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Summary 
 
Number theory is one of the oldest disciplines, and has been provided various important 
mathematical concepts and structures. After introducing the basic structures in natural 
numbers, fundamental concepts and findings such as Euclidean algorithm, prime 
numbers, the fundamental theorem of arithmetic, and congruence relations are 
explained. Then conceptual structures of cryptology are introduced as an application. 
Some analytic methods in number theory are good examples to see how influential the 
discipline is to other branches of mathematics and vice versa. Arithmetic of quadratic 
fields and cyclotomic fields supply clear views over a part of new harmonious lands of 
algebra.  
 
1. The Additive Structure of Natural Numbers 
 
1.1. The Well-Ordered Structure and the Principle of Mathematical Induction 
 
The natural numbers are generated by 1 and the operation ‘ 1+ ’ under its additive 
structure: 1 2 1 1 3 (1 1) 1 2 1 …, := + , := + + = + ,  The addition in the set of natural numbers 

 is commutative and associative: ( ) ( )a b b a a b c a b c+ = + , + + = + +  for a b c, , ∈ .  
 
The Well-Ordered Structure. The set  is well-ordered; that is, every non-empty 
subset of it has the minimum element.  
The well-ordered structure of  implies a powerful logical method, mathematical 
induction.  
 
The Principle of Mathematical Induction. Suppose that a finite or infinite number of 
propositions are parameterized by natural numbers: 1 2 3nP n …, = , , ,  Suppose further that 
(i) 1P  is true, and (ii) there exists a proof of the statement that nP  implies 1nP +  for every 
n . Then all propositions 1 2 3nP n …, = , , , , are true.  
 
Indeed, assume that there might be a false proposition mP . Then the subset  
  

{ and is false }mS m m P:= | ∈ , .  
 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

MATHEMATICS: CONCEPTS, AND FOUNDATIONS – Vol. I - Number Theory and Applications - Katsuya MIYAKE  

©Encyclopedia of Life Support Systems (EOLSS) 

of  is not empty. Hence there is the minimum 0m  of S . The presupposition (i) 
implies 0 1m > . Put 0 1n m:= − . By the choice of 0m , nP  is true. Therefore by the 
presupposition (ii), 

01n mP P+ =  is also true. This contradicts the choice of 0m  from S .  
 
Examples are in the following subsection.  
 
1.2.. Triangular Numbers and Square Numbers 
 
The traditional and simplest figure numbers are triangular numbers 

( 1) / 2 1 2 3nT n n n …= + , = , , , , classically defined by the series of figures  
  

1 2 3

          
…

T T T

• •
• •

• • • • • •
 

 
Hence 1 2 11 1 2 3 ( 1)n nT T … T T n …+= , = + = , , = + + , , for 1n ≥ . On one hand, we have 

1 2nT n= + + +  for 1n ≥ . On the other hand, the figure  
  
• • • •
• • • •
• • • •

 

 
gives 2 ( 1)n n nT T T n n= + = + . Hence we have the proposition,  
 

( 1)1 2
2n

n nP n +
: + + + = .     (1) 

 
It is clear that (i) 1P  is true. Since ( 1) 2 ( 1) ( 1)( 2) 2n n n n n+ / + + = + + / , (ii) there is a 
proof of the statement that nP  implies 1nP + . Therefore the formula of nP  is true for every 
n∈ .  
Square numbers 2 1 2 3nS n n …= , = , , , , are defined by the series of figures  
  

1

2
3

        
S

S
S

• • •
• •

• • • •
• •

• • •
 

 
Hence 2 2

1 21 2 4 nS S … S n …= , = = , , = , , for 1n ≥ . The figure  
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• • • • • • • •
• • • • • • • •

= +
• • • • • • • •
• • • • • • • •

 

 
shows 1 (2 1)n nS S n+ = + + ; that is, 2 2( 1) 2 1n n n+ = + +  for 1n ≥ . We also see that  
 

1 1(2 1) (2( 1) 1) (2 1) 1 3 (2 1)n n nS S n S n n n+ −= + + = + − + + + = = + + + + .  
 
Mathematical induction provides the formula on the sum of odd numbers,  
  

21 3 (2 1) ( 1)n n+ + + + = + .    (2) 
 
Ancient Greeks expressed the Eqs. (1)  and (2)  by the above figures.  
 
2. The Multiplicative Structure of Natural Numbers 
 
2.1. Prime Numbers 
 
The multiplication of natural numbers is commutative and associative:  
 

( ) ( )a b b a a b c a b c a b c⋅ = ⋅ , ⋅ ⋅ = ⋅ ⋅ , , , ∈ . 
  
To obtain a set of generators of whole natural numbers under multiplication, we need 2 , 
then 3 5 7,, ,  and so on, and all prime numbers. A prime number is a natural number 
other than 1 which cannot be expressed as a product of smaller numbers. In other 
words, it is only divisible by 1 and itself.  
 
The Fundamental Theorem of Arithmetic. All prime numbers form an independent 
generator system of  under multiplication. Namely, each natural number n  other than 
1 is uniquely expressed as a product of a finite number of powers of primes: 

1 2
1 2

mee e
mn p p p=  where 1 mp … p, ,  are distinct prime numbers and 1 me … e, ,  are natural 

numbers.  
 
There exist infinitely many prime numbers as we see in the next subsection. If we 
notice, therefore, the exponents 1 me … e, ,  in the product expression, we see infinitely 
many copies of  with addition inside one  with multiplication.  
 
2.2. Infinitude of Prime Numbers and Euler Product 
 
Euclid’s proof of infinitude of prime numbers in his Elements may be modernized as 
follows: let 1 2 mp p … p, , ,  be prime numbers different among themselves, and put 

1 2 1mN p p p:= + ; then each prime divisor p  of N  is different from anyone of 

1 2 mp p … p, , , . This shows that the number of prime numbers can not be finite. 
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 L. Euler (1707–83) developed analytic methods. Let 1s >  be a real number. Then the 
formula  
  

1
1 1 1 11 1
2 3s s s s

pn p

−
⎛ ⎞

+ + + + + = −⎜ ⎟
⎝ ⎠

∏    (3) 

 
holds; here the last product is taken over all prime numbers, and called an Euler 
product. This equality follows from the Fundamental Theorem of Arithmetic by 
inserting  
  

1

2

1 1 1 11 1s s s nsp p p p

−
⎛ ⎞
− = + + + + +⎜ ⎟

⎝ ⎠
 

 
into the right hand side of (3) . If the total number of primes were finite, then the right 
hand side of (3)  would have a definite value when s  tends to 1. The left hand side, 
however, grows to infinity when s  tends to 1 because the harmonic series diverges to 
infinity. This shows the infinitude of prime numbers.  
 
2.3. Euclidean Algorithm and the Greatest Common Divisors 
 
Let m  and n  be two natural numbers, and suppose n m> . By subtracting m  from n  as 
many times as possible, we have  
  

0n q m r r m= ⋅ + , ≤ < .  
 
The number r  thus determined is called the residue of n  modulo m . If the residue is 
equal to 0 , we say that m  divides n , and write it as m n| ; we also say that m  is a 
divisor or a factor of n , and that n  is a multiple of m . 
  
Put 1 2m n m m:= , := , and determine a series of numbers 1 2 1 0j jm m m m +> > > > =  by  
  

( )
1 2 2 10 1 2 1i

i i i i im q m m m m i … j+ + + += + , ≤ < , = , , , − .   (4) 
 
Then jd m:=  is the greatest common divisor of m  and n , and denoted by 

gcd( )d m n= ,  or simply ( )d m n= ,  in the context of number theory.  
 
The process (4)  is called Euclidean Algorithm to obtain the greatest common divisor of 
two natural numbers. By converting the equalities of (4)  into 

( )
2 1 2 1i

i i im m q m i j …+ += − , = − , , , we obtain the following proposition:  
 
The Greatest Common Divisor. Let m  and n  be two natural numbers. Then there 
exist two integers a  and b  which satisfy the equation  
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gcd( )m n a m b n a b, = ⋅ + ⋅ , , ∈  
 
where  is the ring of all integers. Here we need 0  or negative integers for a  or b  to 
express gcd( )m n, .  
 
Usually the symbol ‘ ⋅ ’ for multiplication is omitted: e.g. a m am⋅ = .  
 
2.4. Dirichlet’s Prime Number Theorem on Arithmetic Progressions 
 
Two integers m  and n  are relatively prime if their greatest common divisor is equal to 
1; m  and n  are relatively prime if and only if there exist such two integers a b,  as 

1am bn+ = . In the case, it is also said that n  is relatively prime to m , and simply 
denoted as ( ) 1m n, = .  
 
Dirichlet’s Prime Number Theorem. In an arithmetic progression whose initial term 
and common difference are relatively prime, there appear infinitely many prime 
numbers. More explicitly, let d  be a natural number. Then for an integer k  with 
( ) 1k d, = , there are infinitely many prime numbers of the form qd k q+ , ∈ . We may 
also state that there exist infinitely many prime numbers whose residue modulo d  
coincide with the given residue k  modulo d  if ( ) 1k d, = .  
 
3. The Ring of Integers 
 
3.1. The Ring of Integers 
 
The ring of integers { 3 2 1 0 1 2 3 }… …= ,− ,− ,− , , , , ,  is associative and commutative. The 
notion of divisibility is naturally extended to integers; for two integers m  and n  we say 
that m  divides n  or n  is divisible by m , and denote m n| , if n qm=  for some q∈ .   
 
The ring  is a principal ideal domain. An ideal M  of  is a -submodule of ; it 
is an additive subgroup of . Conversely, an additive subgroup of  automatically 
becomes a -module. For an ideal M  of , there exists such an element d M∈  as 

{ }M d ad a= = | ∈ . A typical example of an ideal of  is defined by two integers 
m n, ∈  as { }M am bn a b= + | , ∈ . In the case, we have M d=  with gcd( )d m n= , .  
 
3.2. Linear Equations in Integers and Divisibility 
 
A linear equation of one variable X  in integers is given by integers m  and n  as  
 
mX n= ;  
 
this is to be solved by an integer value of X . Hence it is nothing but to ask whether n  
is divisible by m  or not.  
 
Let 1 jX … X, ,  be independent j  variables and suppose that 1 jm … m n, , , ∈  are given. 
The problem is now to find integral solutions of the linear equation  
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1 1 j jm X m X n+ + = .  
 
This is also reduced to the problem of divisibility of n  by the greatest common divisor 
d  of 1 jm … m, , . Indeed, put  
 

1 1 1{ }j j jM a m a m a … a:= + + | , , ∈ .  
 
Then M  is an ideal of the ring . The problem is whether n  belongs to M  or not. 
There exists d ∈  so that we have M d= . Then 1gcd( )jd m … m= , , . Hence n M∈  
if and only if d n| .  
 
3.3. Multiplicative Structure of the Integral Solutions of Pell’s Equations 
 
An equation of the form  
 

2 2 1X DY− =  
 
for D∈  is called Pell’s equation; it is to be solved by pairs of integers for X  and Y . 
Euler erroneously put the name of the mathematician John Pell (1611–85) although Pell 
did not work on such equations. Since then, however, the term ‘Pell’s equation’ is 
commonly used. If D  is a square, then it has only trivial solutions ( ) ( 1 0)X Y, = ± , . 
Suppose that D  is not a square, or even that D  does not have any square factors 
because they may be absorbed by Y . Then there always exist infinitely many integral 
solutions. Indeed, there is an irrational number x y Dε = +  with x y, ∈  which 
produces all the positive integral solutions ( )n nx y,  determined by 

1 2 3n
n nx y D n …ε = + , = , , ,   

 
Examples of ε . Here 0ε  corresponds to the smallest positive integral solution of the 
equation 2 2 1X DY− = −  if it exists; in that case, 2

0ε ε= .  

1. 2D = : 2 3
03 2 2 17 12 2 99 70 2 1 2ε ε ε ε= + , = + , = + ; = + .  

2. 3D = : 2 32 3 7 4 3 26 15 3ε ε ε= + , = + , = + .  

3. 5D = : 
2

3
0

9 4 5 161 72 5

2889 1292 5 2 5

ε ε

ε ε

= + , = + ,

= + ; = +
.  

4. 6D = : 2 35 2 6 49 20 6 485 198 6ε ε ε= + , = + , = + .  
5. 7D = : 2 38 3 7 127 48 7 2024 765 7ε ε ε= + , = + , = + .  
 
There appear irregular D ’s for which the smallest solutions are large:  
 
6. 29D = : 09801 1820 29 70 13 29ε ε= + , = + ;  

7. 31D = : 1520 273 31ε = + ;  
8. 43D = : 3182 531 43ε = + ;  
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9. 46D = : 24335 3588 46ε = + ;  
10*. 47D = : 48 7 47ε = + ;  
11. 53D = : 066249 9100 53 182 25 53ε ε= + ; = + ;  

12. 61D = : 
0

1766319049 226153980 61

29718 3805 61

ε

ε

= + ;

= +
;  

13*. 62D = : 63 8 62ε = + .  
 
In ancient Greece, integral solutions of 2 2 1X DY− =  were used to approximate the 
quadratic irrational number D . Indeed, the equation 2 2( ) (1 )D X Y Y= / − /  shows that 
an integral solution X  and Y  provide a good approximation X Y/  of D  if Y  is large. 
In the case of 2D = , the second solution gives 17 12 1 4166……/ = . , the third 
99 70 1 1414285…/ = .  and the fourth 577 408 1 41421456…/ = .  for 2 1 41421356…= .   
 
- 
- 
- 
 

 
TO ACCESS ALL THE 31 PAGES OF THIS CHAPTER,  
Visit: http://www.eolss.net/Eolss-sampleAllChapter.aspx 

 
 
Bibliography 
 

Borevich, Zi.I. and Shafarevich, I. (1966).  \textit{Number Theory}, Acad. Press, New York. [This book 
is written for the students in mathematics to give a view of the theory of numbers, of the problems with 
which this theory deals and of the methods that are used.] 

Cohn, Harvey (1988).  \textit{A classical invitation to algebraic numbers and class fields} (Universitext), 
Springer-Verlag.  ISBN 0-387-90345-3. [This book is intended to serve both the committed number 
theorist and the casual but curious outsider by displaying the most significant historical steps of modern 
number theory.] 

Gras, Georges (2003).  \textit{Class field theory: from theory to practice}, Springer-Verlag, Berlin/New 
York.  ISBN 3-540-44133-6. [This book aims to help students and researchers who are familiar with 
classical algebraic number theory in the practical use and understanding of the principles of global class 
field theory for number fields.] 

Koch, Helmut (2000). Number Theory : Algebraic Numbers and Functions, xviii+368 pp. Graduate 
Studies in Mathematics Volume 24, Amer. Math. Soc., Providence, RI, ISBN 0-8218-2054-0.[This book 
is an excellent and well organized introduction of number theory.]  

Washington, Lawrence (1999). \textit{Introduction to cyclotomic fields}, Graduate Textes in Math. 83, 
Springer-Verlag, third edition. ISBN 3-540-94762-0. [This is a well prepared introduction to the modern 
cyclotomy and the Iwasawa theory.] 

Weil, André (1984). Number Theory : an approach through history from Hammrapi to Legendre, 
Birkhäuser, Boston, ISBN 0-8176-3141-0 3-7643-3141-0.[This is an exceptional exposition of the origins 
of modern number theory up to the end of the 18th century.]  
 
 

https://www.eolss.net/ebooklib/sc_cart.aspx?File=E6-01-02-05


UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

MATHEMATICS: CONCEPTS, AND FOUNDATIONS – Vol. I - Number Theory and Applications - Katsuya MIYAKE  

©Encyclopedia of Life Support Systems (EOLSS) 

Biographical Sketch 
 
Katsuya MIYAKE born 1941 in Hyogo-Ken, Japan 
Education: BS in Mathematics, Tokyo University, Japan (March, 1964). MS in Mathematics, Tokyo 
University, Japan (March, 1966). Ph.D. in Mathematics, Princeton University, U.S.A. (June, 1969). 
Positions held: Researcher, Courant Institute for Mathematical Sciences, New York University, U.S.A. 
(September, 1969--August, 1970), Assistant Professor, Department of Mathematics, Nagoya University, 
Japan (September, 1970--December, 1973), Associate Professor, Department of Mathematics, Nagoya 
University, Japan (January, 1974--August, 1986), Professor, Department of Mathematics, Nagoya 
University, Japan (September, 1986--March, 1993), Professor, Department of Mathematics, Tokyo 
Metropolitan University, Japan (April, 1993--March, 2005), Professor Emeritus, Tokyo Metropolitan 
University (April, 2005 to date), Visiting Professor, Department of Mathematics, Waseda University, 
Japan (April, 2005 to date), Visiting Professor, Institute for Mathematics and Computer Science, Tsuda 
College, Japan (April, 2005 to date). 


