Discover millions of ebooks, audiobooks, and so much more with a free trial

Only $9.99/month after trial. Cancel anytime.

Biotech: The Countercultural Origins of an Industry
Biotech: The Countercultural Origins of an Industry
Biotech: The Countercultural Origins of an Industry
Ebook468 pages5 hours

Biotech: The Countercultural Origins of an Industry

Rating: 0 out of 5 stars

()

Read preview

About this ebook

The seemingly unlimited reach of powerful biotechnologies and the attendant growth of the multibillion-dollar industry have raised difficult questions about the scientific discoveries, political assumptions, and cultural patterns that gave rise to for-profit biological research. Given such extraordinary stakes, a history of the commercial biotechnology industry must inquire far beyond the predictable attention to scientists, discovery, and corporate sales. It must pursue how something so complex as the biotechnology industry was born, poised to become both a vanguard for contemporary world capitalism and a focal point for polemic ethical debate.

In Biotech, Eric J. Vettel chronicles the story behind genetic engineering, recombinant DNA, cloning, and stem-cell research. It is a story about the meteoric rise of government support for scientific research during the Cold War, about activists and student protesters in the Vietnam era pressing for a new purpose in science, about politicians creating policy that alters the course of science, and also about the release of powerful entrepreneurial energies in universities and in venture capital that few realized existed. Most of all, it is a story about people—not just biologists but also followers and opponents who knew nothing about the biological sciences yet cared deeply about how biological research was done and how the resulting knowledge was used.

Vettel weaves together these stories to illustrate how the biotechnology industry was born in the San Francisco Bay area, examining the anomalies, ironies, and paradoxes that contributed to its rise. Culled from oral histories, university records, and private corporate archives, including Cetus, the world's first biotechnology company, this compelling history shows how a cultural and political revolution in the 1960s resulted in a new scientific order: the practical application of biological knowledge supported by private investors expecting profitable returns eclipsed basic research supported by government agencies.

LanguageEnglish
Release dateMar 1, 2013
ISBN9780812203622
Biotech: The Countercultural Origins of an Industry

Related to Biotech

Related ebooks

Science & Mathematics For You

View More

Related articles

Related categories

Reviews for Biotech

Rating: 0 out of 5 stars
0 ratings

0 ratings0 reviews

What did you think?

Tap to rate

Review must be at least 10 words

    Book preview

    Biotech - Eric J. Vettel

    POLITICS AND CULTURE IN MODERN AMERICA

    Series Editors: Glenda Gilmore, Michael Kazin, Thomas Sugrue

    Volumes in the series narrate and analyze political and social change in the broadest dimensions from 1865 to the present, including ideas about the ways people have sought and wielded power in the public sphere and the language and institutions of politics at all levels—national, regional, and local. The series is motivated by a desire to reverse the fragmentation of modern U.S. history and to encourage synthetic perspectives on social movements and the state, on gender, race, and labor, on consumption, and on intellectual history and popular culture.

    Biotech

    The Countercultural Origins of an Industry

    ERIC J. VETTEL

    PENN

    University of Pennsylvania Press

    Philadelphia

    Copyright © 2006 University of Pennsylvania Press

    All rights reserved

    Printed in the United States of America on acid-free paper

    10   9   8   7   6   5   4   3   2   1

    Published by

    University of Pennsylvania Press

    Philadelphia, Pennsylvania 19104-4112

    Library of Congress Cataloging-in-Publication Data

    Vettel, Eric James.

    Biotech : the countercultural origins of an industry / Eric J. Vettel.

        p. cm.—(Politics and culture in modern America)

    Includes bibliographical references (p. ) and index.

       ISBN: 978-0-8122-2051-3

    1. Biotechnology industries—History.  I. Title.  II. Series.

    HD9999.B442  V48  2006

    338.4′76606 22

    2006041846

    To Maggie, Reed, and Whit, and for them, too.

    Contents

    Preface

    1. The Setting, 1946…

    2. Patronage and Policy

    3. The Promise and Peril of the BVL

    4. The Ascent of Pure Research

    5. Research Life!

    6. A Season of Policy Reform

    7. Crossing the Threshold

    8. Cetus: History's First Biotechnology Company

    Conclusion: An End…

    Notes

    Sources Consulted

    Index

    Preface

    We have had to run at full speed in order to stand still.

    —Robert Glaser, October 31, 1969

    Dean of Stanford University Medical School

    Message to the Biosciences

    The seemingly unlimited reach of powerful biotechnologies, and the attendant growth of the multi-billion-dollar industry, have raised difficult questions about the scientific discoveries, political assumptions, and cultural patterns that gave rise to for-profit biological research. Given such extraordinary stakes, a history of the commercial biotechnology industry must go beyond the predictable attention to scientists, discovery, and corporate sales. It must pursue how something so complex as the biotechnology industry was born, and how it became both a vanguard for contemporary world capitalism and a focal point for polemic ethical debate.

    This is the story of the industry behind genetic engineering, recombinant DNA, cloning, and stem-cell research. It is a story about activists and student protestors pressing for a new purpose in science, and about politicians trying to create policy that aids or alters the course of science, and also about the release of powerful entrepreneurial energies in universities and in venture capital that few realized existed. Most of all, this is a story about people—not just biological scientists, but also followers and opponents who knew nothing about the biological sciences yet cared deeply about how research was done and how its findings were used.

    There are many paths through this story, but the one followed here runs through the biological sciences at the three major research universities in the San Francisco Bay Area—the University of California at Berkeley, Stanford University, and the University of California Medical Center at San Francisco (UCSF)—during the thirty years following World War II. It is not a detailed summary of all the key discoveries that led to the creation of what is commonly known today as biotechnology, or a comprehensive study of a new scientific industry; it is a work of historical interpretation. It is a story about a young, impatient, dynamic region where people took risks to shape and then lead a scientific field. It is about the collision of culture, politics, economics, and science—that is, dramatic social and cultural change, a transforming political economy, and a sudden revolution in the biological sciences.

    This is a book about the making of a biotechnology industry.

    The historical narrative will follow the twists and turns of the biological sciences as they careen back and forth between pure and applied discovery. The story begins in the early postwar era when small groups of biological scientists carved a spacious and autonomous experimental niche within the larger discipline of life science. These bioscientists intended to trace the science of life to its natural beginnings, a pure science whose tributaries would converge on fundamental answers to life's most basic questions. But suddenly, in the early 1960s, a series of scientific mishaps occurred—including the thalidomide scare, the Cutter Laboratory polio outbreak, Rachel Carson's warning of permanent ecological damage—which cooled public support of unrestrained science that seemed empty of purpose. By the mid-1960s, public opinion shifted as the political right began to criticize New Deal-like government support of scientific research, while an influential political left saw pure biological research as a profound betrayal of the human side of the life sciences. By the late 1960s, the idea that bioscience research should serve the needs of people had surged through the electoral system without the calming restraint of partisan attachment, as political representatives from both parties and at all levels of government—from Lyndon Johnson to Richard Nixon, from Willie Brown to Shirley Temple Black—lent rhetorical and financial support for any biological research that had practical purpose. At the same time, a deepening economic crisis forced policymakers to slash research budgets, which left venture capital as the new resonant soulmate for biologists desperate for sustainable research patronage, even if it meant shifting experimental focus from pure to applied.

    Scientists have long used terms like pure and applied—and their respective synonyms—to describe two kinds of research: the former emphasizes fundamental discovery, the latter emphasizes practical application. However, as the discerning reader probably already knows, both terms are unavoidably ambiguous and merely occupy opposite and extreme points on a continuous spectrum. Most experiments are neither entirely one nor entirely the other, especially in the biological sciences where virtually any fundamental discovery can show some practical relevance to life, and any practical application may lead to new knowledge. It is not my intention to engage an epistemological debate about the relevance of these two terms, or explain the sociological function of these terms within a dynamic scientific community. A substantial body of literature on the epistemology or sociology of experimental communities has been accumulating for some time. Rather, my goal here is to provide an account that places the travails of basic bioscience research and its corollary, the ascendancy of applied bioscience research, in historical context, and examine their relationship to the rise of the biotechnology industry.¹

    There is, in fact, ample evidence that research categories like pure and applied are historically contingent. For example, in 1967, Science called for an open forum in which to discuss the significance and relevance of these two terms. That a leading academic journal thought it necessary to provoke debate provides an important first clue that the meaning of pure and applied research might be historically contingent. The tone of the debate was intense. Most of the articles submitted to the journal expressed a deep revulsion with the categories and agreed that the difference between basic and applied research was often minimal and perhaps meaningless—one scientist went so far as to call it a false consciousness. The defining features of all the essays—the hyper-defensiveness, the fierce rejection of overly simplistic descriptive categories, and the surging sense that binary categories betrayed the unity of science—offer a second clue that pure and applied bioscience research might be inextricably bound to historical context.²

    From 1946 through the early 1960s, biological scientists at Berkeley, Stanford, and UCSF made consistent decisions about recruitment, collaboration, and publishing, and exchanged ideas between disciplines, that established pure research as superior to applied research. In general, this period was a watershed for fundamental discovery, while experiments that appeared remotely concerned with matters pertaining to medicine or agriculture were considered less worthy. That all changed in the mid-1960s when the transforming political culture and political economy compelled the opposite; many investigators responded by reconstructing their professional identities differently across time and at the same time across different disciplines. Bioscientists who identified themselves as pure or fundamental researchers in the 1950s were retroactively, in light of the rising status of utilitarian concerns during the late 1960s, eager to reconstruct their careers, laboratories, and work as part of the applied bioscience story. This shift did not merely add energy to the biological sciences; it would also release powerful popular entrepreneurial and commercial energies that few realized existed.

    If there should be no meaningful distinction between basic and applied research, as none other than Albert Einstein once commented, then perhaps the same ambiguity also applies to the biological seiences. Indeed, how should historians approach a dynamic scientific field like the biological sciences, especially during the uniquely malleable moments of the 1960s when a substantial and impressive range of fundamental discoveries were made—and then, to a measurable degree, remade, so that practical applications were paramount? Against this backdrop, what stands out about the biological sciences during this period is the consequent sweep of scientific participation and contribution. The changes taking place in the biological sciences were not occurring just in molecular biology, biochemistry, or genetics, but wherever an investigator linked life to physics and mechanics, to its chemical processes, or in anatomy, bacteriology, cell biology, embryology, endocrinology, immunology, microbiology, pathology, physiology, virology, and so on and many other subdisciplines not typically associated with the term. In other words, the reconfiguration of the biological sciences—simply, any experimental work conducted in a laboratory on a topic broadly related to life science—rather than the history of a single biological discipline is the central theme of this story.³

    I have chosen to emphasize how this story plays in the San Francisco Bay Area—especially at Berkeley, Stanford, and UCSF. Indeed, into this booming metropolis poured unprecedented amounts of federal funds, politicized youth, and elite academic scientists. Other innovative centers, such as Route 128 in Boston, the Research Corridor in Washington, D.C., San Diego, and Seattle, or overseas (at King's College, Cambridge, and London; the Pasteur Institute in Paris; and the University of Tokyo), all housed similar arrays of constituent interests. No region, however, grew as rapidly or occupied center stage in the biological sciences and then biotechnology for as long or as significantly as the San Francisco Bay Area. Moreover, a region like the Bay Area that has three prominent universities provides an ideal site of inquiry. Consider the differences of these three universities in the context of the biological sciences: Berkeley's lack of a medical school and its success as the premier public research university restricted alternative bioscience questions; Stanford had a medical school and expanding bioscience research programs, but the combination of the two promoted intense disciplinary competition; in contrast, the focus on medical care at UCSF once meant the interests and needs of physicians superceded bioscience research, until both sides found common cause in applied bioscience research. Thus, a focus on a region rather than a single institution or discipline allows for the investigation of how a variety of actors approached evolving bioscience questions amid both historical and technical change. Put another way, a study of the biological sciences in the Bay Area offers the analytical possibility of comparative history within its own borders.

    The organization of this book is primarily chronological, weaving between universities and various bioscience research programs. The first half of the book focuses on the biological sciences as they appeared at Berkeley, Stanford, and UCSF during the heyday of pure research, from the end of World War II until the mid-1960s. Chapter 1 establishes, as a point of reference, a sampling of the biological sciences in the Bay Area just after World War II. Chapter 2 offers a comparative profile of the two leading bioscience patrons of the day—the private Rockefeller Foundation and, more significantly, the U.S. government and its many constituent agencies—and then takes a closer look at how bioscientists were able to seize preponderant control of federal science agencies and dictate patterns of research. The narrative narrows in Chapter 3 to focus momentarily on the particular activities and organization of perhaps the single most promising bioscience program of the day: Wendell Stanley's Biochemistry and Virus Laboratory at UC Berkeley. Disciplinary tension in general, and the destructive consequences of a program rigidly committed to basic research, is examined in the context of rapid scientific changes—notably, the discovery of DNA's double helix and its internal copying mechanism. Chapter 4 steps back to show how a new group of bioscientists and university administrators—led by, among others, Arthur Romberg's laboratory at Stanford, Julius Comroe's Cardiovascular Research Institute at UCSF, and Donald Glaser's program in molecular biology at Berkeley—moved in unison and without hesitation toward an unwavering commitment toward fundamental research.

    The second half of the book explores in greater detail the relationship between bioscientists, society, and the state, chiefly by looking at the waning popular and financial support for basic bioscience research. Chapter 5 explores how activists in the Bay Area reacted against the idea of basic research and challenged bioscientists to rededicate their work toward more practical concerns. Chapter 6 examines a federal policy realignment that actively promoted practical bioscience research objectives over pure. The issues in this chapter are motive and representation, in a highly political sense—government officials responded to the public's distress by implementing policies that encouraged greater commitment by investigators to practical bioscience research objectives. Chapter 7 shows how the bioscience community, fraught with its own internal divisions and disciplinary competition, struggled against and then accommodated the shifting political culture and political economy. This chapter concludes by identifying a wide sample of applied bioscience research projects, including the development of several bioengineering techniques in the laboratories of Paul Berg and Stanley Cohen at Stanford University and Bill Rutter and Herbert Boyer at the University of California, San Francisco. In Chapter 8, the narrative focuses entirely on the birth of Cetus Corporation, the world's first biotechnology company. In this chapter, a doctor, a biologist, a physicist, and a venture capitalist break off from traditional academic models to exploit untapped commercial potential in the biological sciences. This book concludes by looking at the desperate response of biological scientists to ideological pressure, weakening of federal science policy, and privatization of research, and how their collective response inadvertently fueled the biotechnology industry.

    In writing this book I have drawn on a rich body of sources. Fortunately, the biological sciences are exceptionally well documented in the Stanford, UCSF, and Berkeley archives, and in places far from the San Francisco Bay Area, including the University of Chicago, the Rockefeller Archive Center, and the Smithsonian Institution, National Museum of American History. I was also very fortunate to have found an obscure collection of primary sources held at the Pacific Studies Center in Mountain View, California, and generously given access by Chiron Corporation in Emeryville, California, to the private collection of papers documenting the historic rise of Cetus. I owe a deep debt of gratitude to executives at Chiron, for they understand better than most the importance of primary archival research. I also spoke directly to many of the historical actors in this story, and I used the vast collection of oral histories produced by the Regional Oral History Office at the University of California, Berkeley. Wherever possible, I have intentionally allowed the historical actors to speak in their own voices, providing an evocative portrait of a fast-paced scientific field, an even faster-paced industry, and a people caught in a revolution they only partially understood at the time. I am aware that individual accounts of the past rarely coincide with one other. Participants have only a partial view of events as they unfold, and over time, memories fade. Moreover, many actors have a peculiar interpretation of the past—for instance, left-leaning investigators blamed the Nixon administration for slashing support for basic bioscience research, and more conservative investigators pointed accusing fingers at the misplaced agendas of student radicals. The profusion of available evidence—oral histories, interviews, periodicals, university administrative records, corporate archives, scientific notebooks and publications, and so on—meant that different facts could be compared and checked against other documented sources. I am grateful to have had access to these resources, for they provided me with much needed distance from the many contentious debates that surround biotechnology and the industry.

    Among the important implications of this account is a corrective that broadens the matrix within which we think about what it means to do science, and thus challenges those who naively celebrate or lament the power of scientists, patrons, or activists. This story provides essential historical background for contemporary debates on bioethics, genetic engineering, gene ownership, and cloning. The arguments contained herein also apply to other technical fields and disciplines; all science crosses the threshold into society, and is unavoidably reshaped once it gets there. The biological sciences may have been unusually dynamic in the San Francisco Bay Area—it is arguably the epicenter of the biotechnology industry—but its history shows the undeniable relationship between science and society. The lessons from this story should make possible a better measure of the biotechnology industry, then and today.

    Chapter 1

    The Setting, 1946…

    Do thou but choose, oh Noble Sirs,

    For ’tis as sure as Fate

    Thy deeds done of this day

    Shall light thee down

    Time's pathways of the future,

    To Fame or Infamy

    Do thou but choose.

    Herbert Evans, bioscientist at the

    University of California,

    regarding the future of the biological sciences,

    from the vantage point of 1946

    The San Francisco Bay Area, with its own history of scientific successes and its emerging presence at the edge of a technological revolution, had established itself by the end of World War II as a preeminent research center. Here, some critical discoveries had occurred, particularly in wartime production industries—radar, microwave, communication, electrical engineering, and computation. Seemingly every day throughout the war someone announced a stunning development: the Varian brothers invented a radar system; Berkeley physicists split atoms and released millions of electron volts of energy; Charles Litton gave up glassware manufacturing to build vacuum tubes; Bill Hewlett and David Packard invented a series of gadgets that produced controllable and accurate electronic signals. And because of the actions of Bay Area scientists and engineers, an infrastructure took shape, with the federal government, business, and higher education each occupying one leg of an increasingly intricate and powerful relationship. Extending the network still further, as the Bay Area grew as a research center, so too did the needs of the region, only to be fulfilled with the arrival of more scientists, machinists, managers, technicians, and engineers.¹

    Yet, despite irrepressible enthusiasm for anything scientific and technical, the Bay Area was a virtual backwater in the biological sciences.

    To be sure, the Bay Area had its share of private biological firms: among others, Stayner, Lederle, and Abbott Laboratories in the East Bay, and divisions of Cutter Labs, Sharpe & Dohme, and DuPont in and around San Francisco. Caught in a great rush to duplicate the wartime antibiotic successes—such as the sulfas, penicillin, and streptomycin—these local companies focused entirely on production of pharmaceutical agents, competitive pricing, and efficient distribution processes, but typically neglected research. Companies like Stayner Laboratories sent soil microbiologists to every corner of the world to sift through samples of dirt for the next miracle mold, Cutter Labs chemists tried to modify fermentation processes to increase polio vaccine yields, Lederle Labs grew and sold biological cultures, Abbott Labs provided simple screening services to test the potency of biological agents, and larger pharmaceutical companies continued to extract hormones from pig and cow cadavers rather than search for substances safe for human use. One divisional laboratory manager, noticing the general trend toward production and away from research, complained that everywhere he looked he saw enormous sums of money invested in chemical production while chemical effectiveness was rarely understood.²

    More curious than the general ineffectiveness of the local biological industry, the biological sciences at the three major universities in the Bay Area—University of California, Berkeley; the University of California Medical Center in San Francisco; and Stanford University—languished with feeble experimental output and unexceptional student enrollments. Certainly each campus had isolated successes. During the 1920s and 1930s, the UC Medical Center worked closely with the San Joaquin Valley's canning industry to help prevent botulism outbreaks, UC Berkeley biochemists identified and isolated a number of vitamins in pure form, and Stanford biologists did more for U.S. fisheries than any other educational institution in the United States. However, to anyone other than the most provincial, the productivity of biological scientists in the Bay Area by the end of the war can only be measured as a collective disappointment.³

    Bioscientists in the Bay Area, then, probably interpreted the scientific successes during the war much like everyone else, with the same jumble of ambivalent feelings: joy and relief, doubt and fear, a sense that perhaps science could one day go too far. But for them, the growing importance of scientific research and development promised, if not dramatic experimental results, every reasonable expectation to push their programs in the immediate future. Experimental biologists at all three Bay Area universities, saddled with a history of remarkable scientific achievement to which they contributed very little, understood they now had before them new opportunities.

    Three universities in the postwar era: Each molded by World War II, each destined to become leading academic institutions, each determined to play a leading role in the biological sciences. Of the three, only UC Berkeley was recognized internationally as a great university, but its administration wanted more. In the 1910s, just four decades after inception, Berkeley had catapulted into the Big Six of elite universities, by the 1920s had moved into a tie for second place with Chicago, Columbia, and Yale, and in the 1930s held sole possession of second place, behind only Harvard. Then, just as suddenly, Berkeley's rapid advance slowed to a standstill. Despite the growing number of Nobel laureates, its legendary contributions to the war effort, and the greatest number of top departmental rankings for any individual university in the country, Berkeley could not supplant the forebear of higher education. University administrators agonized about the ranking that lay just beyond their grasp. How could Berkeley break through the habits of tradition? What sort of strategies might shake up these rankings and at the same time best serve Berkeley's interests? In short, what must the university do to supplant Harvard as the best university in the country?

    Berkeley's near-ideal showing posed two overarching problems for those who cared about these sort of things: how could Berkeley seize the highest spot with so many academic programs already having achieved elite status, and conversely, which programs hurt their overall ranking and what could be done about them? It was in this context—of academic rankings, both real and imagined, in the driving ambition to satisfy sincere intellectual curiosities, in the pursuit of scientific distinction, and in the fickle hierarchy of shifting academic reputations—that Berkeley faculty and administrators identified the biological sciences as in greatest need for renewal. It was a wise choice: many critics agreed with one published report of 1947 that while certain aspects of science…perform exceedingly well,…this great University is as yet weak in biological sciences. Depending on the poll, the biological sciences at the University of California ranked somewhere in the range of twenty-fifth to thirty-fifth in the country. The biological sciences at the University of California were arguably the weakest academic program.

    President Robert G. Sproul determined to strike boldly. A graduate of Berkeley, Sproul had spent just one year away from his alma mater working for the nearby city of Oakland, and then promptly returned to the university where he worked for the next forty-four years, twenty-eight as its president. Parochial he may have been, but he had many of the right qualities to lead a public research university such as Berkeley: an extraordinary dedication to managing details, the ability to take considerable pressure, and, if need be, the courage and political acumen to force through unpopular decisions. Hopelessly unwilling to trust anyone but himself with his dream to build Berkeley into the country's leading academic institution, Sproul moved quickly to solve Berkeley's problem with the biological sciences.

    That fateful opportunity came in 1946 when Berkeley's most prominent and unquestioned leader in the biological sciences, the biochemist C. L. A. Schmidt, fell ill and died. While colleagues mourned his passing, President Sproul led a behind-the-scenes search for a replacement who could shape an enlightened national and international biological research agenda. During a crosscountry trip, President Sproul fortuitously bumped into Wendell Stanley—a biochemist of world renown—and shared his frustrations.

    The president's clandestine overtures precluded any immediate interest from Stanley, for the simple reason that Stanley saw Sproul's grand dream and Berkeley's weakened state in the biological sciences as largely incompatible notions. What was more, Stanley knew that Sproul's lavish expectations would flummox the current faculty in the biological sciences. For years, Sproul had allowed the biosciences to expand virtually unrestrained across the full terrain of the field. While physics thrived under such liberal administrative conditions, the biosciences had become, by 1946, less organized, less productive, and more isolated than the ideal of free science allowed. Nor did it necessarily work automatically. Though the exact number of faculty working in the biosciences was conjectural, Sproul was in essence asking Stanley to hold together more than one hundred full-time faculty in twenty-nine experimental programs scattered throughout the Arts and Sciences, the College of Agriculture, and the Pre-Clinical Sciences. Clearly, it was not simple administrative timidity but practical realism that had choked Berkeley's rise.

    Stanley, in the habit of speaking bluntly, presented Sproul with a specific solution to improve Berkeley's biological sciences. First, every bioscientist at Berkeley must focus all of their professional energies on a single, highly specific research topic (much like he had focused on virology) around which a top-flight chairman (much like himself) had full charge to trim deadwood staff and replace them with hand-picked specialists. Furthermore, and in Stanley's mind most crucial, the remaining faculty must sever their connections with medical or agricultural research and unite as a free-standing or autonomous department, dedicated entirely to pure research.

    Ever receptive to a novel plan, Sproul easily succumbed to Stanley's seductive logic. Not least among Sproul's reasons for backing the initiative were Stanley's professional aura and dogged determination, which seemed perfectly suited to the leader of a first-class biological research program. To a degree uncommon among Berkeley's biological scientists, Stanley appeared to be a steadfast scholar, even something of an academic opportunist. Ironically, Stanley's impatience and unwavering self-confidence that Sproul appreciated would eventually become his greatest burden as an academic leader at Berkeley. So would his experimental focus, established early in his career and reinforced by early successes.

    Stanley, forty-two when he met Sproul on that auspicious flight in 1946, had moved swiftly through his scientific training to become, in his own unapologetic words, just about the top experimentalist in the country. A colleague once described him as endowed with vast skills that matched the impressions that he had of himself. Stanley's air of superiority probably came from continuous educational successes. He graduated from Earlham College in 1926 with degrees in chemistry and mathematics, raced through the doctorate program in chemistry at the University of Illinois at Champaign-Urbana, and then in 1929 won a National Research Fellowship to study chemistry in Munich—perhaps the strongest chemical research center in the world. Two years later, in 1931, Stanley accepted an appointment that changed his life: biochemistry research at the Rockefeller Institute for Medical Research at Princeton University.¹⁰

    While most investigators at the Rockefeller Institute studied the treatment of disease, Stanley wanted to understand the process of disease, to spend more time at the lab-bench rather than in the hospital, where he could apply his training in basic chemistry without the distraction of patient care. It was during Stanley's time alongside clinical researchers that he developed an acute and near maniacal interest in viruses. This interest made him an enthusiastic proponent of virology at a time when most experimental topics were still prescribed from traditional medical and agricultural concerns.¹¹

    To understand the viruses, Stanley determined to do something no one else had done before: he wanted to see them. All day and through many nights Stanley holed up in his lab and took photo after photo of crystallized TMV (tobacco-mosaic viruses) and pecked out his impressions on a portable typewriter. Soon his pictures and observations started to appear on colleagues' desks and in dozens of journal publications. It took Stanley nearly two years to convince a skeptical scientific community to accept his hypothesis that viruses were identifiable and self-reproducing proteins. Scientific American touted Stanley's crystallization of the virus as unbelievable and wholly novel, while prominent scientists described the work as the most important breakthrough in understanding the molecular basis…of biology. That was not nearly ambitious enough, said another: No discovery made at the Rockefeller Institute, before or since, created such astonishment throughout the scientific world. The popular press also gave Stanley's work a great deal of attention; the New York Times credited Stanley with unraveling the riddle of life: in the light of Dr. Stanley's discovery, the old distinction between life and death loses some of its validity. Stanley's continued scientific accomplishments, including the development of an important influenza vaccine during an epidemic that had slowed military recruiting during World War II, added to his already considerable prestige.¹²

    Sproul could believe without difficulty that Stanley's accumulating achievements, as well as his experimental focus and approach, were ideal for an elite research university such as Berkeley. For these reasons, Sproul unashamedly approached the University of California Regents and proposed an ambitious vision of an enormous, state-of-the-art 30,000-square-foot laboratory for the biological sciences, with Wendell Stanley as the chairman, an appointment Sproul maintained would bring great distinction to the University. Predictably, the regents considered Sproul's case with deliberate speed—until the Nobel Prize committee announced that Stanley had won that year's most coveted prize for his groundbreaking work on viruses. Then with uncharacteristic swiftness, the regents offered Stanley a grand salary of $9,600 and nearly complete authority to select his own staff and design and lead a new Biochemistry and Virus Laboratory (BVL).¹³

    The decision to give Stanley control over the BVL seemed at the time an astute and reasonable decision. Many universities coveted this distinguished experimentalist for their own bioscience programs. Most agreed that with Stanley at the helm, the BVL would extend the line of success carried by Berkeley in the previous decades. The whole enterprise that Dr. S(tanley) sketched, commented one observer, is really a huge and perhaps Californian venture in developing biochemistry…there would be no question that the University of California will be the leader in [the biological sciences] five years from now. Another anticipated that with Stanley at the helm, epoch-making discovery, more definite assumptions on the origins of life will be made than ever before. And the UC student newspaper, the Daily Californian, wondered how many Nobel Prizes would ultimately come to rest on the BVL's mantle.¹⁴

    But in their haste to create a top-flight research program in the biological sciences, UC regents and administrators failed to recognize certain peculiar aspects of Stanley's selection that threatened the effective implementation of his vision. Success or failure of the BVL would hinge upon peculiar nonscientific issues. Could Stanley's elite-driven, autocratic managerial style work in the country's preeminent public university? Was Berkeley's intellectual base throughout the biological sciences too diverse to unify as a single research program? Would Berkeley's faculty accept Sproul's unilateral selection, or Stanley's near-dictatorial authority to oversee the entire laboratory? Moreover, would Stanley's decision to emphasize virus research, yet exclude staff conducting viral research in medicine and agriculture, antagonize the disciplinary divisions that already existed? Furthermore, virology has, by definition, obvious clinical and agricultural relevance; therefore, how would investigators in these fields interpret the inherent contradiction in Stanley's vision? Even if Stanley could wring order out of the chaos that plagued the biological sciences at Berkeley, it remained to be seen whether fundamental research was the best course of action.

    To Stanley, however, the fate of his academic program had nothing to do with administrative matters, and even considered the highest quality of scientific research produced in his laboratory a foregone conclusion: The first order of business, wrote Stanley in his letter accepting his appointment, is to secure funding.¹⁵

    Chapter 2

    Patronage and Policy

    Free scientists, following the free play of their imaginations, their curiosities, their hunches, their special prejudices, their undefended likes and dislikes…. One can no more produce fundamental and truly original work by means of some grand-over-all planning scheme for science than one can produce great sonnets by hiring poets by the hour.

    —Warren Weaver

    It is the fundamental tenet of our religion…that research must be free and researchers must be free.

    —Robert Felix

    Whether celebrated as saviors or scorned as meddlers, patrons of science play a major role in shaping research and influencing its pace and direction. Yet too much can be made of scientific patronage as a cause of discovery. Scientists do not always conduct their experiments in concert with the intent of their sponsor, and sometimes a single scientific discovery can destabilize entire fields. Patrons may provide much needed stability for an uncertain field, but their money nonetheless strengthens the entire community—laboratories, research equipment, staff, and experimentalists too.¹

    In the immediate aftermath of World War II, sponsors and scientists clashed over whose interests should hold more weight, establishing in effect a contest over intellectual

    Enjoying the preview?
    Page 1 of 1