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1. Introduction

The celebrated law of quadratic reciprocity has had numerous proofs. Gauss, who first
discovered the law, gave several proofs in his famous book, Disquitiones Arithmeticae.
A proof, not widely known, is due to Hecke and it uses @-functions in number fields.
In Chapter 8 of his classical text [H], the complete proof using 6-functions of several
variables is given in its full generality. Among the experts, it is widely believed that
this proof is conceptually significant and leads to natural generalizations in the higher
dimensional context (see for example [Kub]). From a didactic standpoint, it seems
desirable to make Hecke’s proof accessible to the undergraduate. This is the purpose
of this paper.

In this task, we are simply not going to follow Hecke and merely specialize to the
case of the rational number field. Rather, we expose the underlying idea and simplify
considerably much of his derivation.

Let us recall the statement of the law of quadratic reciprocity. If p and g are distinct

odd primes, we define the Legendre symbol (5) to be +1 if the congruence x? = p
(mod g) has a solution; we define it to be —1 if the congruence has no solution.

Theorem 1 (The Law of Quadratic Reciprocity).
(5)(2) = (= 1T, (1)
q/\p

The theorem is remarkable in many ways, the most notable being the relationship
between the solvability of x? = p (mod g) to the solvability of x2 =g (mod p).
Hecke’s proof makes use of the classical #-function:

9’(1-) == Z e-—nl.vi o))
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and its functional equation

9(;) = 1'2(). 3)

In fact, the central point of Hecke is that (3) implies (1), and it is this feature we will
expose in this paper.

Historically, there seems to be some precedence for Hecke’s proof. In his famous
paper of 1860, Riemann used (3) to derive the analytic continuation and functional
equation of the ¢ -function, defined as

<1
(o) =) = )
n=1 n

for M(s) > 1. Shortly thereafter, 8-functions became more widely used in other con-
texts. But the idea that (3) implies (1) seems to originate with Landsberg [Lan} in 1893.
By a complicated process, he derives using (3), the amazing identity

gmil4 28]

1 p—l »)n.-rz
—_— erirta/p — e
R 2

valid for any two coprime numbers p and ¢g. Apparently, this identity was first discov-
ered by Schaar [Sc] by another method. Recently, the authors in [AR] give a new proof
of this identity using quantum mechanics.

Experts will recognize the left hand side of (5) as a Gauss sum and that the identity
immediately leads to:

—m'rze
& (5)

Theorem 2. Let b be any odd number. Then,

b1 :
3 e JZ ?f b=1(modd) ©
e ivb if b =3 (mod 4)

Proof. We set g = 1 in (5) and the result is immediate. 0

The method of deriving Theorem I from Theorem 2 is well-known. However, for
the sake of completeness, we review it below.

2. Gauss sums

For any natural number g, consider the group (Z/qZ)* of coprime residue classes (mod
g). A homomorphism

X (Z/)qL)* — C*
is called a Dirichlet character. The Gauss sum attached to x and the residue class n
(mod g) is by definition

q .
G(x,n)= Y x(ae™/s, (7)

a=1

(a,9)=1
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Observe that when (1, ¢) = 1, we have

q -
X (n)G(X, fl). == E x(n)x(d}ehmnﬂ?
a=}
(a.q)=l

q

= Y x(breits

b=]
(h.g)=l

= G{x, 1),

8)

because x is a homomorphism and as a runs through the coprime residue classes, so
does an. In the special case that g is prime and y is the Legendre symbol, observe that:

q g1
D (L x byt = Y~ grirsa

b=} =]
(b= !

as x(b) = %1 according as b is a square (mod g) or not. Since
q—1
1+ e*mibla — g,

we deduce

q q=1
Z x(b)elm‘b/q = Z ez:riﬂ/q_

b= =0
(b.g)=1 !

More generally, if (a, ¢) = 1, then

9 g1
z (1+x(b))ez'—'"”""" = eZ?rijza/t]

b=}
(bg)=!

from which we deduce
4 ) q—1
> x(byerritaln = N gPristely,

h==] j=0
(b,g)=1 :

From Theorem 2, we deduce:

Theorem 3. Let g be prime. Then

Zq: (é)ehibfq gl Jg ifg=1(mod4)
1 iy if q =3(mod 4)
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The left hand side of the equation in Theorem 3 is a Gauss sum, and the theorem
provides an explicit determination of it.
If we define for any natural number b,

b—1
Sb, a) = ij a/b (14)
7=0
then
S(ab, 1) = S(a, b)Sb, a). (15)

To see this, observe that
S(ab, 1) = Z 5 = Z }:ez’"‘“ui e (16)
Ji1=0 =0

since every residue class j (mod ab) can be written as &7; +aj, withO < j; <a—1land
0 < j» < b — 1. Expanding the square and simplifying the identity (15) is immediate.

We are now in a position to deduce Theorem 1. From (12), we have for a quadratic
character x,

4 , 4 y
S(g.a)= Y xB)e N =x(a) Y x(b)x(a)e /e a7

b=1 b=1
(b,g)=1 (b.q)=1

as x2(a) = 1. The sum on the right hand side is

q
x@ Y xba)e = x @G (x, 1). (18)

b=1
(h.q)=l

Therefore, by Theorem 3,
a
S(@.0) = (- )e@a
where €(g) = 1 or i according as ¢ = 1 (mod 4) or 3 (mod 4). By (15),
- (P\(4
stpa 1 = (2) (3 Jewre@vra (19)
By Theorem 2, the left hand side is e(pq)./pq. Thus,

«r) = (7 )(5)ere@, (20)

from which Theorem 1 is immediate.
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3. Poisson’s summation formula

It remains to prove the 8-function identity (3) and deduce (5) from it. The usual tool

for deriving (3) is Poisson’s summation formula.

Recall Féjer’s fundamental theoremn [Mur, 69-72] conceming Fourier series, Let
J (x) be a function of a real variable which is bounded, measurable, and periodic with

period 1. The Fourier coefficients of f are, by definition, given by

1
= / f(xye =y,
0
for each n in Z. The partial sums of the Fourier series of f are defined as

Sn(x) = Z cnelﬂ'im"

nlzN
Let xo € R be such that f(x) admits left and right limits there:
flxgx£0) = ili% flxo £ h).

Then Féjer proved

flxo+0) + fxp—~0) — So(x) 4+ S1(x) 4+« + Sy (x)

2 J\;-I-Enao N+1

If f(x) is continuous at xp, and the partial sums Sy (xp) converge, then

o0
f(xO) = ¢ + Z(C"ezirinx Si= c‘ne—ZNinx).

ne=|

3,

(22)

23

(24)

(25)

When f(x) is continuous and ) > _ |c,| < 00, then the function is represented

by the absolutely convergent Fourier series:

o
-
Fxy= ) g,

Fis= e OO
If F(x) is continuous such that
o0
/ |F(x)|dx < o0,
then we define its Fourier transform by
-~ m ]
Flu) = f F(x)e~ gy,
O
It is also a continuous function of «, and if
o0
f |F(u)ldu < oo,
—o0
then we have the Fourier inversion formula:

F(x)= f Fu)e®™**du.

0
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Lemma 1.

/ e dx = 1. (31)

bl

Proof 'We have upon squaring the left hand side

[a ¥ oo : 3
f f e~ T dx dy.
—_ o N

Switching to polar coordinates (x = rcos 8.y = rsin8) and evaluating the Jaco-
bian. the above integral becomes

w pam i o R
/ / e~ rdf dr = Zn’f ¢ rdr = 1, (32)
o Jo 0

as desired. O

Lemma 2. Foranvu € R,
N N
f T e = ], (33)
-

Proof. Observe that

0 e
d (;“”f-‘+i")2dx - f (é?“c-ulr a.m)z)dx
I

e Jo o

oo
e
=27r1f (x + ju)e ™ dx

mpw (34)
= i/ _a....e—ﬂ(x»{»,‘“);dx
—o0 OX
X DG &5

so that the integral is independent of u. Setting u = 0 and using Lemma 1 gives the
desired result. 0O

We now derive:

Theorem 4. Let F € L'(R). Suppose that the series Y ez F O +v) converges abso-
lutely and uniformly in v and that Y oz |F(m)| < 0o. Then

Z Fln+v) = 2 Fonerminv, (35)
nel ngl
Proof. The function
Gv) = Z Fin+v) (36)
nef
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!

is a continuous function of v and of period 1. The Fourier coefficients of G are given by

i
Cm = f Gv)e Fme gy
0

1
= Zf F(n + vye™¥me gy
0

ned
ni1 . 37
- Z[ F(x)e-?.rumxdx (37)
neZ vn
m .
=f F(x)e—mexdx
—00
= ﬁ"(m)
Since ), .z Iﬁ (m)| < 00, we can represent G by its Fourier series:
Z Fin+v)= Z Is'(n)ez”i””, (38)
red neZ
as desired. ]

Corollary 1 (Poisson’s summation formula). With 7 as in Theorem 4, we have

Z Fn)=Y_ Fn). (39)

ned neZ
Proof. Set v = 0 in the Theorem. O
Now we can deduce the functional equations of the @-function.

Theorem 5. Fort > (,

Ze-—nzn'/f = I% Zeunz,’u‘ (40)

neZ nel

Proof. We apply Corollary 1 to the function F(x) = e~ It clearly is an element
of L'(R) and the series
Z e—tt(n-?lr)al

neZ

converges absolutely and uniformly in v. Moreover,

[+4]
B 2 P
F(im) = / g™ g

o
— g~ Tt f % e—w(xw}?‘f‘imiﬁ)zdx (41)
-0

24 t»ine-—xm"/r‘

by Lemma 2. Thus 3, . [F(m)| < 00, and we can apply Corollary 1 to deduce the
result. 127 a
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If we define for z € C, with J(z) > 0,
O@) =) ¢,

neZ

then (40) says that
Iy g
of - it) = 1120ir).
By analytic continuation, we deduce

o(- %) - (8)"ew. (40)

4. The Landsberg—Schaar identity
It now only remains to prove (5). In addition to Theorem 5, we will need:

Lemma 3. Leta, b € Z. Let f(x) be a differentiable function on {a, b]. Then

1 1 b b )
i@+ fat D4t fo- D+ 350 = [ s+ o [Cirwiar),
(42)
Remark. This is a special case of the well-known Euler-Maclaurin summation formula

(see for example, [Mur, 21}).
Proof. We have

/

n+l n+1
f (t -n - —;—) f(tde = M - f f()de. 43

2
Summing this identity over the range a < n < b— 1 and noting that [t —n — %l <1
for t € [n,n + 1] gives the desired result. 0
As a corollary, we deduce:
Lemma 4.
oo
Z e—(b"rtp)ze ~ l Z_t_ (44)
t=~-00 p €
ase — Q.

Proof We apply Lemma 3 to (1) = e~®*+P¢ fort € [N, N] and let N — 00, to
deduce

e8] o0
Z e‘—(b-H[J)ZG =/ e"(b+lp)2€dt + 0(6) (45)
t=—00 00
By Lemma 1, the integral equals p—‘/% from which the lemma follows. O
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Remark. Notice that the lemma is valid for complex values of € provided that - <
arge < % that is for R{e) > 0.

Now consider
o & -1
9(6 — &g) == Z é’-’rﬂzcg—ywm = ZeZJrribzq/p ( Z eumilé) . (46)
P = OO b=0 n=b{mod p)

By Lemma 4, the inner sum on the right hand side of (46) is asymptotic to }% as
¢ — 0%, Therefore, as € — 0%,

2iqy _ J/TS(p,q)

in the notation of (14), By (40),

so that
as € — 0. If we define t by the equation
1 _ et2ia/p _ o ip )

€—2ig/p  E+4g¥/p? T g

then  — O as ¢ — 0*. Moreover, %(r) > 0, fore > 0. We have
I ip
9(6—— %1) —9(7-{'55)

ow i
= Y emin) (50)

n=—oQ

dg—-1
= Z e-27rib2p/éqv Z e—:rnzr )
b=0 n==bh {mod 4q)

Notice that as T — 0, the inner sum on the right hand side of (50) can be treated as in
(46) and we deduce

i Sq, —p) =
9(6 »Ziq/p) & (M%J?f S
as € — 0*. From (49),
T ip
€ 2g(e—2iq/p)
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so that from (48), we obtain

S(p,q) [—ip S(4q,-p)
= , 52
p \ 2g 4q G2

Now /=i = e~"/4 the determination being ascertained in several ways. (For
example, take p = g = 1 in (52) to determine it.) Upon noting that

fasl —2miph? 4l _m 2
E e Y =2 E e %«
b=0

=07

we immediately obtain (5). This completes the proof of the Landsberg ~ Schaar identity.

5. Concluding remarks

It is possible to give an elementary derivation of the 6-function transformation law by
Polya [Po] (see also [Be]).

The proof given above appears with very few details in two places. The first is [DM]
and the second is [Be]. It is also mentioned in several places such as [Te], [BEW], and
[BE). We hope that our exposition makes this idea more widely known and supplies
the relevant details of the proof which are omitted in the literature.

We also refer the reader to the website: hitp://www.rzuser.uni-heidelberg.de/"hb3/
rchrono.html for an extensive history and references of the proofs of the law of quadratic
reciprocity. '
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