivation D : g→M , consider the map

f : Ug⊗k g→M,f(u⊗ x) = uDx

We have

f(u⊗ [x, y]− ux⊗ y + uy ⊗ x) = uD[x, y]− uxDy + uyDx

= u(xDy − yDx)− uxDy + uyDx = 0.

Hence f induces a map φ : J → M . Moreover, for x, y ∈ g, u ∈ Ug, φ(y(ux)) = φ(yux) = yuDx = yφ(ux),
and therefore φ is a g-module map. Since Dφ(x) = φ(i(x)) = f(1⊗x) = Dx we have lifted D to Homg(J,M).
If h is any other map with Dh = D we have φ(ux) = uDx = uh(x) = h(ux), so φ 7→ Dφ is indeed an
isomorphism.

Theorem 5.1.
H1(g,M) ∼= Der(g,M)/DerInn(g,M)

Proof. Consider the exact sequence

Homg(Ug,M)→ Homg(J,M)→ H1(g,M)→ 0.

If φ : J→M extends to a g-map Ug→M sending 1 to m ∈M , then

Dφ(x) = φ(x1) = xm = Dm(x).

Hence Dφ is an inner derivation. On the other hand, let Dm be inner. Then it is induced by the image of
1 7→ m in Homg(J,M) and thus we have H1(g,M) ∼= Der(g,M)/DerInn(g,M).
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If M is trivial, all inner derivations are zero, hence:

Corollary 5.1. If M is a trivial g-modul

H1(g,M) ∼= Der(g,M) ∼= Homk(gab,M).

Considering k as a trivial g-module yields, for semisimple and finite dimensional g and char(k) = 0:

Corollary 5.2. If g is finite-dimensional and semisimple and char(k) = 0 then H1(g, k) = 0.

Recall that a module M is simple if it has no proper direct sum decomposition.

Theorem 5.2. Let g be a semisimple Lie algebra over a field of characteristic 0. If M is a simple g-module,
M 6= k, then

∀i : H i(g,M) = 0.

Proof. Let C be the center of Ug. Then H∗(g,M) = Ext∗Ug(k,M) is a C-module where the multiplication
by c ∈ C is induced by the multiplication c : k → k and c : M → M . Since the Casimir element cM acts
by 0 on k (as cM ∈ J) and by an invertible scalar r, we get 0 = r on H∗(g,M) and thus the latter modules
have to be 0.

Corollary 5.3 (Whitehead’s first lemma). Let g be a semisimple Lie algebra over a field of characteristic
0. If M is a finite dimensional g-module, then H1(g,M) = 0.

Proof. We proceed by induction on dim M . For dim M = 0 there is nothing to show. Assume the corollary
has been shown for some dim M = n. Let M have dimension greater or equal than n. If M is simple, then
either M = k or M 6= k. In any case, H1(g,M) = 0. Otherwise, M contains a proper submodule L. By
induction, H1(g, L) = H1(g,M/L) = 0 and from the exact sequence 0 → L → M → M/L → 0 it follows
the cohomology exact sequence

· · · → H1(g, L)→ H1(g,M)→ H1(g,M/L)→ · · · ,

whence H1(g,M) = 0.

Definition 5.2. An extension χ of A by B is an exact sequence 0 → B → X → A → 0. Two extensions
χ, χ′ are equivalent if there is a commutative diagram

0 // B // X //

∼=
��

A // 0

0 // B // X ′ // A // 0.

An extension is split if it is equivalent to 0→ B → A⊕B → A→ 0.

Lemma 5.3. If Ext1(A,B) = 0 then every extension of A by B is split.
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Proof. Given an extension 0→ B → X → A→ 0, applying Ext∗(A,−) yields the exact sequence

Hom(A,X)→ Hom(A,A)→ Ext1(A,B).

Hence, if Ext1(A,B) = 0, the identity idA lifts to a map σ : A → X. As σ is a section of X → A, the
extension is split.

Theorem 5.3 ( Weyl’s Theorem). Let g be a semisimple Lie algebra over a field of characteristic 0. Then
every finite dimensional g-module M is completely reducible, that is, is a direct sum of simple g-modules.

Proof. Suppose that M is not the direct sum of simple modules. As dim(M) is finite, M contains a
submodule M1 minimal with respect to this property. Clearly, M1 is not simple, so it contains a proper
submodule M0. By induction, both M0 and M2 = M1/M0 are direct sums of simple g-modules yet M1 is
not, so the extension M2 by M0 is not split. Thus Ext1(M2,M0) 6= 0. But

Ext1Ug(M2,M0) ∼= H1(g,Homk(M2,M0))

and this contradicts Whitehead’s first lemma. (Homk(M2,M0) is a g-module via (xf)(m) = xf(m) −
f(xm).)

10


