The Fundamental Theorem of Arithmetic

- The **Fundamental Theorem of Arithmetic** says that every integer greater than 1 can be factored uniquely into a product of primes.
- Euclid's lemma says that if a prime divides a product of two numbers, it must divide at least one of the numbers.
- The **least common multiple** [a, b] of nonzero integers a and b is the smallest positive integer divisible by both a and b.

Theorem. (Fundamental Theorem of Arithmetic) Every integer greater than 1 can be written in the form

$$p_1^{n_1}p_2^{n_2}\cdots p_k^{n_k}$$

where $n_i \ge 0$ and the p_i 's are distinct primes. The factorization is unique, except possibly for the order of the factors.

Example.

$$4312 = 2 \cdot 2156 = 2 \cdot 2 \cdot 1078 = 2 \cdot 2 \cdot 2 \cdot 539 = 2 \cdot 2 \cdot 2 \cdot 7 \cdot 77 = 2 \cdot 2 \cdot 2 \cdot 7 \cdot 7 \cdot 11$$

That is,

$$4312 = 2^3 \cdot 7^2 \cdot 11$$
. \square

I need a couple of lemmas in order to prove the uniqueness part of the Fundamental Theorem. In fact, these lemmas are useful in their own right.

Lemma. If $m \mid pq$ and (m, p) = 1, then $m \mid q$.

Proof. Write

$$1 = (m, p) = am + bp$$
 for some $a, b \in \mathbb{Z}$.

Then

$$q = amq + bpq$$
.

Now $m \mid amq$ and $m \mid bpq$ (since $m \mid pq$), so $m \mid (amq + bpq) = q$. \square

Lemma. If p is prime and $p \mid a_1 a_2 \cdots a_n$, then $p \mid a_i$ for some i.

For n = 2, the result says that if p is prime and $p \mid ab$, then $p \mid a$ or $p \mid b$. This is often called **Euclid's lemma**.

Proof. Do the case n=2 first. Suppose $p \mid a_1 a_2$, and suppose $p \not\mid a_1$. I must show $p \mid a_2$.

 $(p, a_1) \mid p$, and p is prime, so $(p, a_1) = 1$ or $(p, a_1) = p$. If $(p, a_1) = p$, then $p = (p, a_1) \mid a_1$, which contradicts $p \nmid a_1$. Therefore, $(p, a_1) = 1$. By the preceding lemma, $p \mid a_2$. This establishes the result for n = 2.

Assume n > 2, and assume the result is true when p divides a product of with less than n factors. Suppose that $p \mid a_1 a_2 \cdots a_n$. Grouping the terms, I have

$$p \mid (a_1 a_2 \cdots a_{n-1}) a_n$$
.

By the case n=2, either $p \mid a_1 a_2 \cdots a_{n-1}$ or $p \mid a_n$. If $p \mid a_n$, I'm done. Otherwise, if $p \mid a_1 a_2 \cdots a_{n-1}$, then p divides one of $a_1, a_2, \ldots, a_{n-1}$, by induction. In either case, I've shown that p divides one of the a_i 's, which completes the induction step and the proof. \square

Proof. (Fundamental Theorem of Arithmetic) First, I'll use induction to show that every integer greater than 1 can be expressed as a product of primes.

n=2 is prime, so the result is true for n=2.

Suppose n > 2, and assume every number less than n can be factored into a product of primes. If n is prime, I'm done. Otherwise, n is composite, so I can factor n as n = ab, where 1 < a, b < n. By induction, a and b can be factored into primes. Then n = ab shows that n can, too.

Now I'll prove the uniqueness part of the Fundamental Theorem.

Suppose that

$$p_1^{m_1} \cdots p_j^{m_j} = q_1^{n_1} \cdots q_k^{n_k}.$$

Here the p's are distinct primes, the q's are distinct primes, and all the exponents are greater than or equal to 1. I want to show that j = k, and that each $p_a^{m_a}$ is $q_b^{n_b}$ for some b — that is, $p_a = q_b$ and $m_a = n_b$.

Look at p_1 . It divides the left side, so it divides the right side. By the last lemma, $p_1 \mid q_i^{n_i}$ for some i. But $q_i^{n_i}$ is $q_i \cdots q_i$ (n_i times), so again by the last lemma, $p_1 \mid q_i$. Since p_1 and q_i are prime, $p_1 = q_i$.

To avoid a mess, renumber the q's so q_i becomes q_1 and vice versa. Thus, $p_1 = q_1$, and the equation reads

$$p_1^{m_1}\cdots p_i^{m_j} = p_1^{n_1}\cdots q_k^{n_k}.$$

If $m_1 > n_1$, cancel $p_1^{n_1}$ from both sides, leaving

$$p_1^{m_1-n_1}\cdots p_j^{m_j} = q_2^{n_2}\cdots q_k^{n_k}.$$

This is impossible, since now p_1 divides the left side, but not the right.

For the same reason $m_1 < n_1$ is impossible.

It follows that $m_1 = n_1$. So I can cancel the p_1 's off both sides, leaving

$$p_2^{m_2} \cdots p_j^{m_j} = q_2^{n_2} \cdots q_k^{n_k}.$$

Keep going. At each stage, I pair up a power of a p with a power of a q, and the preceding argument shows the powers are equal. I can't wind up with any primes left over at the end, or else I'd have a product of primes equal to 1. So everything must have paired up, and the original factorizations were the same (except possibly for the order of the factors). \square

Example. The **least common multiple** of nonzero integers a and b is the smallest positive integer divisible by both a and b. The least common multiple of a and b is denoted [a, b].

For example,

$$[6, 4] = 12, \quad [33, 15] = 165.$$

Here's an interesting fact that is easy to derive from the Fundamental Theorem:

$$a,b = ab.$$

Factor a and b in products of primes, but write out all the powers (e.g. write 2^3 as $2 \cdot 2 \cdot 2$):

$$a = p_1 \cdots p_l q_1 \cdots q_m, \quad b = q_1 \cdots q_m r_1 \cdots r_n.$$

Here the q's are the primes a and b have in common, and the p's and r don't overlap. Picture:

From the picture,

$$(a,b) = q_1 \cdots q_m, \quad [a,b] = p_1 \cdots p_l q_1 \cdots q_m r_1 \cdots r_n, \quad ab = p_1 \cdots p_l q_1^2 \cdots q_m^2 r_1 \cdots r_n.$$

Thus, a, b = ab.

Here's how this result looks for 36 and 90:

$$(36,90) = 18, [36,90] = 180, \text{ and } 36 \cdot 90 = 32400 = 18 \cdot 180.$$