Discover millions of ebooks, audiobooks, and so much more with a free trial

Only $9.99/month after trial. Cancel anytime.

Big Data Analytics: Turning Big Data into Big Money
Big Data Analytics: Turning Big Data into Big Money
Big Data Analytics: Turning Big Data into Big Money
Ebook247 pages5 hours

Big Data Analytics: Turning Big Data into Big Money

Rating: 0 out of 5 stars

()

Read preview

About this ebook

Unique insights to implement big data analytics and reap big returns to your bottom line

Focusing on the business and financial value of big data analytics, respected technology journalist Frank J. Ohlhorst shares his insights on the newly emerging field of big data analytics in Big Data Analytics. This breakthrough book demonstrates the importance of analytics, defines the processes, highlights the tangible and intangible values and discusses how you can turn a business liability into actionable material that can be used to redefine markets, improve profits and identify new business opportunities.

  • Reveals big data analytics as the next wave for businesses looking for competitive advantage
  • Takes an in-depth look at the financial value of big data analytics
  • Offers tools and best practices for working with big data

Once the domain of large on-line retailers such as eBay and Amazon, big data is now accessible by businesses of all sizes and across industries. From how to mine the data your company collects, to the data that is available on the outside, Big Data Analytics shows how you can leverage big data into a key component in your business's growth strategy.

LanguageEnglish
PublisherWiley
Release dateNov 15, 2012
ISBN9781118239049

Related to Big Data Analytics

Titles in the series (79)

View More

Related ebooks

Business For You

View More

Related articles

Reviews for Big Data Analytics

Rating: 0 out of 5 stars
0 ratings

0 ratings0 reviews

What did you think?

Tap to rate

Review must be at least 10 words

    Book preview

    Big Data Analytics - Frank J. Ohlhorst

    Chapter 1

    What Is Big Data?

    What exactly is Big Data? At first glance, the term seems rather vague, referring to something that is large and full of information. That description does indeed fit the bill, yet it provides no information on what Big Data really is.

    Big Data is often described as extremely large data sets that have grown beyond the ability to manage and analyze them with traditional data processing tools. Searching the Web for clues reveals an almost universal definition, shared by the majority of those promoting the ideology of Big Data, that can be condensed into something like this: Big Data defines a situation in which data sets have grown to such enormous sizes that conventional information technologies can no longer effectively handle either the size of the data set or the scale and growth of the data set. In other words, the data set has grown so large that it is difficult to manage and even harder to garner value out of it. The primary difficulties are the acquisition, storage, searching, sharing, analytics, and visualization of data.

    There is much more to be said about what Big Data actually is. The concept has evolved to include not only the size of the data set but also the processes involved in leveraging the data. Big Data has even become synonymous with other business concepts, such as business intelligence, analytics, and data mining.

    Paradoxically, Big Data is not that new. Although massive data sets have been created in just the last two years, Big Data has its roots in the scientific and medical communities, where the complex analysis of massive amounts of data has been done for drug development, physics modeling, and other forms of research, all of which involve large data sets. Yet it is these very roots of the concept that have changed what Big Data has come to be.

    THE ARRIVAL OF ANALYTICS

    As analytics and research were applied to large data sets, scientists came to the conclusion that more is better—in this case, more data, more analysis, and more results. Researchers started to incorporate related data sets, unstructured data, archival data, and real-time data into the process, which in turn gave birth to what we now call Big Data.

    In the business world, Big Data is all about opportunity. According to IBM, every day we create 2.5 quintillion (2.5 × 10¹⁸) bytes of data, so much that 90 percent of the data in the world today has been created in the last two years. These data come from everywhere: sensors used to gather climate information, posts to social media sites, digital pictures and videos posted online, transaction records of online purchases, and cell phone GPS signals, to name just a few. That is the catalyst for Big Data, along with the more important fact that all of these data have intrinsic value that can be extrapolated using analytics, algorithms, and other techniques.

    Big Data has already proved its importance and value in several areas. Organizations such as the National Oceanic and Atmospheric Administration (NOAA), the National Aeronautics and Space Administration (NASA), several pharmaceutical companies, and numerous energy companies have amassed huge amounts of data and now leverage Big Data technologies on a daily basis to extract value from them.

    NOAA uses Big Data approaches to aid in climate, ecosystem, weather, and commercial research, while NASA uses Big Data for aeronautical and other research. Pharmaceutical companies and energy companies have leveraged Big Data for more tangible results, such as drug testing and geophysical analysis. The New York Times has used Big Data tools for text analysis and Web mining, while the Walt Disney Company uses them to correlate and understand customer behavior in all of its stores, theme parks, and Web properties.

    Big Data plays another role in today’s businesses: Large organizations increasingly face the need to maintain massive amounts of structured and unstructured data—from transaction information in data warehouses to employee tweets, from supplier records to regulatory filings—to comply with government regulations. That need has been driven even more by recent court cases that have encouraged companies to keep large quantities of documents, e-mail messages, and other electronic communications, such as instant messaging and Internet provider telephony, that may be required for e-discovery if they face litigation.

    WHERE IS THE VALUE?

    Extracting value is much more easily said than done. Big Data is full of challenges, ranging from the technical to the conceptual to the operational, any of which can derail the ability to discover value and leverage what Big Data is all about.

    Perhaps it is best to think of Big Data in multidimensional terms, in which four dimensions relate to the primary aspects of Big Data. These dimensions can be defined as follows:

    1. Volume. Big Data comes in one size: large. Enterprises are awash with data, easily amassing terabytes and even petabytes of information.

    2. Variety. Big Data extends beyond structured data to include unstructured data of all varieties: text, audio, video, click streams, log files, and more.

    3. Veracity. The massive amounts of data collected for Big Data purposes can lead to statistical errors and misinterpretation of the collected information. Purity of the information is critical for value.

    4. Velocity. Often time sensitive, Big Data must be used as it is streaming into the enterprise in order to maximize its value to the business, but it must also still be available from the archival sources as well.

    These 4Vs of Big Data lay out the path to analytics, with each having intrinsic value in the process of discovering value. Nevertheless, the complexity of Big Data does not end with just four dimensions. There are other factors at work as well: the processes that Big Data drives. These processes are a conglomeration of technologies and analytics that are used to define the value of data sources, which translates to actionable elements that move businesses forward.

    Many of those technologies or concepts are not new but have come to fall under the umbrella of Big Data. Best defined as analysis categories, these technologies and concepts include the following:

    Traditional business intelligence (BI). This consists of a broad category of applications and technologies for gathering, storing, analyzing, and providing access to data. BI delivers actionable information, which helps enterprise users make better business decisions using fact-based support systems. BI works by using an in-depth analysis of detailed business data, provided by databases, application data, and other tangible data sources. In some circles, BI can provide historical, current, and predictive views of business operations.

    Data mining. This is a process in which data are analyzed from different perspectives and then turned into summary data that are deemed useful. Data mining is normally used with data at rest or with archival data. Data mining techniques focus on modeling and knowledge discovery for predictive, rather than purely descriptive, purposes—an ideal process for uncovering new patterns from large data sets.

    Statistical applications. These look at data using algorithms based on statistical principles and normally concentrate on data sets related to polls, census, and other static data sets. Statistical applications ideally deliver sample observations that can be used to study populated data sets for the purpose of estimating, testing, and predictive analysis. Empirical data, such as surveys and experimental reporting, are the primary sources for analyzable information.

    Predictive analysis. This is a subset of statistical applications in which data sets are examined to come up with predictions, based on trends and information gleaned from databases. Predictive analysis tends to be big in the financial and scientific worlds, where trending tends to drive predictions, once external elements are added to the data set. One of the main goals of predictive analysis is to identify the risks and opportunities for business process, markets, and manufacturing.

    Data modeling. This is a conceptual application of analytics in which multiple what-if scenarios can be applied via algorithms to multiple data sets. Ideally, the modeled information changes based on the information made available to the algorithms, which then provide insight to the effects of the change on the data sets. Data modeling works hand in hand with data visualization, in which uncovering information can help with a particular business endeavor.

    The preceding analysis categories constitute only a portion of where Big Data is headed and why it has intrinsic value to business. That value is driven by the never-ending quest for a competitive advantage, encouraging organizations to turn to large repositories of corporate and external data to uncover trends, statistics, and other actionable information to help them decide on their next move. This has helped the concept of Big Data to gain popularity with technologists and executives alike, along with its associated tools, platforms, and analytics.

    MORE TO BIG DATA THAN MEETS THE EYE

    The volume and overall size of the data set is only one portion of the Big Data equation. There is a growing consensus that both semistructured and unstructured data sources contain business-critical information and must therefore be made accessible for both BI and operational needs. It is also clear that the amount of relevant unstructured business data is not only growing but will continue to grow for the foreseeable future.

    Data can be classified under several categories: structured data, semistructured data, and unstructured data. Structured data are normally found in traditional databases (SQL or others) where data are organized into tables based on defined business rules. Structured data usually prove to be the easiest type of data to work with, simply because the data are defined and indexed, making access and filtering easier.

    Unstructured data, in contrast, normally have no BI behind them. Unstructured data are not organized into tables and cannot be natively used by applications or interpreted by a database. A good example of unstructured data would be a collection of binary image

    Enjoying the preview?
    Page 1 of 1