Discover millions of ebooks, audiobooks, and so much more with a free trial

Only $9.99/month after trial. Cancel anytime.

The production of sound
The production of sound
The production of sound
Ebook70 pages58 minutes

The production of sound

Rating: 0 out of 5 stars

()

Read preview

About this ebook

This book deals with the works of Graham Bell and other scientists on the phenomena of sound and its production.
“In bringing before you some discoveries made by Mr. Sumner Tainter and myself, which, having resulted in the construction of apparatus for the production and reproduction of sound by means of light, it is necessary to explain the state of knowledge which formed the starting-point of our experiments. I shall first describe the remarkable substance selenium, and the manipulations devised by various experimenters; but the final result of our researches has extended the class of substances sensitive to light-vibrations, until we can propound the fact of such sensitiveness being a general property of all matter.”

ABOUT THE AUTHOR

Alexander Graham Bell (1847–1922) was a Scottish-born inventor, scientist, teacher of the deaf, and innovator who is best known for inventing the telephone. 
LanguageEnglish
PublisherEHS
Release dateFeb 18, 2024
ISBN9782386260087
The production of sound

Related to The production of sound

Related ebooks

Science & Mathematics For You

View More

Related articles

Reviews for The production of sound

Rating: 0 out of 5 stars
0 ratings

0 ratings0 reviews

What did you think?

Tap to rate

Review must be at least 10 words

    Book preview

    The production of sound - Alexander Graham Bell

    Part I

    On the Production of Sound by Light

    In bringing before you{1} some discoveries made by Mr. Sumner Tainter and myself, which, having resulted in the construction of apparatus for the production and reproduction of sound by means of light, it is necessary to explain the state of knowledge which formed the starting-point of our experiments. I shall first describe the remarkable substance selenium, and the manipulations devised by various experimenters; but the final result of our researches has extended the class of substances sensitive to light-vibrations, until we can propound the fact of such sensitiveness being a general property of all matter. We have found this property in gold, silver, platinum, iron, steel, brass, copper, zinc, lead, antimony, German silver, Jenkin's metal, Babbitt's metal, ivory, celluloid; gutta-percha, hard rubber, soft vulcanized rubber, paper, parchment, wood, mica, and silvered glass; and the only substances from which we have not obtained results are carbon and thin microscopic glass. We find that when a vibratory beam of light falls upon these substances they emit sounds, the pitch of which depends upon the frequency of the vibratory change in the light. We find, further, that, when we control the form or character of the light-vibration on selenium, and probably on the other substances, we control the quality of the sound and obtain all varieties of articulate speech. We can thus, without a conducting wire, as in electric telephony, speak from station to station, wherever we can project a beam of light. We have not had opportunity of testing the limit to which this photophonic influence can be extended, but we have spoken to and from points two hundred and thirteen metres apart; and there seems no reason to doubt that the results will be obtained at whatever distance a beam of light can be flashed from one observatory to another. The necessary privacy of our experiments hitherto has alone prevented any attempts at determining the extreme distance at which this new method of vocal communication will be available. I shall now speak of selenium.

    In the year 1817 Berzelius and Gottlieb Gahn made an examination of the method of preparing sulphuric acid in use at Gripsholm. During the course of this examination, they observed in the acid a sediment of a partly reddish, partly clear brown color, which, under the action of the blowpipe, gave out a peculiar odor, like that attributed by Klaproth to tellurium. As tellurium was a substance of extreme rarity, Berzelius attempted its production from this deposit; but he was unable, after many experiments, to obtain further indications of its presence. He found plentiful signs of sulphur mixed with mercury, copper, zinc, iron, arsenic, and lead, but no trace of tellurium. It was not in the nature of Berzelius to be disheartened by this result. In science every failure advances the boundary of knowledge as well as every success, and Berzelius felt that, if the characteristic odor that had been observed did not proceed from tellurium, it might possibly indicate the presence of some substance then unknown to the chemist. Urged on by this hope he returned with renewed ardor to his work. He collected a great quantity of the material, and submitted the whole mass to various chemical processes. He succeeded in separating successively the sulphur, the mercury, the copper, the tin, and the other known substances whose presence had been indicated by his tests—and, after all these had been eliminated, there still remained a residue which proved upon examination to be what he had been in search of—a new elementary substance. The chemical properties of this new element were found to resemble those of tellurium in so remarkable a degree that Berzelius gave to the substance the name of selenium, from the Greek word selene, the moon (tellurium, as is well known, being derived from tellus, the earth).

    Although tellurium and selenium are alike in many respects, they differ in their electrical properties, tellurium being a good conductor of electricity, and selenium, as Berzelius showed, a non-conductor. Knox discovered in 1837 that selenium became a conductor when fused; and Hittorff in 1852 showed that it conducted at ordinary temperatures, when in one of its allotropic forms. When selenium is rapidly cooled from a fused condition, it is a non-conductor. In this its vitreous form it is of a dark-brown color, almost black by reflected light, having an exceedingly brilliant surface. In thin films it is transparent, and appears of a beautiful ruby red by transmitted light. When selenium is cooled from a fused condition with extreme slowness, it presents an entirely different appearance, being of a dull lead color, and having throughout a granulated or crystalline structure, and looking like a metal. In this form it is perfectly opaque to light even, in very thin films. This variety of selenium has long been known as granular or crystalline selenium, or, as Regnault called it,

    Enjoying the preview?
    Page 1 of 1