Symbolic Logic
()
About this ebook
Lewis Carroll
Charles Lutwidge Dodgson (1832-1898), better known by his pen name Lewis Carroll, published Alice's Adventures in Wonderland in 1865 and its sequel, Through the Looking-Glass, and What Alice Found There, in 1871. Considered a master of the genre of literary nonsense, he is renowned for his ingenious wordplay and sense of logic, and his highly original vision.
Read more from Lewis Carroll
Alice's Adventures in Wonderland Rating: 0 out of 5 stars0 ratingsClassic Children's Stories (Golden Deer Classics) Rating: 5 out of 5 stars5/520 Classic Children Stories Rating: 4 out of 5 stars4/5The Christmas Library: 250+ Essential Christmas Novels, Poems, Carols, Short Stories...by 100+ Authors Rating: 5 out of 5 stars5/5Symbolic Logic: {Complete & Illustrated} Rating: 5 out of 5 stars5/550 Great Love Letters You Have To Read (Golden Deer Classics) Rating: 4 out of 5 stars4/5Alice in Wonderland: Deluxe Complete Collection Illustrated Rating: 3 out of 5 stars3/5Alice's Adventures in Wonderland and Through the Looking Glass Rating: 3 out of 5 stars3/5Lerne Englisch! Learn German! ALICE'S ABENTEUER IM WUNDERLAND: Auf Englisch und Deutsch Rating: 3 out of 5 stars3/5Alice in Wonderland Collection - All Four Books (Heron Classics) Rating: 3 out of 5 stars3/5The Wonderland Collection (Seasons Edition -- Summer) Rating: 4 out of 5 stars4/5Alice's Adventures in WonderlandIllustrated by Arthur Rackham. With a Proem by Austin Dobson Rating: 5 out of 5 stars5/520 Eternal Masterpieces Of Children Stories (Golden Deer Classics) Rating: 0 out of 5 stars0 ratingsAlice’s Adventures in Wonderland. An Illustrated Classic for Kids and Young Readers Rating: 3 out of 5 stars3/5Alice in Zombieland Rating: 3 out of 5 stars3/5The Hunting of the Snark Rating: 5 out of 5 stars5/5The Complete Lewis Carroll Collection (Illustrated) Rating: 0 out of 5 stars0 ratings20 Classic Children Stories (ABCD Classics) Rating: 0 out of 5 stars0 ratings
Related to Symbolic Logic
Related ebooks
Selectors Rating: 0 out of 5 stars0 ratingsWittgenstein and the Life We Live with Language Rating: 0 out of 5 stars0 ratingsIntroduction to Symbolic Logic and Its Applications Rating: 4 out of 5 stars4/5Philosophical Methodology in Classical Chinese and German Philosophy Rating: 0 out of 5 stars0 ratingsPartially Ordered Algebraic Systems Rating: 0 out of 5 stars0 ratingsModal Logic: Fundamentals and Applications Rating: 0 out of 5 stars0 ratingsAbstract Methods in Partial Differential Equations Rating: 0 out of 5 stars0 ratingsCapital: The Process of Capitalist Production as a Whole Rating: 0 out of 5 stars0 ratingsThe Theory of Remainders Rating: 0 out of 5 stars0 ratingsThe Blackwell Guide to Metaphysics Rating: 0 out of 5 stars0 ratingsHealth as a Social System: Luhmann's Theory Applied to Health Systems. An Introduction Rating: 1 out of 5 stars1/5The Lost Art of Reading Rating: 0 out of 5 stars0 ratingsThe Irrationals: A Story of the Numbers You Can't Count On Rating: 0 out of 5 stars0 ratingsPragmatism: A New Name for Some Old Ways of Thinking Rating: 0 out of 5 stars0 ratingsPractical Discrete Mathematics: Discover math principles that fuel algorithms for computer science and machine learning with Python Rating: 0 out of 5 stars0 ratingsGeometrical Solutions Derived from Mechanics; a Treatise of Archimedes Rating: 0 out of 5 stars0 ratingsGroups and Characters Rating: 0 out of 5 stars0 ratingsSummary of Alfred Jules Ayer's Language, Truth and Logic Rating: 0 out of 5 stars0 ratingsThe Birth of Model Theory: Löwenheim's Theorem in the Frame of the Theory of Relatives Rating: 0 out of 5 stars0 ratingsAn Essay on the Psychology of Invention in the Mathematical Field Rating: 5 out of 5 stars5/5Popular Lectures on Mathematical Logic Rating: 0 out of 5 stars0 ratingsAristotle on the Human Good Rating: 3 out of 5 stars3/5Topology Rating: 4 out of 5 stars4/5The New Adventures of Socrates: an extravagance Rating: 0 out of 5 stars0 ratingsWittgenstein Rating: 4 out of 5 stars4/5On Learning: A general theory of objects and object-relations Rating: 0 out of 5 stars0 ratingsThe Mind's Provisions: A Critique of Cognitivism Rating: 4 out of 5 stars4/5Recursive Analysis Rating: 0 out of 5 stars0 ratingsTopoi: The Categorial Analysis of Logic Rating: 5 out of 5 stars5/5
Literary Criticism For You
Man's Search for Meaning: by Viktor E. Frankl | Conversation Starters Rating: 3 out of 5 stars3/5Letters to a Young Poet Rating: 4 out of 5 stars4/5One Hundred Years of Solitude: A Novel by Gabriel Garcia Márquez | Conversation Starters Rating: 4 out of 5 stars4/5The Complete Sherlock Holmes Rating: 5 out of 5 stars5/5The Gulag Archipelago [Volume 1]: An Experiment in Literary Investigation Rating: 4 out of 5 stars4/5Speed Reading: How to Read a Book a Day - Simple Tricks to Explode Your Reading Speed and Comprehension Rating: 4 out of 5 stars4/5The Gulag Archipelago: The Authorized Abridgement Rating: 4 out of 5 stars4/5Bad Feminist: Essays Rating: 4 out of 5 stars4/5The Greatest Minds and Ideas of All Time Rating: 4 out of 5 stars4/5The Seven Basic Plots: Why We Tell Stories Rating: 4 out of 5 stars4/512 Rules For Life: by Jordan Peterson | Conversation Starters Rating: 4 out of 5 stars4/5The Art of Libromancy: On Selling Books and Reading Books in the Twenty-first Century Rating: 5 out of 5 stars5/5The Storytelling Animal: How Stories Make Us Human Rating: 4 out of 5 stars4/5Lectures on Literature Rating: 4 out of 5 stars4/5Kant and the Platypus: Essays on Language and Cognition Rating: 4 out of 5 stars4/5The Secret History: by Donna Tartt | Conversation Starters Rating: 2 out of 5 stars2/521 Lessons for the 21st Century: by Yuval Noah Harari | Conversation Starters Rating: 3 out of 5 stars3/5The Power of Habit: by Charles Duhigg | Conversation Starters Rating: 3 out of 5 stars3/5Just Kids: An Autobiography Rating: 4 out of 5 stars4/5Never Split the Difference: Negotiating As If Your Life Depended On It by Chris Voss | Conversation Starters Rating: 3 out of 5 stars3/5Drive: The Surprising Truth About What Motivates Us by Daniel H. Pink | Conversation Starters Rating: 4 out of 5 stars4/5Zero to One: by Peter Thiel | Conversation Starters Rating: 2 out of 5 stars2/5Make Good Art Rating: 4 out of 5 stars4/5
Reviews for Symbolic Logic
0 ratings0 reviews
Book preview
Symbolic Logic - Lewis Carroll
Symbolic Logic
Lewis Carroll
.
PREFACE TO THE FOURTH EDITION.
The chief alterations, since the First Edition, have been made in the Chapter on ‘Classification’ (pp. 2, 3) and the Book on ‘Propositions’ (pp. 10 to 19). The chief additions have been the questions on words and phrases, added to the Examination-Papers at p. 94, and the Notes inserted at pp. 164, 194.
In Book I, Chapter II, I have adopted a new definition of ‘Classification’, which enables me to regard the whole Universe as a ‘Class,’ and thus to dispense with the very awkward phrase ‘a Set of Things.’
In the Chapter on ‘Propositions of Existence’ I have adopted a new ‘normal form,’ in which the Class, whose existence is affirmed or denied, is regarded as the Predicate, instead of the Subject, of the Proposition, thus evading a very subtle difficulty which besets the other form. These subtle difficulties seem to lie at the root of every Tree of Knowledge, and they are far more hopeless to grapple with than any that occur in its higher branches. For example, the difficulties of the Forty-Seventh Proposition of Euclid are mere child’s play compared with the mental torture endured in the effort to think out the essential nature of a straight Line. And, in the present work, the difficulties of the 5 Liars
Problem, at p. 192, are trifles, light as air,
compared with the bewildering question What is a Thing?
In the Chapter on ‘Propositions of Relation’ I have inserted a new Section, containing the proof that a Proposition, beginning with All,
is a Double Proposition (a fact that is quite independent of the arbitrary rule, laid down in the next Section, that such a Proposition is to be understood as implying the actual existence of its Subject). This proof was given, in the earlier editions, incidentally, in the course of the discussion of the Biliteral Diagram: but its proper place, in this treatise, is where I have now introduced it.
pg_ixIn the Sorites-Examples, I have made a good many verbal alterations, in order to evade a difficulty, which I fear will have perplexed some of the Readers of the first three Editions. Some of the Premisses were so worded that their Terms were not Specieses of the Univ. named in the Dictionary, but of a larger Class, of which the Univ. was only a portion. In all such cases, it was intended that the Reader should perceive that what was asserted of the larger Class was thereby asserted of the Univ., and should ignore, as superfluous, all that it asserted of its other portion. Thus, in Ex. 15, the Univ. was stated to be ducks in this village,
and the third Premiss was Mrs. Bond has no gray ducks,
i.e. No gray ducks are ducks belonging to Mrs. Bond.
Here the Terms are not Specieses of the Univ., but of the larger Class ducks,
of which the Univ. is only a portion: and it was intended that the Reader should perceive that what is here asserted of ducks
is thereby asserted of ducks in this village.
and should treat this Premiss as if it were Mrs. Bond has no gray ducks in this village,
and should ignore, as superfluous, what it asserts as to the other portion of the Class ducks,
viz. Mrs. Bond has no gray ducks out of this village
.
In the Appendix I have given a new version of the Problem of the Five Liars.
My object, in doing so, is to escape the subtle and mysterious difficulties which beset all attempts at regarding a Proposition as being its own Subject, or a Set of Propositions as being Subjects for one another. It is certainly, a most bewildering and unsatisfactory theory: one cannot help feeling that there is a great lack of substance in all this shadowy host——that, as the procession of phantoms glides before us, there is not one that we can pounce upon, and say Here is a Proposition that must be either true or false!
——that it is but a Barmecide Feast, to which we have been bidden——and that its prototype is to be found in that mythical island, whose inhabitants earned a precarious living by taking in each others’ washing
! By simply translating telling 2 Truths
into taking both of 2 condiments (salt and mustard),
telling 2 Lies
into taking neither of them
and telling a Truth and a Lie (order not specified)
into taking only one condiment (it is not specified pg_xwhich),
I have escaped all those metaphysical puzzles, and have produced a Problem which, when translated into a Set of symbolized Premisses, furnishes the very same Data as were furnished by the Problem of the Five Liars.
The coined words, introduced in previous editions, such as Eliminands
and Retinends
, perhaps hardly need any apology: they were indispensable to my system: but the new plural, here used for the first time, viz. Soriteses
, will, I fear, be condemned as bad English
, unless I say a word in its defence. We have three singular nouns, in English, of plural form, series
, species
, and Sorites
: in all three, the awkwardness, of using the same word for both singular and plural, must often have been felt: this has been remedied, in the case of series
by coining the plural serieses
, which has already found it way into the dictionaries: so I am no rash innovator, but am merely following suit
, in using the new plural Soriteses
.
In conclusion, let me point out that even those, who are obliged to study Formal Logic, with a view to being able to answer Examination-Papers in that subject, will find the study of Symbolic Logic most helpful for this purpose, in throwing light upon many of the obscurities with which Formal Logic abounds, and in furnishing a delightfully easy method of testing the results arrived at by the cumbrous processes which Formal Logic enforces upon its votaries.
This is, I believe, the very first attempt (with the exception of my own little book, The Game of Logic, published in 1886, a very incomplete performance) that has been made to popularise this fascinating subject. It has cost me years of hard work: but if it should prove, as I hope it may, to be of real service to the young, and to be taken up, in High Schools and in private families, as a valuable addition to their stock of healthful mental recreations, such a result would more than repay ten times the labour that I have expended on it.
L. C.
29, Bedford Street, Strand.
Christmas, 1896.
pg_xiINTRODUCTION.
TO LEARNERS.
[N.B. Some remarks, addressed to Teachers, will be found in the Appendix, at p. 165.]
The Learner, who wishes to try the question fairly, whether this little book does, or does not, supply the materials for a most interesting mental recreation, is earnestly advised to adopt the following Rules:—
(1) Begin at the beginning, and do not allow yourself to gratify a mere idle curiosity by dipping into the book, here and there. This would very likely lead to your throwing it aside, with the remark This is much too hard for me!
, and thus losing the chance of adding a very large item to your stock of mental delights. This Rule (of not dipping) is very desirable with other kinds of books——such as novels, for instance, where you may easily spoil much of the enjoyment you would otherwise get from the story, by dipping into it further on, so that what the author meant to be a pleasant surprise comes to you as a matter of course. Some people, I know, make a practice of looking into Vol. III first, just to see how the story ends: and perhaps it is as well just to know that all ends happily——that the much-persecuted lovers do marry after all, that he is proved to be quite innocent of the murder, that the wicked cousin is completely foiled in his plot and gets the punishment he deserves, and that the rich uncle in India (Qu. Why in India? Ans. Because, somehow, uncles never can get rich anywhere else) dies at exactly the right moment——before taking the trouble to read Vol. I. pg_xiiThis, I say, is just permissible with a novel, where Vol. III has a meaning, even for those who have not read the earlier part of the story; but, with a scientific book, it is sheer insanity: you will find the latter part hopelessly unintelligible, if you read it before reaching it in regular course.
(2) Don’t begin any fresh Chapter, or Section, until you are certain that you thoroughly understand the whole book up to that point, and that you have worked, correctly, most if not all of the examples which have been set. So long as you are conscious that all the land you have passed through is absolutely conquered, and that you are leaving no unsolved difficulties behind you, which will be sure to turn up again later on, your triumphal progress will be easy and delightful. Otherwise, you will find your state of puzzlement get worse and worse as you proceed, till you give up the whole thing in utter disgust.
(3) When you come to any passage you don’t understand, read it again: if you still don’t understand it, read it again: if you fail, even after three readings, very likely your brain is getting a little tired. In that case, put the book away, and take to other occupations, and next day, when you come to it fresh, you will very likely find that it is quite easy.
(4) If possible, find some genial friend, who will read the book along with you, and will talk over the difficulties with you. Talking is a wonderful smoother-over of difficulties. When I come upon anything——in Logic or in any other hard subject——that entirely puzzles me, I find it a capital plan to talk it over, aloud, even when I am all alone. One can explain things so clearly to one’s self! And then, you know, one is so patient with one’s self: one never gets irritated at one’s own stupidity!
If, dear Reader, you will faithfully observe these Rules, and so give my little book a really fair trial, I promise you, most confidently, that you will find Symbolic Logic to be one of the most, if not the most, fascinating of mental recreations! In this First Part, I have carefully avoided all difficulties which seemed to me to be beyond the grasp of an intelligent child of (say) twelve or fourteen years of age. I have myself taught most of its contents, vivâ voce, to many children, and have pg_xiiifound them take a real intelligent interest in the subject. For those, who succeed in mastering Part I, and who begin, like Oliver, asking for more,
I hope to provide, in Part II, some tolerably hard nuts to crack——nuts that will require all the nut-crackers they happen to possess!
Mental recreation is a thing that we all of us need for our mental health; and you may get much healthy enjoyment, no doubt, from Games, such as Back-gammon, Chess, and the new Game Halma
. But, after all, when you have made yourself a first-rate player at any one of these Games, you have nothing real to show for it, as a result! You enjoyed the Game, and the victory, no doubt, at the time: but you have no result that you can treasure up and get real good out of. And, all the while, you have been leaving unexplored a perfect mine of wealth. Once master the machinery of Symbolic Logic, and you have a mental occupation always at hand, of absorbing interest, and one that will be of real use to you in any subject you may take up. It will give you clearness of thought——the ability to see your way through a puzzle——the habit of arranging your ideas in an orderly and get-at-able form——and, more valuable than all, the power to detect fallacies, and to tear to pieces the flimsy illogical arguments, which you will so continually encounter in books, in newspapers, in speeches, and even in sermons, and which so easily delude those who have never taken the trouble to master this fascinating Art. Try it. That is all I ask of you!
L. C.
29, Bedford Street, Strand.
February 21, 1896.
pg_xiv
pg_xvCONTENTS
BOOK I.
THINGS AND THEIR ATTRIBUTES.
CHAPTER I.
INTRODUCTORY.
page
‘Things’ 1
‘Attributes’ 〃
‘Adjuncts’ 〃
CHAPTER II.
CLASSIFICATION.
‘Classification’ 1½
‘Class’ 〃
‘Peculiar’ Attributes 〃
‘Genus’ 〃
‘Species’ 〃
‘Differentia’ 〃
‘Real’ and ‘Unreal’, or ‘Imaginary’, Classes 2
‘Individual’ 〃
A Class regarded as a single Thing 2½
pg_xviCHAPTER III.
DIVISION.
§ 1.
Introductory.
‘Division’ 3
‘Codivisional’ Classes 〃
§ 2.
Dichotomy.
‘Dichotomy’ 3½
Arbitrary limits of Classes 〃
Subdivision of Classes 4
CHAPTER IV.
NAMES.
‘Name’ 4½
‘Real’ and ‘Unreal’ Names 〃
Three ways of expressing a Name 〃
Two senses in which a plural Name may be used 5
CHAPTER V.
DEFINITIONS.
‘Definition’ 6
Examples worked as models 〃
pg_xviiBOOK II.
PROPOSITIONS.
CHAPTER I.
PROPOSITIONS GENERALLY.
§ 1.
Introductory.
Technical meaning of some
8
‘Proposition’ 〃
‘Normal form’ of a Proposition 〃
‘Subject’, ‘Predicate’, and ‘Terms’ 9
§ 2.
Normal form of a Proposition.
Its four parts:—
(1) ‘Sign of Quantity’ 〃
(2) Name of Subject 〃
(3) ‘Copula’ 〃
(4) Name of Predicate 〃
§ 3.
Various kinds of Propositions.
Three kinds of Propositions:—
(1) Begins with Some
. Called a ‘Particular’ Proposition: also a Proposition ‘in I’ 10
(2) Begins with No
. Called a ‘Universal Negative’ Proposition: also a Proposition ‘in E’ 〃
(3) Begins with All
. Called a ‘Universal Affirmative’ Proposition: also a Proposition ‘in A’ 〃
pg_xviiiA Proposition, whose Subject is an Individual, is to be regarded as Universal 〃
Two kinds of Propositions, ‘Propositions of Existence’, and ‘Propositions of Relation’ 〃
CHAPTER II.
PROPOSITIONS OF EXISTENCE.
‘Proposition of Existence ’ 11
CHAPTER III.
PROPOSITIONS OF RELATION.
§ 1.
Introductory.
‘Proposition of Relation’ 12
‘Universe of Discourse,’ or ‘Univ.’ 〃
§ 2.
Reduction of a Proposition of Relation to Normal form.
Rules 13
Examples worked 〃
§ 3.
A Proposition of Relation, beginning with All
, is a Double Proposition.
Its equivalence to two Propositions 17
pg_xix§ 4.
What is implied, in a Proposition of Relation, as to the Reality of its Terms?
Propositions beginning with Some
19
Propositions beginning with No
〃
Propositions beginning with All
〃
§ 5.
Translation of a Proposition of Relation into one or more Propositions of Existence.
Rules 20
Examples worked 〃
BOOK III.
THE BILITERAL DIAGRAM.
CHAPTER I.
SYMBOLS AND CELLS.
The Diagram assigned to a certain Set of Things, viz. our Univ. 22
Univ. divided into ‘the x-Class’ and ‘the x′-Class’ 23
The North and South Halves assigned to these two Classes 〃
The x-Class subdivided into ‘the xy-Class’ and ‘the xy′-Class’ 〃
The North-West and North-East Cells assigned to these two Classes 〃
The x′-Class similarly divided 〃
The South-West and South-East Cells similarly assigned 〃
The West and East Halves have thus been assigned to ‘the y-Class’ and ‘the y′-Class’ 〃
Table I. Attributes of Classes, and Compartments, or Cells, assigned to them 25
pg_xxCHAPTER II.
COUNTERS.
Meaning of a Red Counter placed in a Cell 26
Meaning of a Red Counter placed on a Partition 〃
American phrase sitting on the fence
〃
Meaning of a Grey Counter placed in a Cell 〃
CHAPTER III.
REPRESENTATION OF PROPOSITIONS.
§ 1.
Introductory.
The word Things
to be henceforwards omitted 27
‘Uniliteral’ Proposition 〃
‘Biliteral’ do. 〃
Proposition ‘in terms of’ certain Letters 〃
§ 2.
Representation of Propositions of Existence.
The Proposition Some x exist
28
Three other similar Propositions 〃
The Proposition No x exist
〃
Three other similar Propositions 29
The Proposition Some xy exist
〃
Three other similar Propositions 〃
The Proposition No xy exist
〃
Three other similar Propositions 〃
The Proposition No x exist
is Double, and is equivalent to the two Propositions No xy exist
and No xy′ exist
30
pg_xxi§ 3.
Representation of Propositions of Relations.
The Proposition Some x are y
〃
Three other similar Propositions 〃
The Proposition Some y are x
31
Three other similar Propositions 〃
Trio of equivalent Propositions, viz. Some xy exist
= Some x are y
= Some y are x
〃
‘Converse’ Propositions, and ‘Conversion’ 〃
Three other similar Trios 32
The Proposition No x are y
〃
Three other similar Propositions 〃
The Proposition No y are x
〃
Three other similar Propositions 〃
Trio of equivalent Propositions, viz. No xy exist
= No x are y
= No y are x
33
Three other similar Trios 〃
The Proposition All x are y
is Double, and is equivalent to the two Propositions Some x are y
and No x are y′
〃
Seven other similar Propositions 34
Table II. Representation of Propositions of Existence 34
Table III. Representation of Propositions of Relation 35
CHAPTER IV.
INTERPRETATION OF BILITERAL DIAGRAM, WHEN MARKED WITH COUNTERS.
Interpretation of Diagram representing x y exists
36
And of three other similar arrangements 〃
pg_xxiiInterpretation of Diagram representing x y does not exist
〃
And of three other similar arrangements 〃
Interpretation of Diagram representing x exists
37
And of three other similar arrangements 〃
Interpretation of Diagram representing x exists with and without y
〃
And of three other similar arrangements 〃
Interpretation of Diagram representing x does not exist
〃
And of three other similar arrangements 〃
Interpretation of Diagram representing all x are y
〃
And of seven other similar arrangements 38
BOOK IV.
THE TRILITERAL DIAGRAM.
CHAPTER I.
SYMBOLS AND CELLS.
Change of Biliteral into Triliteral Diagram 39
The xy-Class subdivided into ‘the xym-Class’ and ‘the xym′-Class’ 40