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The Fundamental Theorem of Arithmetic

• The Fundamental Theorem of Arithmetic says that every integer greater than 1 can be factored
uniquely into a product of primes.

• Euclid’s lemma says that if a prime divides a product of two numbers, it must divide at least one of
the numbers.

• The least common multiple [a, b] of nonzero integers a and b is the smallest positive integer divisible
by both a and b.

Theorem. (Fundamental Theorem of Arithmetic) Every integer greater than 1 can be written in the
form

pn1

1
pn2

2
· · · pnk

k

where ni ≥ 0 and the pi’s are distinct primes. The factorization is unique, except possibly for the order of
the factors.

Example.

4312 = 2 · 2156 = 2 · 2 · 1078 = 2 · 2 · 2 · 539 = 2 · 2 · 2 · 7 · 77 = 2 · 2 · 2 · 7 · 7 · 11.

That is,
4312 = 23 · 72 · 11.

I need a couple of lemmas in order to prove the uniqueness part of the Fundamental Theorem. In fact,
these lemmas are useful in their own right.

Lemma. If m | pq and (m, p) = 1, then m | q.

Proof. Write
1 = (m, p) = am + bp for some a, b ∈ Z.

Then
q = amq + bpq.

Now m | amq and m | bpq (since m | pq), so m | (amq + bpq) = q.

Lemma. If p is prime and p | a1a2 · · · an, then p | ai for some i.

For n = 2, the result says that if p is prime and p | ab, then p | a or p | b. This is often called Euclid’s
lemma.

Proof. Do the case n = 2 first. Suppose p | a1a2, and suppose p # | a1. I must show p | a2.
(p, a1) | p, and p is prime, so (p, a1) = 1 or (p, a1) = p. If (p, a1) = p, then p = (p, a1) | a1, which

contradicts p # | a1. Therefore, (p, a1) = 1. By the preceding lemma, p | a2. This establishes the result for
n = 2.

Assume n > 2, and assume the result is true when p divides a product of with less than n factors.
Suppose that p | a1a2 · · · an. Grouping the terms, I have

p | (a1a2 · · · an−1)an.
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By the case n = 2, either p | a1a2 · · · an−1 or p | an. If p | an, I’m done. Otherwise, if p | a1a2 · · · an−1,
then p divides one of a1, a2, . . . , an−1, by induction. In either case, I’ve shown that p divides one of the
ai’s, which completes the induction step and the proof.

Proof. (Fundamental Theorem of Arithmetic) First, I’ll use induction to show that every integer
greater than 1 can be expressed as a product of primes.

n = 2 is prime, so the result is true for n = 2.
Suppose n > 2, and assume every number less than n can be factored into a product of primes. If n is

prime, I’m done. Otherwise, n is composite, so I can factor n as n = ab, where 1 < a, b < n. By induction,
a and b can be factored into primes. Then n = ab shows that n can, too.

Now I’ll prove the uniqueness part of the Fundamental Theorem.
Suppose that

pm1

1
· · · p

mj

j = qn1

1
· · · qnk

k .

Here the p’s are distinct primes, the q’s are distinct primes, and all the exponents are greater than or
equal to 1. I want to show that j = k, and that each pma

a is qnb

b for some b — that is, pa = qb and ma = nb.
Look at p1. It divides the left side, so it divides the right side. By the last lemma, p1 | qni

i for some i.
But qni

i is qi · · · qi (ni times), so again by the last lemma, p1 | qi. Since p1 and qi are prime, p1 = qi.
To avoid a mess, renumber the q’s so qi becomes q1 and vice versa. Thus, p1 = q1, and the equation

reads

pm1

1
· · · p

mj

j = pn1

1
· · · qnk

k .

If m1 > n1, cancel pn1

1
from both sides, leaving

pm1−n1

1
· · · p

mj

j = qn2

2
· · · qnk

k .

This is impossible, since now p1 divides the left side, but not the right.
For the same reason m1 < n1 is impossible.
It follows that m1 = n1. So I can cancel the p1’s off both sides, leaving

pm2

2
· · · p

mj

j = qn2

2
· · · qnk

k .

Keep going. At each stage, I pair up a power of a p with a power of a q, and the preceding argument
shows the powers are equal. I can’t wind up with any primes left over at the end, or else I’d have a product of
primes equal to 1. So everything must have paired up, and the original factorizations were the same (except
possibly for the order of the factors).

Example. The least common multiple of nonzero integers a and b is the smallest positive integer divisible
by both a and b. The least common multiple of a and b is denoted [a, b].

For example,

[6, 4] = 12, [33, 15] = 165.

Here’s an interesting fact that is easy to derive from the Fundamental Theorem:

[a, b](a, b) = ab.

Factor a and b in products of primes, but write out all the powers (e.g. write 23 as 2 · 2 · 2):

a = p1 · · · plq1 · · · qm, b = q1 · · · qmr1 · · · rn.
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Here the q’s are the primes a and b have in common, and the p’s and r don’t overlap. Picture:

a

b
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q

q

r r

1 l
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1 n

From the picture,

(a, b) = q1 · · · qm, [a, b] = p1 · · · plq1 · · · qmr1 · · · rn, ab = p1 · · · plq
2

1 · · · q
2

mr1 · · · rn.

Thus, [a, b](a, b) = ab.
Here’s how this result looks for 36 and 90:

36

90

2

2
3

3

5

(36, 90) = 18, [36, 90] = 180, and 36 · 90 = 32400 = 18 · 180.
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