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In Chapter 8, Figure 8.4 on co-benefits of urban mitigation actions 
in Section 8.2, and Figure 8.18 on the feasibility assessment based 
on the enablers and barriers of implementing mitigation options for 
urban systems in Section 8.5 refer to supplementary materials 8.SM.1 
and 8.SM.2, respectively. These two materials for the SDG linkages 
and the feasibility assessment are contained in this contribution. 

8.SM.1	 Supplementary Material to Section 8.2 
on SDG Linkages

Co-benefits and trade-offs in the scope of urban mitigation are 
focused in Section 8.2.1. Based on the urban mitigation options that 
are synthesised in Section 8.4, SDG linkages are further considered 
per urban mitigation option, including the integration of urban 
mitigation options through integrated approaches. The evaluations 
are based on the linkages with the SDGs considering synergies 
(+) and trade-offs (–). These linkages are context specific and the 
possible synergies and/or trade-offs with the SDGs will change 

according to the specific urban area. Synergies and/or trade-offs may 
be more significant in certain contexts than others. Table 8.SM.1 
includes the evaluation of the SDG linkages of the mitigation options 
for urban systems and indicates the levels of confidence as high (H), 
medium (M) and low (L). Table 8.SM.2 includes the references/line 
of sight for these SDG linkages with 64 references that involve the 
urban context and extends the mappings that are provided in Thacker 
et al. (2019) and Fuso Nerini et al. (2018) in addition to the synthesis 
that is provided in the main chapter text. The evaluations further 
support Chapter 17 on ‘Accelerating the transition in the context of 
sustainable development’. Urban mitigation with a view of the SDGs 
can support shifting pathways of urbanisation towards sustainability 
(also see Cross-Chapter Box 5 on ‘Shifting development pathways to 
increase sustainability and broaden mitigation options’ in Chapter 4). 
Moreover, the multi-dimensional feasibility assessment of mitigation 
options for urban systems indicates that feasibility is malleable and 
can increase when more enablers come into play. Strengthened 
institutional capacity that supports scale and coordination can 
increase the synergies of the urban mitigation options with the SDGs.

Table 8.SM.1 | Evaluation of the SDG linkages of the mitigation options for urban systems.

Urban 
mitigation 

options/SDGs
Urban land use and spatial planning

Electrification of the urban  
energy system

District heating and cooling networks

SDGs Evaluation of synergies and trade-offs Evaluation of synergies and trade-offs Evaluation of synergies and trade-offs

SDG 1  
End poverty

(+) Provides employment density and supports 
productivity (H)

(+) Can reduce exposure and vulnerability to 
climate change given policy integration (H)

(+) Can address energy poverty that is linked to 
poverty; eradicating poverty is supported by access 
to modern energy services for all (M)

(+) Can address energy poverty that is linked to 
poverty; eradicating poverty is supported by access 
to modern energy services for all (M)

SDG 2  
Zero hunger

(+) Better spatial planning will reduce pressures 
on land-use change, including croplands (H)

(–) Growth in urban extent can still reduce cropland 
if not sufficiently managed (H)

(+) Electrification can support welfare; electric 
stoves can support nutritional food intake (M)

(–) Can have trade-offs if food systems are coupled 
with electricity and bioenergy (M)

(–) Can have trade-offs if food systems are coupled 
with bioenergy and heat (M)

SDG 3  
Good health 
and wellbeing

(+) Improves access to health infrastructure; 
improves air quality when coupled to shifting 
energy use, improves well-being with green 
and blue infrastructure (H)

(+) Improves air quality when coupled to shifting 
energy use as included in the option; avoids air 
pollution from energy and transport infrastructure; 
supports energy services for quality health services 
in hospitals (H)

(+) Improves air quality when coupled to shifting 
energy use as included in the option; supports 
energy services for quality health services in 
hospitals (M)

SDG 4  
Quality education

(+) Better spatial planning increases educational 
opportunities (M)

(+) Electrification and access to electricity supports 
quality education and educational attainment (H)

SDG 5  
Gender equality

(+) Can increase equal opportunities and 
effective participation of women, including urban 
governance (M)

(+) Supports equal opportunities, also through 
electricity for internet access if previously 
lacking (M)

SDG 6  
Clean water 
and sanitation

(+)  Can improve water quality, water-use 
efficiency, water harvesting and wastewater 
treatment; efficient urbanization can also reduce 
GHG emissions from water infrastructure (H)

(+) Renewable-energy-powered water treatment 
facilities can support clean water and sanitation (M)

SDG 7  
Affordable and 
clean energy

(+) Can reduce energy use and enable access 
to modern energy infrastructure while urban 
infrastructure for energy services varies (H)

(+) Supports renewable energy, energy efficiency 
and access to affordable, reliable and modern 
energy; renewable-energy generation technologies 
can enhance infrastructure resilience (H)

(+) Supports renewable energy, energy efficiency 
and access to affordable, reliable and modern 
energy (M)
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Urban 
mitigation 

options/SDGs
Urban land use and spatial planning

Electrification of the urban  
energy system

District heating and cooling networks

SDGs Evaluation of synergies and trade-offs Evaluation of synergies and trade-offs Evaluation of synergies and trade-offs

SDG 8  
Decent work and 
economic growth

(+) Provides employment density and supports 
productivity (H)

(+) Supports technological upgrading, innovation 
and decent job creation (H)

(+) Supports technological upgrading, innovation 
and decent job creation (M)

SDG 9  
Industry, 
innovation and 
infrastructure

(+) Sustainable urbanisation and settlement 
planning requires development across all 
infrastructure sectors (H)

(+) Supports sustainable and resilient infrastructure 
and can support domestic technology development; 
renewable-energy generation technologies can 
enhance infrastructure resilience (H)

(+) Is being used to support sustainable and 
resilient infrastructure, including adaptation 
and mitigation (M)

SDG 10  
Reduced 
inequalities

(+) Spatial inequalities within cities can be reduced; 
urban infrastructure gap between cities can be 
reduced (H)

(–) Unintended gentrification and spatial 
inequalities are still possible (M)

(+) Supports equal opportunities, e.g., through 
internet access if previously lacking (H)

SDG 11 
Sustainable cities 
and communities

(+) Supports capacity for participatory, integrated 
and sustainable human settlement planning 
(Target 11.3) and protecting the poor and 
vulnerable (Target 11.5) (H)

(+) Supports adequate, safe and affordable 
housing as well as safe, affordable, accessible and 
sustainable transport (Targets 11.1 and 11.2) (H)

(+) Supports capacity for participatory, integrated 
and sustainable human settlement planning 
(Target 11.3) (H)

SDG 12 
Responsible 
consumption and 
production

(+) Urbanisation with lower material demands 
will support responsible consumption 
and production (H)

(–) Urban population growth contributes to 
increased demand for resources with differences 
in scenarios; increase in urban water demand 
can increase pressures on water scarcity; 
over-exploitation of groundwater needs 
to be avoided (M)

(+) Allows leapfrogging to more resource-efficient 
urban development (H)

(–) Material demands of electrification technologies 
will increase; policies are important (M)

(+) Allows leapfrogging to more resource-efficient 
urban development (M)

SDG 13  
Climate action

(+) Contributes to both climate mitigation and 
adaptation given integration in urban planning (H)

(+) Energy infrastructure can also strengthen 
climate resilience and adaptive capacity if 
addressed together (M)

(+) Energy infrastructure can also strengthen 
climate resilience and adaptive capacity if 
addressed together (M)

SDG 14  
Life below water

(+) Can reduce growth in urban expansion that can 
help protect coastal and marine ecosystems (M)

(–) Urban development can still impact coastal and 
marine ecosystems (M)

(+) Energy systems can be designed to minimise 
impacts on water ecosystems (M)

SDG 15  
Life on land

(+) Can reduce growth in urban expansion that 
can help protect biodiversity on land and terrestrial 
and inland freshwaters (H)

(–) Urban development can still impact 
biodiversity (M)

(+) Clean energy will reduce the impacts of 
climate change on biodiversity and terrestrial 
ecosystems (H)

(–) Hydropower development and biofuel 
cultivation may impact ecosystems while there 
are multiple alternatives, e.g., use of degraded 
lands for solar energy farms (M)

(+) Clean energy will reduce the impacts of 
climate change on biodiversity and terrestrial 
ecosystems (H)

SDG 16  
Peace, justice and 
strong institutions

(+) Has synergies with responsive, 
inclusive and participatory decision-making 
at all levels, and transparent institutions (M)

(+) Improvement in governance through inclusive 
decision-making improves ability for energy systems 
to contribute to sustainable development (M)

(+) Improvement in governance through inclusive 
decision-making improves ability for energy systems 
to contribute to sustainable development (M)

SDG 17 
Partnerships for 
the goals
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Urban 
mitigation 

options/SDGs
Urban green and blue infrastructure

Waste prevention, minimisation  
and management

Integrating sectors, strategies and 
innovations

SDGs Evaluation of synergies and trade-offs Evaluation of synergies and trade-offs Evaluation of synergies and trade-offs

SDG 1  
End poverty

(+) Can increase employment and food security, 
e.g., urban agriculture (H)

(+) Can reduce informality in the waste sector 
and support poverty alleviation (H)

(+) Increases employment density, reduces 
poverty and exposure and vulnerability to climate 
change (H)

SDG 2  
Zero hunger

(+) Can increase employment and food security, 
e.g., urban agriculture (M)

(+) Can support reducing food waste in 
municipalities and urban centres (M)

(+) Supports livelihoods, reduces pressures 
on croplands and consumption-related land-use 
impacts (H)

SDG 3  
Good health 
and wellbeing

(+) Better ecosystem services improve health 
and well-being, can improve air quality (H)

(+) Better waste management improves  
air quality (H)

(–) Can depend on air pollution control techniques 
if waste incineration is involved (M)

(+) Improves access to health infrastructure; 
improves air quality when coupled to shifting 
energy use, improves well-being with green 
and blue infrastructure (H)

SDG 4  
Quality education

(+) Urban green and blue infrastructure 
can increase opportunities and sites 
for environmental education (M)

(+) Can increase education opportunities, access 
to electricity and environmental education (H)

SDG 5  
Gender equality

(+) Can increases equal opportunities and 
effective participation of women, including 
urban governance (M)

SDG 6  
Clean water 
and sanitation

(+) Also supports water-sensitive urban planning 
and protection of water-related ecosystems (H)

(+) Improved water and wastewater infrastructure 
will reduce water pollution (H)

(+) Can improve water quality, water-use efficiency, 
water harvesting and wastewater treatment; 
efficient urbanisation can also reduce GHG 
emissions from water infrastructure (H)

SDG 7  
Affordable and 
clean energy

(+) Produces a cooling effect, lowering energy 
use when in relative proximity (M)

(+) Supports renewable energy, energy 
efficiency and access to affordable, reliable 
and modern energy (H)

SDG 8  
Decent work and 
economic growth

(+) Can stimulate new green economies 
and green jobs (M)

(+) Can stimulate employment for value added 
products (M) 

(–) Transforming informality of waste recycling 
activities into programmes is important (M)

(+) Supports technological upgrading, innovation 
and decent job creation (H)

SDG 9  
Industry, 
innovation and 
infrastructure

(+) Supports sustainable and resilient 
infrastructure (H)

(+) Supports sustainable and resilient 
infrastructure (H)

(+) Supports sustainable and resilient 
infrastructure (H)

SDG 10  
Reduced 
inequalities

(+) Can support equity given policy design (M) 
(–) Can push out low-income residents from main 
city areas without inclusive policy design (M)

(+) Can reduce the urban infrastructure gap; 
sustainable urbanisation can support reducing 
inequality within and among cities; inclusivity of 
inhabitants in the informal sector is important (H)
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Urban 
mitigation 

options/SDGs
Urban green and blue infrastructure

Waste prevention, minimisation  
and management

Integrating sectors, strategies and 
innovations

SDGs Evaluation of synergies and trade-offs Evaluation of synergies and trade-offs Evaluation of synergies and trade-offs

SDG 11 
Sustainable cities 
and communities

(+) Supports air quality and universal access to safe, 
inclusive and accessible green and public spaces 
(Target 11.7) (H)

(+) Directly related to waste management; supports 
links between urban, peri-urban and rural areas 
(Target 11.a) (H)

(+) Supports integrated policies and plans for 
inclusion, resource efficiency, mitigation and 
adaptation (Target 11.b) (H)

SDG 12 
Responsible 
consumption and 
production

(+) Supports sustainable development and lifestyles 
also ‘in harmony with nature’ as emphasised 
(Target 12.8) (H)

(+) Reduces waste generation through prevention, 
reduction, recycling and reuse (Target 12.5) (H)

(–) Waste segregation at source and waste 
processing facilities differs across context (H)

(+) Allows leapfrogging to more resource-efficient 
urban development (H)

SDG 13  
Climate action

(+) Contributes to both climate mitigation and 
adaptation given integration in urban planning (H)

(+) Reduces emissions through better management 
of urban waste in different contexts and is 
important for resilience, including coastal areas (M)

(+) Contributes to both climate mitigation and 
adaptation given integration in urban planning (H)

SDG 14  
Life below water

(+) Blue infrastructure can contribute to protecting 
coastal and marine ecosystems (H)

(+) Better waste management and 
wastewater treatment will protect coastal 
and marine ecosystems, reduce marine debris 
and nutrient pollution (H)

(+) Can reduce growth in urban expansion that can 
help protect coastal and marine ecosystems (M)

SDG 15  
Life on land

(+) Enhances biodiversity within urban areas 
and ecosystem services (H)

(+) Better waste management and wastewater 
treatment will protect terrestrial and inland 
freshwaters (H)

(+) Can reduce growth in urban expansion that can 
help protect biodiversity on land and terrestrial and 
inland freshwaters (H)

SDG 16  
Peace, justice and 
strong institutions

(+) Has synergies with responsive, 
inclusive and participatory decision-making 
at all levels and transparent institutions (M)

(+) Has synergies with responsive, 
inclusive and participatory decision-making 
at all levels and transparent institutions (M)

(+) Has synergies with responsive, 
inclusive and participatory decision-making 
at all levels and transparent institutions (M)

SDG 17 
Partnerships for 
the goals

(+) Partnerships support sustainable infrastructure 
for urban areas; supports policy coherence for 
sustainable development (Target 17.14) (H)
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Table 8.SM.2. | References/line of sight for the SDG linkages of the mitigation options for urban systems.

Urban mitigation 
options/SDGs

Urban land use and spatial planning Electrification of the urban energy system
District heating and cooling 

networks

SDGs References/line of sight References/line of sight References/line of sight

SDG1 Xu et al. (2018); Lall et al. (2021)
Fuso Nerini et al. (2018); Bonatz et al. (2019);  
Villalobos et al. (2021)

Fuso Nerini et al. (2018); Bonatz et al. (2019); 
Villalobos et al. (2021)

SDG2 Güneralp et al. (2020) Fuso Nerini et al. (2018); IRENA (2021) Fuso Nerini et al. (2018)

SDG3 Madill et al. (2016); Ramirez-Rubio et al. (2019)
Fuso Nerini et al. (2018); Thacker et al. (2019);  
Karlsson et al. (2020)

Fuso Nerini et al. (2018)

SDG4 Kleibert et al. (2020)
Sovacool and Ryan (2016); Fuso Nerini et al. (2018); 
Zhang et al. (2019b)

SDG5 Horelli (2017); Raparthi (2021) Fuso Nerini et al. (2018); Stewart et al. (2018)

SDG6 Zhang et al. (2019a) Stewart et al. (2018); Madurai Elavarasan et al. (2021)

SDG7 Stokes and Seto (2016)
Fuso Nerini et al. (2018);  
Madurai Elavarasan et al. (2021)

IEA (2021); IRENA (2021)

SDG8 Lall et al. (2021) IEA (2021); IRENA (2021) IEA (2021); IRENA (2021)

SDG9 Thacker et al. (2019) Adenle et al. (2015); Thacker et al. (2019) Landauer et al. (2019)

SDG10
Giles-Corti et al. (2020); Kamiya et al. (2020); Lall 
et al. (2021)

Stewart et al. (2018)

SDG11 Kii et al. (2017); Thacker et al. (2019) UNEP (2015); Lee and Erickson (2017)

SDG12
Swilling et al. (2018); Kookana et al. (2020); 
Schandl et al. (2020)

Sovacool et al. (2020); IRENA (2021) UNEP (2015); Swilling et al. (2018)

SDG13 Hurlimann et al. (2021) Fuso Nerini et al. 2018 Fuso Nerini et al. (2018)

SDG14 de Andrés et al. (2018) Thacker et al. (2019)

SDG15 Ibáñez-Álamo et al. (2020) Fuso Nerini et al. (2018); Thacker et al. (2019)

SDG16 (Fuso Nerini et al. 2018)

SDG17

Urban mitigation 
options/SDGs

Urban green and blue infrastructure
Waste prevention, minimisation and 

management
Integrating sectors, strategies and 

innovations

SDGs References/line of sight References/line of sight References/line of sight

SDG1 Raymond et al. (2017) Xu et al. (2018); Lall et al. (2021)

SDG2 de Macedo et al. (2021); Davis et al. (2022) Richter and Bokelmann (2018); Ananno et al. (2021)

SDG3
Raymond et al. (2017); IPBES (2019);  
de Macedo et al. (2021)

Beylot et al. (2018)
Beylot et al. (2018);  
Ramirez-Rubio et al. (2019)

SDG4 Wolsink (2016)

SDG5 Horelli (2017); Kiranmayi (2021)

SDG6
Kuller et al. (2017); IPBES (2019);  
Serrao-Neumann et al. (2019); Raymond et al., 
2017; de Macedo et al. (2021)

Thacker et al. (2019) Zhang et al. (2019a)

SDG7 Wong et al. (2021); Quaranta et al. (2021)

SDG8 Raymond et al. (2017)
de Bercegol and Gowda (2019);  
Coalition for Urban Transitions (2020)

Raymond et al. (2017); IEA (2021);  
IRENA (2021); Lall et al. (2021)

SDG9
Ürge-Vorsatz et al. (2018); IPBES (2019); 
de Macedo et al. (2021)

Thacker et al. (2019) Thacker et al. (2019)

SDG10 Andersson et al. (2019); Keeler et al. (2019)
Abubakar and Aina (2019);  
Kamiya et al. (2020)

SDG11 IPBES, (2019); de Macedo et al. (2021) AlQattan et al. (2018); Baffoe et al. (2021)
Zinkernagel et al. (2018); Abubakar and Aina, 
(2019); Thacker et al. (2019)

SDG12 Kumar et al. (2017); Kaza et al. (2018)

SDG13 
Ürge-Vorsatz et al. (2018); IPBES (2019); 
de Macedo et al. (2021)

Lenhart et al. (2015); Islam (2018);  
Yoshioka et al. (2021)

Hurlimann et al. (2021)

SDG14 IPBES (2019); de Macedo et al. (2021)

SDG15
IPBES (2019); Ibáñez-Álamo et al. (2020); 
de Macedo et al. (2021)

SDG16 Fuso Nerini et al. (2018)

SDG17
Anwar et al. (2017); CDP (2021);  
Negreiros et al. (2021)
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8.SM.2	 Supplementary Material to Section 8.5 
on the Feasibility Assessment

This Supplementary Material to Chapter 8 provides an overview 
of the extent to which different factors affect the feasibility of 
mitigation options in urban systems that may differ across context, 
time and scale of implementation and the line of sight upon which 
the feasibility assessment in Figure 8.19 in Section 8.5 is based. The 
multi-dimensional feasibility assessment is based on 18 indicators 
in the 6 dimensions of geophysical, environmental-ecological, 
technological, economic, socio-cultural and institutional feasibility. 
An indicator in this assessment framework can pose positive and/
or negative impacts as enablers or barriers of the mitigation option. 
Indicators that provide positive impacts as enablers (E) are marked 
in blue while those that can have negative impacts as barriers (B) 
are marked in orange in Table 8.SM.3. Levels of confidence (LoC) 

are evaluated as low, medium or high based on the robustness and 
agreement of the evidence and shaded in light to dark tones. Lines 
of sight that are used per indicator of the feasibility assessment are 
contained in Table 8.SM.4, including 414 references across urban 
mitigation options. Lines of sight utilise the systematic assessment 
of urban case studies considering 1373 scientific references during 
the  timeframe of the AR6 cycle based on Lamb et al. (2019) 
and  additional systematic searches according to the indicators 
of the  feasibility assessment. The lines of sight further build upon 
the feasibility assessment for land use and urban planning that 
was initiated by SR1.5 (IPCC 2018). The feasibility assessment for 
integrating sectors, strategies and innovations is based on multiple 
urban mitigation options implemented concurrently, such as 
co-located densities and electrification of the urban energy system 
whenever relevant (Figure 8.21). The feasibility assessment method 
is explained in detail in Annex II.11 and Annex II.12.

Table 8.SM.3 | Feasibility assessment of mitigation options in urban systems.

Mitigation 
options

Urban land-use and spatial planning Electrification of the urban energy system District heating and cooling networks

Dimensions/ 
indicators

Feasibility 
barriers or 
enablers 

(LoC)

Role of context, time and scale  
of implementation

Feasibility 
barriers or 
enablers 

(LoC)

Role of context, time and scale of 
implementation

Feasibility 
barriers or 
enablers 

(LoC)

Role of context, time and scale  
of implementation

1. Geophysical

Physical 
potential

(E) 
LoC = 3

Reduces pressures on land,  
e.g, a total of 125,000 km2 of land 
could be saved between the years 
1970 and 2020 if population density 
remained the same as 1970 levels 
while cities have had different 
dynamics of stable, outward and/or 
upward growth

(E) 
LoC = 3

The realisation of the available 
physical potential depends on the 
ability to electrify the urban energy 
system while supporting flexibility 
and sector coupling options for 
deep decarbonisation

Depends on district heating and 
cooling demands in comparison to 
the spatial characteristics of urban 
areas, e.g., heat demand density is 
a function of both population density 
and heat demand per capita where 
physical suitability can be equally 
present in urban areas with high 
population density or high heat 
demand per capita

Geophysical 
resources

Depends on the ability of the 
mitigation option to limit demands 
on materials for urban construction 
needs, thereby avoiding and shifting 
pressures on geophysical resources, 
including scarce resources

Depends on the demands on 
geophysical resources in comparison 
to other energy technologies, 
recycling of relevant energy 
technologies and energy storage 
needs at suitable levels

Depends on optimization of the 
piping layout with metal use and 
the implementation of eco-design 
principles for resource efficiency

Land use
(E) 
LoC = 3

Land-use efficiency reduces pressures 
on growth in urban extent while 
urban land use changes according 
to the drivers in SSP scenarios. 
Scenarios that involve sustainability 
involve lower urban land use, 
e.g., 1.1 million km2 in 2100 in SSP1 
versus 3.6 million km2 in SSP5

Depends on the energy supply to 
support electrification and the ability 
to use urban density to increase 
the penetration of renewable 
power and electric public transport, 
e.g., mixed-use neighbourhoods 
for grid balancing

(E) 
LoC = 3

Improves based on urban design 
parameters, including density, block 
area, and elongation with close 
impact of urban density on energy 
density. Walkable and higher density 
urban form can further enable 
its implementation

2. Environmental-ecological

(E/B)
LoC =3

(E/B)
LoC = 2

(E/B)
LoC = 2

(E/B)
LoC = 2

(E/B)
LoC = 2

Levels of Confidence (LoC) Low Medium High

Enablers (E)

Barriers (B)
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Mitigation 
options

Urban land-use and spatial planning Electrification of the urban energy system District heating and cooling networks

Dimensions/ 
indicators

Feasibility 
barriers or 
enablers 

(LoC)

Role of context, time and scale  
of implementation

Feasibility 
barriers or 
enablers 

(LoC)

Role of context, time and scale of 
implementation

Feasibility 
barriers or 
enablers 

(LoC)

Role of context, time and scale  
of implementation

Air pollution

Depends on the energy mix that is 
involved in the urban infrastructure 
(energy use in buildings, private 
vehicles and public transport) while 
energy use due to vehicle transport is 
reduced with walkable urban form

(E) 
LoC = 3

Level of improvement depends on 
the shift to non-polluting energy 
sources, e.g., shifting to 100% 
renewable energy can save about 
408,270 lives per year due to better 
air quality in 74 metropolitan 
areas around the world, enabling 
its implementation

(E) 
LoC = 3

Level of improvement depends 
on the energy resource that is 
replaced and air quality regulations 
when applicable

Toxic waste, 
ecotoxicity, 
eutrophication

(E) 
LoC = 2

Better urban land-use and spatial 
planning will limit negative impacts 
depending on urban land use, 
urban surface (permeable versus 
impermeable), ability to limit urban 
stormwater runoff and discharge

(E) 
LoC = 2

Depends on the source of the 
electrification of urban energy 
systems while favourable. It is also 
possible to displace water and soil 
pollution from conventional fuels

(E) 
LoC = 2

The energy resource that is replaced 
can provide additional environmental 
benefits, e.g., replacing coal use 
improves air and water pollution

Water quantity 
and quality

(E) 
LoC = 2

Improves based on the urban 
water system (supply, purification, 
distribution, drainage, the magnitude, 
source and location of water supply), 
and the level of integration between 
urban land-use and water planning 
that requires both policy integration 
and innovation (see last option 
on integrating sectors, strategies 
and innovations)

(E) 
LoC = 2

Depends on the source of the 
electrification of urban energy 
systems while favourable. It is also 
possible to displace water and soil 
pollution from conventional fuels

(E) 
LoC = 2

Resource-efficient and strategic 
densification for 84 cities indicate 
lifecycle assessment benefits for 
water that can also increase when 
integrated with other options, 
e.g., urban metabolism

Biodiversity

Depends on the context, including  
the ability to limit urban growth, 
governance capacity, and integrating 
ecosystem service information into 
spatial planning. Land-use change for 
urban areas can threaten biodiversity

(E) 
LoC = 2

Deep decarbonisation pathways 
involve electrification, including 
urban vehicle kilometres and 
reduction in land use, including for 
urban areas. These pathways have 
a positive impact on biodiversity 
considering reduced land 
and climate impacts

(E) 
LoC = 2

Increases with the interaction of 
urban energy planning with urban 
land-use and spatial planning, e.g., 
limiting the growth in urban extent 
together with this option can avoid 
impacts on biodiversity

(E/B)
LoC =3

(E/B)
LoC =3

Levels of Confidence (LoC) Low Medium High

Enablers (E)

Barriers (B)
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Mitigation 
options

Urban land-use and spatial planning Electrification of the urban energy system District heating and cooling networks

Dimensions/ 
indicators

Feasibility 
barriers or 
enablers 

(LoC)

Role of context, time and scale  
of implementation

Feasibility 
barriers or 
enablers 

(LoC)

Role of context, time and scale of 
implementation

Feasibility 
barriers or 
enablers 

(LoC)

Role of context, time and scale  
of implementation

3. Technological

Simplicity 

Urban land-use and spatial planning 
supports other mitigation options as 
a fundamental necessity for climate 
mitigation while complex in many 
ways. The geographical coverage 
of harmonised algorithms to monitor 
land-use change also remains one 
of the current gaps in knowledge

Simplicity varies according to the 
scale of electrification, energy system 
interactions and system integration 
to support flexibility in energy 
systems with high renewable 
energy penetration

Depends on economies of scope 
in urban areas with access to 
already existing excess heat, 
system integration, level of climate 
ambition for climate neutrality, urban 
infrastructure and support from 
geographic information systems (GIS) 
for planning district heating and 
cooling networks that also provide 
an entry point for decarbonising 
thermal needs

Technological 
scalability

Depends on the stage of urban 
development with more opportunities 
at earlier stages and/or differences 
in opportunities, e.g., strategic 
intensification. Scalability also 
depends on combining urban land-
use and spatial planning practices 
with climate mitigation as well as 
sustainable development objectives

(E) 
LoC = 3

Holds advantages for rapid pace 
of decarbonisation despite carbon 
lock-in across urban typologies. 
Also depends on support from 
flexibility options, e.g., demand 
response, power-to-heat and electric 
mobility to increase the penetration 
of renewable energy in the urban 
system. The choice of options, e.g., 
electrified urban rail, can integrate 
with existing urban design based on 
walkable neighbourhoods in rapidly 
growing cities

(E) 
LoC = 3

Is technologically scalable in different 
regions that increases with the 
geographic heat/cold demand density 
of the urban area. There are relatively 
more opportunities with urban 
energy planning processes. District 
heating and/or cooling networks are 
able to also support flexibility in the 
energy system and act as low-cost 
storage options

Maturity and 
technology 
readiness

(E) 
LoC = 3

Is favourable, while further depending 
on the level of integration, e.g., 
energy-driven urban design for 
optimising the impact of urban form 
on energy infrastructure

(E) 
LoC = 3

Maturity is favourable, including 
demand response based on power-
to-heat in support of electrification 
and other options that have technical 
feasibility for providing flexibility in 
the energy system, particularly based 
on municipal level demonstrations

Depends on the generation with 
a role for low-temperature, fourth-
generation district heating and 
cooling networks in emerging and 
future energy networks with high 
renewable energy penetration

4. Economic

Costs in 2030 
and long term

(E) 
LoC = 3

Provides cost benefits that 
increase with characteristics of 
urban development. Beyond costs, 
limiting the growth in urban 
extent has multiple benefits 
for climate mitigation

(E) 
LoC = 3

Costs are favourable. Renewable 
electricity is also relevant for 
decarbonising the heating sector 
through power-to-heat that can be a 
cost-effective option, including large-
scale heat pumps in district heating 
and cooling networks

(E) 
LoC = 3

Can already provide total annual cost 
savings over building-level solutions. 
Future improvements depend on 
system optimisation, the ability to 
integrate low-temperature renewable 
energy sources and excess electricity 
from renewables in upgrading existing 
or implementing new district heating 
and cooling networks, and modular 
approach across suitable urban areas

Employment 
effects and 
economic 
growth

(E) 
LoC = 3

The concentration of people and 
activity in walkable, higher density 
urban areas increases productivity 
based on proximity and efficiency 
while providing employment density. 
The ability to decouple urban 
economic growth from emissions 
and other parameters, e.g., vehicle 
kilometres travelled, can further 
increase sustainable growth

(E) 
LoC = 3

Is positive and increases with the 
ability to establish local jobs and use 
revenues locally. Access to renewable 
electricity reduces the operational 
GHG emissions of the local economy, 
thereby increasing competitiveness, 
while providing a net status of long-
term, full-time jobs

(E) 
LoC = 3

Is positive and increases with 
the ability to stimulate a green 
economy, e.g., access to renewable-
energy-based district heating 
and cooling networks reduces 
the operational GHG emissions 
of the local economy, increases 
competitiveness and supports jobs 
in design and implementation, 
equipment manufacturing, 
operation and maintenance

(E/B)
LoC =3

(E/B)
LoC =3

(E/B)
LoC =3

(E/B)
LoC =3

(E/B)
LoC =3

Levels of Confidence (LoC) Low Medium High

Enablers (E)

Barriers (B)
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Mitigation 
options

Urban land-use and spatial planning Electrification of the urban energy system District heating and cooling networks

Dimensions/ 
indicators

Feasibility 
barriers or 
enablers 

(LoC)

Role of context, time and scale  
of implementation

Feasibility 
barriers or 
enablers 

(LoC)

Role of context, time and scale of 
implementation

Feasibility 
barriers or 
enablers 

(LoC)

Role of context, time and scale  
of implementation

5. Socio-cultural

Public 
acceptance 

(E) 
LoC = 2

Increases with processes that 
are involved in the planning and 
implementation of the urban 
mitigation option, i.e., co-design

(E) 
LoC = 3

Depends on the provision of clean 
and affordable energy services 
through electrification of the urban 
energy system and socially-accepted 
potential for load shifting

Depends on role in climate neutrality 
targets, co-benefits for air quality, 
addressing energy poverty, citizen 
and consumer ownership models, 
technology perception as well as 
public and consumer awareness

Effects on 
health and 
well-being

(E) 
LoC = 3

Increases with the quality of spatial 
planning to increase co-benefits for 
health and well-being, e.g., balancing 
urban green areas with density

(E) 
LoC = 3

Increases with the energy 
resource that is displaced through 
electrification of the urban energy 
system. Residential electricity access 
also provides a positive influence 
on health and well-being, as well 
as life expectancy

(E) 
LoC = 3

Provides improvement in both indoor 
and outdoor air quality, provision 
of thermal comfort, alleviation of 
the urban heat island effect, and 
improved safety with gas supply 
outside accommodation as an enabler 
of the mitigation option

Distributional 
effects 

Depends on the policy tools that 
shape the impacts or benefits of urban 
densification on affordable housing 
while evidence for transit-
induced gentrification is partial 
and inconclusive

(E) 
LoC = 3

Increases with the ability of 
addressing aspects of energy poverty 
as well as increasing energy access 
in informal settlements based on 
urban planning. Urbanisation is also 
a driver of access to electricity, which 
if combined with renewable energy, 
can further support sustainable 
development. Business models and 
nature of ownership can increase 
intra-generational equity while 
shifting to inter-generational equity

(E) 
LoC = 3

Increases based on the business 
model with local ownership of 
district heating and cooling networks 
having the most positive impact 
on local benefits. Also contributes to 
addressing energy poverty based on 
the provision of affordable energy 
for satisfying thermal comfort in 
urban areas

6. Institutional

Political 
acceptance

Depends on context, increasing 
with the ability to integrate 
opportunities for climate mitigation 
with co-benefits for health 
and wellbeing  

(E) 
LoC = 3

Depends on the coordination ability 
of local authorities and the local 
level renewable energy target 
setting and implementation with 
close to 1000 cities having adopted 
climate neutrality targets, including 
some that further extend into urban 
climate positive targets

Depends on the ability to plan and 
implement structural policies for 
climate neutrality as well as the 
population size of municipalities

Institutional 
capacity and 
governance, 
cross-sectoral 
coordination

Depends on the ability to implement 
integrated urban planning as well 
as relations between urban mobility, 
buildings, energy systems, water 
systems, ecosystem services, other 
urban sectors and climate adaptation

Depends on policy coherence 
to avoid policy fragmentation 
and electrification at scale. High 
renewable energy targets, high 
climate ambition as well as high fuel 
and CO2 prices support the diffusion 
of related options

Depends on coordination with urban 
planning, the scope of urban energy 
planning, forming of partnerships and 
local ownership

Legal and 
administrative 
feasibility

Depends on the capacity for 
implementing land-use zoning 
and regulations consistently with 
urban land-use and spatial planning

(E) 
LoC = 3

Enabled by the policy and financing 
instruments that are used to support 
and increase electrification of the 
urban energy system, including 
green bonds and green procurement 
strategies

Depends on the ability to implement 
policy instruments to exploit and 
integrate local resources for supplying 
thermal energy cost-effectively to 
urban areas while implementing 
climate targets. Bottom-up and 
interactive regulatory frameworks 
based on multi-level policies are 
suggested for facilitating coordination 
among energy sectors as an enabler

(E/B)
LoC =3

(E/B)
LoC = 2

(E/B)
LoC = 2

(E/B)
LoC =3

(E/B)
LoC =3

(E/B)
LoC =3

(E/B)
LoC =3

(E/B)
LoC = 2

(E/B)
LoC =3

Levels of Confidence (LoC) Low Medium High

Enablers (E)

Barriers (B)
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Mitigation 
options

Urban green and blue infrastructure
Waste prevention, minimisation 

and management
Integrating sectors, strategies 

and innovations

Dimensions/
indicators

Feasibility 
barriers or 
enablers 

(LoC)

Role of context, time and scale 
of implementation

Feasibility 
barriers or 
enablers 

(LoC)

Role of context, time and scale 
of implementation

Feasibility 
barriers or 
enablers 

(LoC)

Role of context, time and scale  
of implementation

1. Geophysical

Physical 
potential

(E) 
LoC = 3

Is favourable, increasing with the 
physical space that is available 
for urban green/blue space and 
infrastructure to an extent that will 
support climate mitigation strategies

(E) 
LoC = 3

Is favourable, also depending 
on alleviating resource usage 
and upstream emissions from 
urban settlements based on 
the mitigation option

(E) 
LoC = 3

The ability to reduce pressures on 
physical land resources for urban 
areas is a feasibility enabler

Geophysical 
resources

(E) 
LoC = 2

Urban green and blue infrastructure 
are based on ecomimicry and 
sustainability innovations and do not 
represent pressures on geophysical 
resource demands

(E) 
LoC = 3

Resource benefits increase with 
the scale of waste prevention, 
minimisation and material recovery, 
e.g., reducing demands for new 
virgin raw resources

Depends on lowering the material 
demands for urban development 
with opportunities for considering 
materials with lower GHG impacts 
and selection of urban development 
plans with lower material demands

Land use
(E) 
LoC = 3

Depends on the scope of green and 
blue infrastructure while restoration-
based nature-based solutions can also 
restore degraded urban land area

(E) 
LoC = 3

Is favourable, also depending on 
reducing ecological footprint due 
to integrated waste management 
and possibly biochar to improve 
soil quality. Walkable urban form 
can also reduce distances for 
waste collection

(E) 
LoC = 3

Increases with the role of urban 
land-use and spatial planning in 
the low-carbon development (see 
first mitigation option on urban 
land-use and spatial planning) and 
the relevance of brownfield urban 
development for the project

2. Environmental-ecological

Air pollution
(E) 
LoC = 3

The indicator is an enabler while the 
highest benefits depend on the design 
of urban ecological infrastructure and 
related parameters that influence 
better air quality, including leaf area 
index, foliage density and the impact 
on reducing urban energy usage

(E) 
LoC = 3

Better waste management enables 
better air quality, further depending 
on the adopted waste hierarchy 
principles and the energy use of 
facilities for material and/or energy 
recovery in the urban vicinity, if any

(E) 
LoC = 3

Integrating across urban land-use 
and spatial planning, electrification of 
urban energy systems, district heating 
and cooling networks, urban green 
and blue infrastructure and waste 
management has positive impacts on 
improving air quality

Toxic waste, 
ecotoxicity, 
eutrophication

(E) 
LoC = 3

Urban green and blue 
infrastructure can be used for also 
remediating brownfield sites, e.g., 
phytoremediation and bioremediation, 
and limiting urban runoff

(E) 
LoC = 3

Is favourable, also considering the 
avoided environmental burden 
of local strategies for waste and 
wastewater management and 
avoided resource use

(E) 
LoC = 2

Level of improvement depends 
on the demands of low-carbon 
development on materials and 
urban metabolism performance

Water quantity 
and quality

(E) 
LoC = 3

Is an enabler based on the ability 
to reduce water runoff, increase 
permeable surfaces and increase the 
quality of waterways and wetlands

(E) 
LoC = 3

Increases with the ability of 
integrated waste management to 
avoid environmental contamination, 
including micropollutants, 
groundwater and marine pollution, 
and stringency of municipal 
wastewater treatment systems

(E) 
LoC = 3

Level of improvement depends 
on the interaction and inclusion of 
low-carbon development options 
that reduce impacts on water use 
and increase quality, including water-
use efficiency, demand management 
and recycling

Biodiversity
(E) 
LoC = 2

Benefits for biodiversity increase 
depending on the location, ecosystem 
and context of intervention as well as 
connectivity of natural habitats

(E) 
LoC = 2

Level of improvement depends 
on avoiding waste to landfill 
and landfill leachate as well 
as activities for land reclamation 
for biodiversity preservation

(E) 
LoC = 2

Level of improvement depends 
on urban metabolism and biophilic 
urbanism towards urban areas that 
regenerate natural capital

(E/B)
LoC = 2

Levels of Confidence (LoC) Low Medium High

Enablers (E)

Barriers (B)
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Mitigation 
options

Urban green and blue infrastructure
Waste prevention, minimisation 

and management
Integrating sectors, strategies 

and innovations

Dimensions/
indicators

Feasibility 
barriers or 
enablers 

(LoC)

Role of context, time and scale 
of implementation

Feasibility 
barriers or 
enablers 

(LoC)

Role of context, time and scale 
of implementation

Feasibility 
barriers or 
enablers 

(LoC)

Role of context, time and scale  
of implementation

3. Technological

Simplicity
(E) 
LoC = 3

Is favourable and increases with the 
ability to harness local resources and 
available technologies in multi-actor 
and cross-scalar processes

Depends on the context of 
implementing the waste hierarchy 
from prevention onward and the 
effectiveness of practices for waste 
separation at source

Depends on the ability to initiate 
and learn from experimentation and 
the ability to support GHG emission 
reductions based on both structural, 
behavioural and lifestyle changes

Technological 
scalability 

Depends on the ability to up-scale 
interventions, including for urban 
regeneration and restoration, and the 
utilisation of available urban areas for 
multifunctional, place- and location-
based ecological solutions

Depends on the waste management 
system as well as the stage of urban 
development, including material use 
and waste from urban construction

Depends on the mitigation 
options integrated, the stage of 
urban development and typology 
of the urban area with certain 
contexts providing additional 
opportunities over others

Maturity and 
technology 
readiness

(E) 
LoC = 3

Maturity is favourable while 
further depending on the ability 
to up-scale interventions and the 
role of nature-based solutions 
in urban sustainability, resilience 
and transformations

(E) 
LoC = 3

Maturity is favourable that further 
depends on the choices for waste 
management. There are also 
opportunities for reducing the 
embodied energy that is used during 
material recovery

Multiple technologies are available 
for integration while further 
depending on context and the level of 
integration, e.g., energy-driven urban 
design for optimising the impact of 
urban form on energy infrastructure

4. Economic

Costs in 2030 
and long term

(E) 
LoC = 3

The benefit-to-cost ratio is already 
favourable based on monetary costs 
excluding co-benefits while the exact 
values depend on context and scale

(E) 
LoC = 3

Is favourable with changes according 
to the choice of technology, strategy 
and awareness of system users that 
can represent time-dependent costs 
and revenue changes

(E) 
LoC = 2

Provides cost benefits that increase 
with a portfolio approach for 
cost-effective, cost-neutral and 
re-investment options with evidence 
across different urban typologies as 
well as cost reduction options with 
urban form

Employment 
effects and 
economic 
growth

Depends on the upscaling of 
interventions to support local 
employment opportunities and 
sustainable growth, including 
employment for urban forestry

Depends on labour efficiency, ability 
to stimulate employment for value 
added products through circular 
economy and innovation activities 
with an estimated 45 million jobs 
in the waste management sector 
by 2030

(E) 
LoC = 3

Increases based on the speed 
that the mitigation option triggers 
economic decoupling with 
a positive impact on employment 
and local competitiveness

5. Socio-cultural

Public 
acceptance 

(E) 
LoC = 3

Public acceptance is commonly high 
and represents a positive lock-in with 
awareness and recreational use also 
given that potential concerns for 
green gentrification are addressed

(E)
LoC = 3

Is favourable and increases with 
reduced system costs for citizens, 
greater awareness of primary 
waste separation and possible 
positive behavioural spillover across 
environmental policies

Contexts that involve a 
participatory approach towards 
urban transformation with a 
shared understanding of future 
opportunities and challenges are 
enablers. Public acceptance increases 
with citizen engagement and 
citizen empowerment as well as an 
awareness of the co-benefits

Effects on 
health and 
well-being

(E) 
LoC = 3

Urban green/blue infrastructure can 
provide reductions in the urban heat 
island effect, provide cleaner air as 
well as cardiovascular and mental 
health benefits that are related to 
availability and accessibility

(E) 
LoC = 3

Contributes to health and well-being 
through liveable cities, reducing 
human toxicity, particulate matter, 
photochemical oxidant and similar 
with possibilities of increasing the 
nutrition status of urban diets also 
considering food systems with less 
waste, less water, GHG emissions 
and land impacts

(E) 
LoC = 3

The scope of low-carbon urban 
development measures provides 
significant potential for co-benefits 
for public health and well-being

(E/B)
LoC =3

(E/B)
LoC =3

(E/B)
LoC =3

(E/B)
LoC =3

(E/B)
LoC =3

(E/B)
LoC = 2

(E/B)
LoC = 2

(E/B)
LoC = 2

(E/B)
LoC =3

Levels of Confidence (LoC) Low Medium High

Enablers (E)

Barriers (B)
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Mitigation 
options

Urban green and blue infrastructure
Waste prevention, minimisation 

and management
Integrating sectors, strategies 

and innovations

Dimensions/
indicators

Feasibility 
barriers or 
enablers 

(LoC)

Role of context, time and scale 
of implementation

Feasibility 
barriers or 
enablers 

(LoC)

Role of context, time and scale 
of implementation

Feasibility 
barriers or 
enablers 

(LoC)

Role of context, time and scale  
of implementation

Distributional 
effects

Depends on the availability 
(percentage of total area), accessibility 
(proportion of the urban population 
living within an accessible distance) of 
urban green areas and public versus 
private ownership. Distributional 
effects for urban green and blue 
infrastructure are important and may 
or may not represent inequalities that 
depends on inclusive policy design 
and empowerment

Depends on the sharing of costs and 
benefits and the ability to transform 
informality of waste recycling 
activities into programmes

(E) 
LoC = 3

Level of improvement depends on 
integrating issues of equity, inclusivity 
and affordability, safeguarding urban 
livelihoods, access to basic services, 
lowering energy bills, addressing 
energy poverty, and improving 
public health

6. Institutional

Political 
acceptance

(E) 
LoC = 3

Political acceptance is commonly high 
with potential additional support from 
collaborative planning, co-creating 
solutions and mandate for urban 
greening in development

(E) 
LoC = 3

Efficient waste management 
infrastructure is the most widely 
adopted strategy, including among 
210 circular economy strategies 
in urban areas

Depends on the GHG reduction 
or climate neutrality target that 
is set, as well as support from 
participatory processes

Institutional 
capacity and 
governance, 
cross-sectoral 
coordination

Depends on transdisciplinary 
coordination for urban ecological 
infrastructure that encompasses 
terrestrial and/or aquatic ecosystems, 
as well as institutional and community 
capacity for holistic design that is 
better connected with the ecological 
constraints of Earth systems

Depends on the organisational 
structure for promoting integrated 
waste management and capabilities 
related to programme administration

Depends on the ability to form 
partnerships to overcome barriers, 
including technology development, 
rule-setting and demonstration, 
capacity to manage transitions, 
establishing integrated departments 
and funding schemes for low-carbon 
urban development, implementing 
system innovations and aligning 
system actors, engaging in 
policy learning among cities and 
implementing supportive policy mixes

Legal and 
administrative 
feasibility

(E) 
LoC = 3

Favourable while further depending 
on the governance content as 
well as new targets for restoring 
degraded ecosystems 

Depends on local legislation and 
policies, choices within municipal 
waste management strategies 
to reduce investment costs, and 
compliance with targets for 
circular economy

Depends on the capacity to 
implement relevant policy instruments 
in an integrated way and leverage 
multi-level policies as relevant

(E/B)
LoC = 2

(E/B)
LoC = 2

(E/B)
LoC = 2

(E/B)
LoC =3

(E/B)
LoC =3

(E/B)
LoC =3

(E/B)
LoC =3

(E/B)
LoC =3

Levels of Confidence (LoC) Low Medium High

Enablers (E)

Barriers (B)
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Table 8.SM.4 | Line of sight for the feasibility assessment of mitigation options in urban systems

Mitigation 
options

Urban land-use and spatial planning
Electrification of the  
urban energy system

District heating and cooling networks

Dimensions/
indicators

References/line of sight References/line of sight References/line of sight

1. Geophysical

Physical potential Mahtta et al. (2019); Güneralp et al.(2020)

Hsieh et al. (2017); Wang et al. (2018); 
Aghahosseini et al. (2019); Bogdanov et al. 
(2019); Child et al. (2019); Hansen et al. (2019); 
Aghahosseini et al. (2020); Ram et al. (2020)

Swilling et al. (2018); Möller et al. (2019);  
Persson et al. (2019); UNEP IRP (2020)

Geophysical resources
Müller et al. (2013); Bai et al. (2018); Swilling et al. 
(2018); Magnusson et al. (2019); UNEP IRP (2020)

Gibon et al. (2017); IEA (2020);  
Sovacool et al. (2020)

Wang et al. (2016); UNEP IRP (2020)

Land use
EC JRC (2018); Gao and O’Neill (2020);  
Güneralp et al. (2020); Daunt et al. (2021)

Hsieh et al. (2017); Tong et al. (2017);  
Fichera et al. (2018)

Fonseca and Schlueter (2015); Shi et al. (2020)

2. Environmental-ecological

Air pollution
Burgalassi and Luzzati (2015);  
Zhang et al. (2018a); Zhang et al. (2018b);  
Pierer and Creutzig (2019)

Jacobson et al. (2018); Ajanovic and Haas 
(2019); Bagheri et al. (2019); Gai et al. (2020); 
Jacobson et al. (2020)

Tuomisto et al. (2015); Dénarié et al. (2018);  
Zhai et al. (2020); REN21 (2021) 

Toxic waste, 
ecotoxicity, 
eutrophication

Phillips et al. (2018); Regier et al. (2020); 
Charters et al. (2021)

Gibon et al. (2017); Lohrmann et al. (2021) Bartolozzi et al. (2017); Zhai et al. (2020)

Water quantity 
and quality

Serrao-Neumann et al. (2017); Rodríguez-Sinobas 
et al. (2018); Xu et al. (2018); Ahmad et al. (2020); 
Lei et al. (2021)

Gibon et al. (2017); Lohrmann et al. (2021) Swilling et al. (2018)

Biodiversity
Huang et al. (2018a); McDonald et al. (2018); 
Cortinovis and Geneletti (2020); Güneralp et al. 
(2020); IPBES (2019); McDonald et al. (2020)  

Bataille et al. (2020); Schipper et al. (2020)
Huang et al. (2018a); McDonald et al. (2018); 
Cortinovis and Geneletti (2020); Güneralp et al. 
(2020); IPBES (2019); McDonald et al. (2020)

3. Technological

Simplicity Reba and Seto (2020)
Kennedy et al. (2017); Kennedy et al. (2018); 
Drysdale et al. (2019); Thellufsen et al. (2020)

UNEP (2015); Persson et al. (2019); REN21 (2020) 

Technological 
scalability

Lall et al. (2013); Große et al. (2016); 
Cheshmehzangi and Butters (2017); Facchini et al. 
(2017); Lwasa (2017); Stokes and Seto (2019)

Lund et al. (2015); Calvillo et al. (2016);  
Salpakari et al. (2016); Seto et al. (2016);
Kennedy et al. (2017); Newman (2017); 
Sangiuliano (2017); Zenginis et al. (2017); 
Bartłomiejczyk (2018); De Luca et al. (2018);
Kennedy et al. (2018); McPherson et al. (2018); 
Sharma (2018); Stewart et al. (2018); Yuan et al. 
(2018); Drysdale et al. (2019); Narayanan et al. 
(2019); Bellocchi et al. (2020); Calise et al. (2020); 
Gjorgievski et al. (2020); Meha et al. (2020); 
Thellufsen et al. (2020); You and Kim (2020);  
Yuan et al. (2021); Pfeifer et al. (2021) 

Borelli et al. (2015); Webb (2015); Xiong et al. 
(2015); Felipe Andreu et al. (2016); Zhang et al. 
(2016); Hui et al. (2017); Loibl et al. (2017); Lund 
et al. (2017); Pavičević et al. (2017); Bünning 
et al. (2018); Chaer et al. (2018); Dominković 
et al. (2018); Hast et al. (2018); Köfinger et al. 
(2018); Popovski et al. (2018); Yeo et al. (2018); 
Bozhikaliev et al. (2019); Dominković and Krajačić 
(2019); Dorotić et al. (2019a); Möller et al. (2019); 
Persson et al. (2019); Pieper et al. (2019);  
Sorknæs et al. (2020); Yuan et al. (2021b)

Maturity and 
technology readiness

Asarpota and Nadin (2020); Lall et al. (2021) 
Kennedy et al. (2017); Kennedy et al. (2018); 
Gjorgievski et al. (2020); IEA (2020);  
Meha et al. (2020); Sethi et al. (2020)

(Baldvinsson and Nakata (2017); Lund et al. 
(2018a); Lund et al. (2018b); IEA (2020);  
UNEP IRP (2020); Novosel et al. (2021)

4. Economic

Costs in 2030 
and long term

Lall et al. (2021)
Newman (2017); Bloess et al. (2018); Jacobson 
et al. (2018); Bogdanov et al. (2021)

Xiong et al. (2015); Bordin et al. (2016); Petersen 
(2016); Pavičević et al. (2017); Dorotić et al. 
(2019b); Möller et al. (2019); Persson et al. (2019); 
Aunedi et al. (2020); Djørup et al. (2020);  
Doračić et al. (2020); Pursiheimo and Rämä (2021)

Employment effects 
and economic growth

Lee and Erickson (2017); Salat et al. (2017);  
Gao and Newman (2018); Han et al. (2018);  
Li and Liu (2018); Lall et al. (2021)

Mikkola and Lund (2016); Lee and Erickson (2017); 
Kennedy et al. (2017); Jacobson et al. (2018); 
Coalition for Urban Transitions (2020); Jacobson 
et al. (2020); Ram et al. (2020b); REN21 (2020); 
Ram et al. (2022)

UNEP (2015); Lee and Erickson (2017)

5. Socio-cultural
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Mitigation 
options

Urban land-use and spatial planning
Electrification of the  
urban energy system

District heating and cooling networks

Dimensions/
indicators

References/line of sight References/line of sight References/line of sight

Public acceptance Grandin et al. (2018); Webb et al. (2018)
Newman (2017); Coalition for Urban Transitions 
(2019); Corsini et al. (2019); Pfeiffer et al. (2021)

Karlsson et al. (2016); Hvelplund and  
Djørup (2017); Robinson et al. (2018);  
Palermo et al. (2020a); Palermo et al. (2020b) 

Effects on health 
and well-being

Li et al. (2016a); Yang et al. (2018b);  
Pierer and Creutzig (2019)

Gai et al. (2020); Jacobson et al. (2020); Newman 
(2017); REN21 (2020); Steinberger et al. (2020)

UNEP (2015); Meggers et al. (2016);  
Zhai et al. (2020)

Distributional effects
Chava and Newman (2016); Jagarnath and 
Thambiran (2018); Padeiro et al. (2019);  
Debrunner and Hartmann (2020)

Kennedy et al. (2017); Aklin et al. (2018); Brandoni 
et al. (2018); Hunter et al. (2018a); Teferi and 
Newman (2018); Lekavičius et al. (2020)

UNEP (2015); Hvelplund and Djørup (2017); 
Robinson et al. (2018)

6. Institutional

Political acceptance Grandin et al. (2018); Asarpota and Nadin (2020)

Havas et al. (2015); Li et al. (2016b); Grandin et al. 
(2018); Coalition for Urban Transitions (2019); 
Data-Driven EnviroLab and NewClimate Institute 
(2020); Palermo et al. (2020a); Palermo et al. 
2020b; REN21 (2020); Takao (2020) 

Grandin et al. (2018); Palermo et al. (2020a); 
Palermo et al. (2020b)

Institutional capacity 
and governance, 
cross-sectoral 
coordination

Große et al. (2016); Broto (2017);  
Endo et al. (2017); Geneletti et al. (2017); 
Hersperger et al. (2018)

Fenton and Kanda (2017); Alkhalidi et al. (2018); 
Bloess et al. (2018); Glazebrook and Newman 
(2018); Krog (2019); Lammers and Hoppe (2019); 
Takao (2020) 

Delmastro et al. (2016); Hvelplund and Djørup 
(2017); Tong et al. (2017); Guo and Hendel (2018); 
Kim et al. (2018); Chambers et al. (2019) 

Legal and 
administrative 
feasibility

Deng et al. (2018); Yılmaz Bakır et al. (2018);  
Shen et al. (2019); Barzegar et al. (2021)

Byrne et al. (2017); Kennedy et al. (2017); Suo et al. 
(2017); Glazebrook and Newman (2018); Xie et al. 
(2018); Hadfield and Cook (2019); Data-Driven 
EnviroLab and NewClimate Institute (2020); 
Lewandowska et al. (2020) 

Hvelplund and Djørup (2017); Möller et al. (2019); 
Doračić et al. (2020); Moser et al. (2020)

Mitigation 
options

Urban green and blue infrastructure
Waste prevention, minimisation  

and management
Integrating sectors, strategies  

and innovations

Dimensions/
indicators

References/line of sight References/line of sight References/line of sight

1. Geophysical

Physical potential
Elmqvist et al. (2015); Keeler et al. (2019); 
Quaranta et al. (2021)

Swilling et al. (2018); Kaza et al. (2018);  
Chen et al. (2020); Harris et al. (2020)

Mahtta et al. (2019); Güneralp et al. (2020)

Geophysical resources Collier et al. (2016); Quaranta et al. (2021)
López-Uceda et al. (2018); Russo (2018);  
Vaitkus et al. (2018)

Carpio et al. (2016); Liu et al. (2016); Ramage et al. 
(2017); Shi et al. (2017a); Stocchero et al. (2017); 
Bai et al. (2018); Swilling et al. (2018); UNEP IRP 
(2020); Zhan et al. (2018) 

Land use
Elmqvist et al. (2015); Nastran and Regina (2016); 
Fan et al. (2017); Raymond et al. (2017);  
Slach et al. (2019); Quaranta et al. (2021)

Oliveira et al. (2017); Chiaramonti and Panoutsou 
(2018); Medick et al. (2018); Peri et al. (2018); 
Zhang et al. (2018a)

Gao and O’Neill (2020); Güneralp et al. (2020); 
Xu et al. (2018)

2. Environmental-ecological

Air pollution

Elmqvist et al. (2015); Jandaghian and Akbari 
(2018); Kim and Coseo (2018); Santamouris et al. 
(2018a); Scholz et al. (2018); Keeler et al. (2019); 
Song et al. (2019)

Ramaswami et al. (2017); Lima et al. (2018);  
Zhang et al. (2020); Kanhai et al. (2021)

Diallo et al. (2016); Nieuwenhuijsen and 
Khreis (2016); Shakya (2016); Liu et al. (2017); 
Ramaswami et al. (2017); Sun et al. (2018b), 
Tayarani et al. (2018); Park and Sener (2019)

Toxic waste, 
ecotoxicity, 
eutrophication

Elmqvist et al. (2015); Risch et al. (2018);  
Keeler et al. (2019); Song et al. (2019)

Roig et al. (2012); Ibáñez-Forés et al. (2018); Lima 
et al. (2018); Zhou et al. (2018); Zhang et al. (2020)

González-García et al. (2021)

Water quantity 
and quality

Elmqvist et al. (2015); Raymond et al. (2017); 
Albert et al. (2019); Keeler et al. (2019)

Ibáñez-Forés et al. (2018); Kaza et al. (2018); Lima 
et al. (2018); Pesqueira et al. (2020); Vergara-Araya 
et al. (2020); Proctor et al. (2021) 

Koop and van Leeuwen (2015); Topi et al. (2016); 
Drangert and Sharatchandra (2017); Lam et al. 
(2017); Vanham et al. (2017); Kim and Chen 
(2018); Lam et al. (2018); James et al. (2018) 

Biodiversity

Elmqvist et al. (2015); Schwarz et al. (2017); 
McDonald et al. (2018); McPhearson et al. (2018); 
Nero et al. (2018); Hale et al. (2019);  
Keeler et al. (2019)

Weng et al. (2015); Hale et al. (2019); IPBES (2019) Thomson and Newman (2018); IPBES (2019)
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Mitigation 
options

Urban green and blue infrastructure
Waste prevention, minimisation  

and management
Integrating sectors, strategies  

and innovations

Dimensions/
indicators

References/line of sight References/line of sight References/line of sight

3. Technological

Simplicity 
Elmqvist et al. (2015);  Sasaki et al. (2018);   
Keeler et al. (2019)

Hunter et al. (2018b); Kaza et al. (2018);  
Sun et al. (2018a)

McLean et al. (2016);  Matschoss and Heiskanen 
(2017); Williams (2017); Zhang and Li (2017);  
Aziz et al. (2018); Chen et al. (2018a)

Technological 
scalability

Chen (2015); Kabisch et al. (2015); Lee et al. 
(2015); Ruckelshaus et al. (2016); Cleveland 
et al. (2017); Ferrari et al. (2017); Lwasa (2017); 
Raymond et al. (2017); Gargiulo et al. (2018); 
Kanniah and Siong (2018); Albert et al. (2019);  
De Masi et al. (2019); De la Sota et al. (2019); 
Dorst et al. (2019); Grafakos et al. (2020)

Eriksson et al. (2015); Boyer and Ramaswami 
(2017); Lwasa (2017); Tomić and Schneider (2017); 
Jiang et al. (2017); Huang et al. (2018b); Islam 
(2018); Paul et al. (2018); Pérez et al. (2018); 
Tomić and Schneider (2018); Pérez et al. (2020); 
Sakcharoen et al. (2021)

Yamagata and Seya (2013); Dienst et al. (2015); 
Maier (2016); Beygo and Yüzer (2017);  
Lwasa (2017); Pacheco-Torres et al. (2017);  
Roldán-Fontana et al. (2017); Affolderbach 
and Schulz (2017); Ramaswami et al. (2017);  
Zhao et al. (2017); Alhamwi et al. (2018); Kang and 
Cho (2018); Lin et al. (2018); Collaço et al. (2019);  
Kılkış (2019); Kılkış and Kılkış (2019)

Maturity and 
technology readiness

Elmqvist et al. (2015); Collier et al. (2016);  
Elmqvist et al. (2019); Dorst et al. (2019)

Kabir et al. (2015); Soares and Martins (2017); 
Tomić and Schneider (2018); D’Adamo et al. (2021)

Hu et al. (2015); Shi et al. (2017b); Xue et al. 
(2017); Dobler et al. (2018); Egusquiza et al. 
(2018); Pedro et al. (2018); Soilán et al. (2018); 
Kılkış (2021); Mirzabeigi and Razkenari (2021)

4. Economic

Costs in 2030 
and long term

Elmqvist et al. (2015)
Khan et al. (2016); Chifari et al. (2017);  
Medick et al. (2018); Ranieri et al. (2018);  
Tomić and Schneider (2020) 

Colenbrander et al. (2015); Gouldson et al. (2015); 
Colenbrander et al. (2016); Nieuwenhuijsen 
and Khreis (2016); Saujot and Lefèvre (2016);  
Sudmant et al. (2016); Yazdanie et al. (2017); 
Brozynski and Leibowicz (2018); Lall et al. (2021)

Employment effects 
and economic growth

Thomson and Newman (2016); Raymond et al. 
(2017); Kareem et al. (2020)

Alzate-Arias et al. (2018); Coalition for Urban 
Transitions (2020); Soukiazis and Proença (2020)

Kalmykova et al. (2015); Chen et al. (2018b); 
García-Gusano et al. (2018); Hu et al. (2018);  
Shen et al. (2018); Lall et al. (2021)

5. Socio-cultural

Public acceptance 
Raymond et al. (2017); Ürge-Vorsatz et al. (2018); 
Song et al. (2019)

Milutinović et al. (2016); Tomić and Schneider 
(2017); Díaz-Villavicencio et al. (2017); Ek and 
Miliute-Plepiene (2018); Romano et al. (2019); 
Tomić and Schneider (2020)

Blanchet (2015); Bjørkelund et al. (2016); 
Flacke and De Boer (2017); Gao et al. (2017); 
Herrmann et al. (2017); Neuvonen and Ache 
(2017); Sharp and Salter (2017); Gorissen et al. 
(2018); Fastenrath and Braun (2018); Moglia et al. 
(2018); Wiktorowicz et al. (2018)

Effects on health and 
well-being

Huang et al. (2017); van den Bosch and Sang 
(2017); Privitera and La Rosa (2018); Santamouris 
et al. (2018b); Andersson et al. (2019); Keeler et al. 
(2019); Song et al. (2019); Grafakos et al. (2020); 
Jamei et al. (2020); Quaranta et al. (2021)

Boyer and Ramaswami (2017); Newman (2017); 
Coalition for Urban Transitions (2020);  
Slorach et al. (2020)

Dodman (2009); Diallo et al. (2016); García-
Fuentes and de Torre (2017); Liu et al. 
(2017);Newman (2017); Laeremans et al. (2018); 
Li et al. (2018)

Distributional effects
Lwasa et al. (2015); Huang et al. (2017);  
Andersson et al. (2019); Khumalo and Sibanda 
(2019); Keeler et al. (2019)

Conke (2018); de Bercegol and Gowda (2018); 
Grové et al. (2018)

Friend et al. (2016); Claude et al. (2017); 
Colenbrander et al. (2017); Ma et al. (2018); 
Mrówczyńska et al. (2018); Pukšec et al. (2018); 
Wiktorowicz et al. (2018); Ramaswami (2020)

6. Institutional

Political acceptance
Collier et al. (2016); Fan et al. (2017);  
Linnenluecke et al. (2017); Grandin et al. (2018); 
Grafakos et al. (2020)

Yu and Zhang (2016); Affolderbach and Schulz 
(2017); Dong et al. (2018); Grandin et al. (2018); 
Hulgaard and Søndergaard (2018); Starostina 
et al. (2018); Matsuda et al. (2018); Petit-Boix 
and Leipold (2018)

Larondelle et al. (2016); Fang et al. (2017); Lu et al. 
(2017); Grandin et al. (2018); Powell et al. (2018); 
Van Den Dobbelsteen et al. (2018);  
Salvia et al. (2021)

Institutional capacity 
and governance, 
cross-sectoral 
coordination

He et al. (2015); Linnenluecke et al. (2017); 
Raymond et al. (2017); Albert et al. (2019);  
Childers et al. (2019); Jahanfar et al. (2018);  
Dorst et al. (2019); Keeler et al. (2019)

Hjalmarsson (2015); Kalmykova et al. (2016); 
Conke (2018); Marino et al. (2018); Yang et al. 
(2018a); Kanhai et al. (2021)

Dong and Fujita (2015); Kilkiş (2015); Lee and 
Painter (2015); Niemeier et al. (2015); Olsson et al. 
(2015); Delmastro et al. (2016); Große et al. (2016); 
McGuirk et al. (2016); Broto (2017); Engström 
et al. (2017); Petit-Boix et al. (2017); Valek et al. 
(2017); Peng and Bai (2018); den Hartog et al. 
(2018); Engels and Walz (2018); Leck and Simon 
(2018); Tayarani et al. (2018); Tillie et al. (2018); 
Westman and Broto (2018); Hölscher et al. (2019); 
Peng and Bai (2020)

Legal and 
administrative 
feasibility

Elmqvist et al. (2015); CDP (2021)
Potdar et al. (2016); Agyepong and Nhamo (2017); 
Tomić et al. (2017); Conke (2018); Tomić and 
Schneider (2020); Kanhai et al. (2021)

Agyepong and Nhamo (2017);  
Roppongi et al. (2017)
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