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Abstract. In this note we present a construction of a regular 17-
gon using ruler and compass. We relate steps in this construction
to quadratic reciprocity and some trigonometric identities.

Dans cette note, nous présentons une construction à la règle et
au compas de l’heptadécagone. Nous éstablisson des liens les étapes
de cette construction de réciprocité quadratique et des identitiés
trigono-métriques.

1. Introduction

Galois theory completely answers the question which regular n-gons
can be constructed using ruler and compass only:

Theorem 1.1. A regular n-gon can be constructed using ruler and
compass if and only if n = 2m · p1 · . . . pk where p1, . . . , pk are distinct
primes of the form 22s + 1.

Unfortunately Galois theory can only guide one how to make appro-
priate constructions (or warn that some constructions are not possible).
The work of making explicit constructions remains to be done even af-
ter the general theory is well-understood.

It is even more perplexing that the construction of a regular 17-gon
has been accomplished first by Gauss in the end of eighteenth century,
long after the ancient geometers constructed regular 3-, 4-, 5-, 6-, 8-,
10-, 12-, 15- and 16-gons, but shortly before Galois theory appeared.

In this note we present an explicit construction of the regular 17-
gon. The text of this note is divided to three parts. The regular
text can be read as one text that presents a construction of the 17-
gon without referring to any ideas that appeared after Gauss. This
text however contains some choices and constructions which can be
much better understood in the framework of a more general theory.
Such explanations are provided in paragraphs emphasized by a side
line. Finally the paragraphs emphasized by a bold side line relate the
construction of the 17-gon with other works of Gauss.
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3. Plan of construction

If we identify the plane R2 with the plane of complex numbers C,
then constructing a regular n-gon becomes equivalent to constructing
a primitive root of unity ξ of order n (e.g. of ξ = e

2πi
n ). Indeed, if this

number is already constructed, then its powers are exactly the vertices
of the n-gon.

The basic tool used in constructions using ruler and compass is as
follows: if z1 and z2 are the two solutions of the quadratic equation
z2 +az+ b = 0 and the points a, b have already been constructed, then
points z1, z2 can also be constructed.

Our plan is to present an explicit sequence of quadratic equations
with the following properties:

• The first equation has integer coefficients,
• The coefficients of every equation are either integers, or are

equal (up to a sign) to the roots of the previous equation,
• The solutions of the last equation contain the number ξ.

This sequence of equations will moves us along the rows of the fol-
lowing diagram:
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The arrows in this tree point away from a number towards its square
roots modulo 17.

With each node in the tree we associate the number
∑

i ξ
i over the

set of numbers i from the last row which can be reached from the given
node by following the arrows.

We will show that numbers associated to nodes in line i satisfy ex-
plicit quadratic equations whose coefficients are either integers or num-
bers associated to nodes from the previous line (up to a sign).

Remark 3.1. The minimal equation over the field Q satisfied by
the root of unity ξ of order p is 1 + x + . . . + xp−1 = 0. Its Galois
group is the cyclic group G = Z∗p. For every divisor d of p − 1 this

group contains a unique group of order d. In particular if p = 2k + 1,
the subgroups of the group G form a chain G = Gk ⊃ Gk−1 ⊃ . . . ⊃
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G0 = {1} with Gm of order 2m. By Galois correspondence this chain
of subgroups corresponds to a chain of quadratic field extensions
Q(ξ) = L0 ⊃ L1 ⊃ . . . ⊃ Lk = Q.

The numbers written in the m-th row of the tree are the elements
of the group Gm. The numbers

∑
i∈Gm

ξi associated to the nodes of

the diagram generate the extension Lm/Q. The quadratic equation
that we find on step number m has coefficients in Lm−1 and its roots
generate the extension Lm/Lm−1.

4. Step 0

Let ξ 6= 1 be a root of unity of order p. Then
p−1∑
i=1

ξi =
ξp − ξ
ξ − 1

= −1

Thus the number associated to the root of the diagram is −1.

5. Step 1 — Quadratic Residues

Theorem 5.1. Let Q be the set of quadratic residues modulo an odd
prime p. Let ξ be a primitive root of unity of order p and let x =

∑
i∈Q

ξi.

If p = 4m+ 1 then x2 + x− p−1
4

= 0.

If p = 4m− 1 then x2 + x+ p+1
4

= 0.

Remark 5.2. For any odd prime p the group Z∗p has a unique sub-
group of index 2: the group Q formed by the quadratic residues
modulo p. The group Z∗p is the Galois group of the Galois extension
Q(ξ)/Q: the element m ∈ Z∗p acts by automorphism that sends ξ to

ξm. The orbit of x =
∑
i∈Q

ξi under the action of this group consists of

two elements. Hence x is a root of a quadratic equation with rational
coefficients, which theorem 5.1 describes explicitly.

Proof. To compute x we compute instead y =
p−1∑
i=0

ξi
2

(note that y =

2x− 1). The conjugate of y is y =
p−1∑
i=0

ξ−i
2

and hence

yy =

(
p−1∑
i=0

ξi
2

)(
p−1∑
i=0

ξ−j
2

)
=

p−1∑
i,j=0

ξi
2−j2

The coefficient at ξk in this formula is equal to the number of solu-
tions (i, j) of the congruence i2− j2 ≡ k mod p. An invertible change
of variables (a, b) = (i− j, i+ j) transforms the congruence i2− j2 ≡ k
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mod p to the congruence ab ≡ k mod p. It has p−1 solutions if k 6= 0
and 2p− 1 solutions if k = 0.

Thus

yy = 2p− 1 + (p− 1)

p−1∑
k=1

ξk = 2p− 1− (p− 1) = p.

If p ≡ 1 mod 4 then y = y. Indeed, since −1 is a quadratic residue
modulo p, the sum

∑p−1
i=0 ξ

−i2 is the same as the sum
∑p−1

i′=0 ξ
i′2 .

If p ≡ −1 mod 4 then y = −y. Indeed, since −1 is a quadratic non-
residue modulo p, in the sum y + y every power of ξ appears exactly
twice. Hence y + y = 2

∑p−1
k=0 ξ

k = 0.
In both cases y = 2x− 1 and the result follows. �

It follows that the numbers associated to the nodes in the second line
are solutions of the equation x2 + x− 17−1

2
= 0, i.e. x1, x2 = −1±

√
17

2
.

Remark 5.3. It is interesting to note that the proof of theorem 5.1
can be used to give a simple and elegant proof of Gauss’s quadratic
reciprocity law.

To find whether p is a quadratic residue modulo a prime q it is
enough check whether

√
p belongs to Zq or not.

The elements of Zq are precisely the q roots of the equation yq = y,
so checking whether an element y from an extension of Zq belongs
to Zq is equivalent to checking whether yq = y.

Let now as before y =
p−1∑
i=0

ξi
2

for a primitive root of unity ξ of

order p lying in some extension of Zq.
The arguments from the proof of theorem 5.1 show that if p ≡ 1

mod 4, then y =
√
p. This element belongs to Zq if and only if

yq = y. However in extensions of Zq the formula (a + b)q = aq + bq

holds, and hence yq =
p−1∑
i=0

ξi
2q. Thus yq = y if and only if q is a

quadratic residue modulo p.
Thus if p ≡ 1 mod 4 and q 6= p are primes, then p is a square

modulo q if and only if q is a square modulo p.
If p ≡ −1 mod 4, then y =

√
−p and the same arguments show

that −p is a square modulo q if and only if q is a square modulo p.

6. Step 2

Lemma 6.1. For any ξ 6= ±1

(ξ + ξ−1)(ξ2 + ξ−2)(ξ4 + ξ−4) · . . . · (ξ2n + ξ−2
n

) =
ξ2

n+1 − ξ−2n+1

ξ − ξ−1
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This identity can be easily verified by multiplying both sides by
ξ − ξ−1 and then n times using the identity (ξ2

k − ξ2
k
)(ξ2

k
+ ξ2

k
) =

(ξ2
k+1 − ξ2k+1

).

Corollary 6.2. If ξ 6= ±1 is a root of unity of order p for p = 2n+1+1,
then

(ξ + ξ−1)(ξ2 + ξ−2)(ξ4 + ξ−4) · . . . · (ξ2n + ξ−2
n

) = −1.

Let now ck = ξk + ξ−k.

Lemma 6.3. For any m,n

cm · cn = cm+n + cm−n.

Remark 6.4. If ξ is in fact eiα, then ck = 2 cos kα. With this in mind
lemma 6.3 follows from the formula 2 cos(mα) cos(nα) = cos((m +
n)α) + cos((m − n)α). In a similar fashion corollary 6.2 follows from
the identity

2n cosα cos(2α) cos(4α) · . . . · cos(2nα) =
sin(2n+1α)

sinα
.

Now we find a quadratic equation whose roots are c1 +c4 and c2 +c8.
The sum of these roots is c1 + c2 + c4 + c8, which we found in the

previous step: it is a root x1 of the equation x2 + x− 4 = 0.
To find the product (c1 + c4)(c2 + c8) we argue as follows: corollary

6.2 applied to the root of unity ξ implies that c1c2c4c8 = −1. The same
corollary applied to the root of unity ξ3 implies the identity c3c6c12c24 =
−1, i.e. c3c6c5c7 = −1.

Substituting the identities c3c5 = c2+c8, c6c7 = c1+c4 into c3c6c5c7 =
−1 we get (c1 + c4)(c2 + c8) = −1.

Thus c1 + c4 and c2 + c8 are the two solutions y1, y2 of the equation
y2 − x1y − 1 = 0 where x1 is a solution of x2 + x− 4 = 0.

Similarly c3+c5 and c6+c7 are the two solutions y3, y4 of the equation
y2−x2y− 1 = 0 for another solution x2 of the equation x2 +x− 4 = 0.

7. Step 4

The numbers c1 and c4 satisfy c1 + c4 = y1 and c1c4 = c3 + c5 = y3
and hence c1, c4 are the two solutions of the equation z2−y1z+y3 = 0.

8. Final step

ξ + ξ−1 = c1, while ξ · ξ−1 = 1, so ξ and ξ−1 are the solutions of
w2 − c1w + 1 = 0.
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9. Combining the steps together

In the sequence of four quadratic equations that we have to solve,
four times we make the choice of which of the two roots to take. This
leads to 16 different answers, each one being a different primitive root
of unity of order 17.

If we choose ξ = e
2πi
17 , then we can actually trace the choices which

lead to a formula for ξ:

c1 + c2 + c4 + c8 =
−1 +

√
17

2

c3 + c5 + c6 + c7 =
−1−

√
17

2

c1 + c4 =

−1+
√
17

2
+
√

17−
√
17

2

2

c3 + c5 =

−1−
√
17

2
+
√

17+
√
17

2

2

c1 =

−1+
√

17
2

+

√
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√
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2

2
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√(
−1+
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2
+
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2
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2

2
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2
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2
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2

2

2
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1

2
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√√√√√√√√√

−1+

√
17

2
+

√
17−
√
17

2

2
+

√(
−1+

√
17

2
+

√
17−
√
17

2

2

)2

− 4
−1−

√
17

2
+

√
17+
√

17
2

2

2


2

− 4
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