Mathematics for Physics
and Physicists
Walter APPEL
Translated by Emmanuel Kowalski
Princeton University Press
Princeton and Oxford
Contents
A book's apology
xviii
Index of notation
xxii
1
Reminders: convergence of sequences and series
1.1 The problem of limits in physics
l.l.a
Two paradoxes involving kinetic energy
l.l.b
Romeo, Juliet, and viscous fluids
l.l.c
Potential wall in quantum mechanics
1.1.d
Semi-infinite filter behaving as waveguide
1.2 Sequences
1.2.a
Sequences in a normed vector space
1.2.b
Cauchy sequences
1.2.C
The fixed point theorem
1.2.d
Double sequences
1.2.e
Sequential definition of the limit of a function
1.2.f
Sequences of functions
1.3 Series
1.3.a
Series in a normed vector space
1.3.b
Doubly infinite series
1.3.C
Convergence of a double series
1.3.d
Conditionally convergent series, absolutely convergent series .
1.3.e
Series of functions
1.4 Power series, analytic functions
1.4.a
Taylor formulas
1.4.b
Some numerical illustrations
1.4.c
Radius of convergence of a power series
1.4.d
Analytic functions
1.5 A quick look at asymptotic and divergent series
1.5.a
Asymptotic series
1.5.b
Divergent series and asymptotic expansions
Exercises
Problem
Solutions
1
1
1
5
7
9
12
12
13
15
16
17
18
23
23
24
25
26
29
30
31
32
34
35
37
37
38
43
46
47
2
Measure theory and the Lebesgue integral
2.1 The integral according to Mr. Riemann
2.La
Riemann sums
2.1.b
Limitations of Riemann's definition
2.2 The integral according to Mr. Lebesgue
2.2.a
Principle of the method
51
51
51
54
54
55
CONTENTS
vi
2.2.b
2.2.C
2.2.d
2.2.e
2.2.f
2.2.g
2.2.h
2.2.i
Exercises
Solutions
Borel subsets
Lebesgue measure
The Lebesgue a-algebra
Negligible sets
Lebesgue measure on R"
Definition of the Lebesgue integral
Functions zero almost everywhere, space L1
And today?
Integral calculus
3.1 Integrability in practice
3.1.a
Standard functions
3.1.b
Comparison theorems
3.2 Exchanging integrals and limits or series
3.3 Integrals with parameters
3.3.a
Continuity of functions defined by integrals
3.3.b
Differentiating under the integral sign
3.3.C
Case of parameters appearing in the integration range . . . .
3.4 Double and multiple integrals
3.5 Change of variables
Exercises
Solutions
Complex Analysis I
4.1 Holomorphic functions
4.1.a
Definitions
4.1.b
Examples
4.1.C
The operators d/dz and d/dz
4.2 Cauchy's theorem
4.2.a
Path integration
4.2.b
Integrals along a circle
4.2.C
Winding number
4.2.d
Various forms of Cauchy's theorem
4.2.e
Application
4.3 Properties of holomorphic functions
4.3.a
The Cauchy formula and applications
4.3.b
Maximum modulus principle
4.3.C
Other theorems
4.3.d
Classification of zero sets of holomorphic functions
4.4 Singularities of a function
4.4.a
Classification of singularities
4.4.b
Meromorphic functions
4.5 Laurent series
4.5.a
Introduction and definition
4.5.b
Examples of Laurent series
4.5.C
The Residue theorem
4.5.d
Practical computations of residues
56
58
59
61
62
62
66
67
68
71
73
73
73
74
75
77
77
78
78
79
81
83
85
87
87
88
90
91
93
93
95
96
96
99
99
99
104
105
106
108
108
110
Ill
Ill
113
114
116
CONTENTS
Vi i
4.6
Applications to the computation of horrifying integrals or ghastly sums 117
4.6.a Jordan's lemmas
117
4.6.b
Integrals on M of a rational function
118
4.6.C
Fourier integrals
120
4.6.d
Integral on the unit circle of a rational function
121
4.6.e
Computation of infinite sums
122
Exercises
125
Problem
128
Solutions
129
Complex Analysis II
5.1 Complex logarithm; multivalued functions
5.La
The complex logarithms
5.1.b
The square root function
5.1.C
Multivalued functions, Riemann surfaces
5.2 Harmonic functions
5.2.a
Definitions
5.2.b
Properties
5.2.c
A trick to find / knowing u
5.3 Analytic continuation
5.4 Singularities at infinity
5.5 The saddle point method
5.5.a
The general saddle point method
5.5.b
The real saddle point method
Exercises
Solutions
135
135
135
137
137
139
139
140
142
144
146
148
149
152
153
154
Conformal maps
6.1 Conformal maps
6.La
Preliminaries
,
6.1.b
The Riemann mapping theorem
6.1.C
Examples of conformal maps
6.1.d
The Schwarz-Christoffel transformation
6.2 Applications to potential theory
6.2.a
Application to electrostatics
6.2.b
Application to hydrodynamics
6.2.C
Potential theory, lightning rods, and percolation
6.3 Dirichlet problem and Poisson kernel
Exercises
Solutions
155
155
155
157
158
161
163
165
167
169
170
174
176
Distributions I
179
7.1 Physical approach
179
7.1.a
The problem of distribution of charge
179
7.1.b
The problem of momentum and forces during an elastic shock 181
7.2 Definitions and examples of distributions
182
7.2.a
Regular distributions
184
7.2.b
Singular distributions
185
7.2.C
Support of a distribution
187
viii
CONTENTS
7.2.d
Other examples
Elementary properties. Operations
7.3.a
Operations on distributions
7.3.b
Derivative of a distribution
Dirac and its derivatives
7.4.a
The Heaviside distribution
7.4.b
Multidimensional Dirac distributions
7.4.C
The distribution 8'
7.4.d
Composition of 8 with a function . . . .•
7.4.e
Charge and current densities
Derivation of a discontinuous function
7.5.a
Derivation of a function discontinuous at a point
7.5.b
Derivative of a function with discontinuity along a surface S?
7.5.c
Laplacian of a function discontinuous along a surface Sf • .
7.5.d
Application: laplacian of 1/r in 3-space
Convolution
7.6.a
The tensor product of two functions
7.6.b
The tensor product of distributions
7.6.c
Convolution of two functions
7.6.d
"Fuzzy" measurement
7.6.e
Convolution of distributions
7.6.f
Applications
7.6.g
The Poisson equation
Physical interpretation of convolution operators
. .
Discrete convolution
187
188
188
191
193
193
194
196
198
199
201
201
204
206
207
209
209
209
211
213
214
215
216
217
220
Distributions II
8.1 Cauchy principal value
8.La
Definition
8.1.b
Application to the computation of certain integrals
8.1.C
Feynman's notation
:•
8.1.d
Kramers-Kronig relations
8.1.e
A few equations in the sense of distributions
8.2 Topology in &'
8.2.a
Weak convergence in
ty
8.2.b
Sequences of functions converging to 8
8.2.C
Convergence in Si1 and convergence in the sense of functions
8.2.d
Regularization of a distribution
8.2.e
Continuity of convolution
8.3 Convolution algebras
8.4 Solving a differential equation with initial conditions
8.4.a
First order equations
8.4.b
The case of the harmonic oscillator
8.4.c
Other equations of physical origin
Exercises
Problem
Solutions
223
223
223
224
225
227
229
230
230
231
234
234
235
236
238
238
239
240
241
244
245
7.3
7.4
7.5
7.6
7.7
7.8
CONTENTS
9
ix
Hilbert spaces; Fourier series
9.1 Insufficiency of vector spaces
9.2 Pre-Hilbert spaces
9.2.a
The finite-dimensional case
9.2.b
Projection on a finite-dimensional subspace
9.2.C
Bessel inequality
9.3 Hilbert spaces
9.3.a
Hilbert basis
9.3.b
The I2 space
9.3.c
The space L2 [0,a]
9.3.d
The L 2 (R) space
9.4 Fourier series expansion
9.4.a
Fourier coefficients of a function
9.4.b
Mean-square convergence
9.4.C
Fourier series of a function / e L1 [0,a]
9.4.d
Pointwise convergence of the Fourier series
9.4.e
Uniform convergence of the Fourier series
9.4.f
The Gibbs phenomenon
Exercises
Problem
Solutions
10 Fourier transform of functions
10.1 Fourier transform of a function in L1
lO.l.a Definition
lO.l.b Examples
lO.l.c The L1 space
10.1.d Elementary properties
lO.l.e Inversion
lO.l.f Extension of the inversion formula
10.2 Properties of the Fourier transform . . . . ' ,
10.2.a Transpose and translates
10.2.b Dilation
10.2.C Derivation
10.2.d Rapidly decaying functions
10.3 Fourier transform of a function in L2
10.3.a The space S?
10.3.b The Fourier transform in L2
10.4 Fourier transform and convolution
10.4.a Convolution formula
10.4.b Cases of the convolution formula
Exercises
Solutions
11 Fourier transform of distributions
11.1 Definition and properties
ll.l.a Tempered distributions
ll.l.b Fourier transform of tempered distributions
ll.l.c Examples
249
249
251
254
254
256
256
257
261
262
263
264
264
265
266
267
269
270
270
271
272
;
277
277
278
279
279
280
282
284
285
285
. . . . 286
286
288
288
289
290
292
292
293
295
296
299
299
300
301
303
CONTENTS
ll.l.d Higher-dimensional Fourier transforms
ll.l.e Inversion formula
11.2 The Dirac comb
11.2.a Definition and properties
11.2.b Fourier transform of a periodic function
11.2.C Poisson summation formula
11.2.d Application to the computation of series
11.3 The Gibbs phenomenon
11.4 Application to physical optics
11.4.a Link between diaphragm and diffraction
figure
11.4.b Diaphragm made of infinitely many infinitely narrow slits
11.4.C Finite number of infinitely narrow slits
11.4.d Finitely many slits with finite width
11.4.e Circular lens
11.5 Limitations of Fourier analysis and wavelets
Exercises
Problem
Solutions
305
306
307
307
308
309
310
311
314
314
. 315
316
318
320
321
324
325
326
12 The Laplace transform
12.1 Definition and integrability
12.1.a Definition
12.1.b Integrability
12.1.C Properties of the Laplace transform
12.2 Inversion
12.3 Elementary properties and examples of Laplace transforms
12.3.a Translation
12.3.b Convolution
12.3.C Differentiation and integration
12.3.d Examples
12.4 Laplace transform of distributions . . . :
12.4.a Definition
12.4.b Properties
12.4.C Examples
12.4.d The z-transform
12.4.e Relation between Laplace and Fourier transforms
12.5 Physical applications, the Cauchy problem
12.5.a Importance of the Cauchy problem
12.5.b A simple example
12.5.c Dynamics of the electromagnetic field without sources . . . .
Exercises
Solutions
331
331
332
333
336
336
338
338
339
339
341
342
342
342
344
344
345
346
346
347
348
351
352
13 Physical applications of the Fourier transform
355
13.1 Justification of sinusoidal regime analysis
355
13.2 Fourier transform of vector fields: longitudinal and transverse fields 358
13.3 Heisenberg uncertainty relations
359
13.4 Analytic signals
365
13.5 Autocorrelation of a finite energy function
368
CONTENTS
X i
13.5.a Definition
13.5.b Properties
13.5.C Intercorrelation
13.6 Finite power functions
13.6.a Definitions
13.6.b Autocorrelation
13.7 Application to optics: the Wiener-Khintchine theorem
Exercises
Solutions
14 Bras, kets, and all that sort of thing
14.1 Reminders about finite dimension
14.La Scalar product and representation theorem
14.1.b Adjoint
14.1.C Symmetric and hermitian endomorphisms
14.2 Kets and bras
14.2.a Kets |</>) e H
14.2.b Bras {<p\eH'
14.2.C Generalized bras
14.2.d Generalized kets
14.2.e
14.2.f
Id = ! ; > , , )
Generalized basis
fo,|
14.3
Linear operators
14.3.a Operators
14.3.b Adjoint
14.3.c Bounded operators, closed operators, closable operators . . .
14.3.d Discrete and continuous spectra
14.4 Hermitian operators; self-adjoint operators
14.4.a Definitions
14.4.b Eigenvectors
14.4.c Generalized eigenvectors
;
14.4.d "Matrix" representation
14.4.e Summary of properties of the operators P and X
Exercises
Solutions
15 Green functions
15.1 Generalities about Green functions
15.2 A pedagogical example: the harmonic oscillator
15.2.a Using the Laplace transform
15.2.b Using the Fourier transform
15.3 Electromagnetism and the d'Alembertian operator
15.3.a Computation of the advanced and retarded Green functions
15.3.b Retarded potentials
15.3.C Covariant expression of advanced and retarded Green functions
15.3.d Radiation
15.4 The heat equation
15.4.a One-dimensional case
15.4.b Three-dimensional case
368
368
369
370
370
370
371
375
376
377
377
377
378
379
379
379
380
382
383
384
385
387
387
389
390
391
393
394
396
397
398
401
403
404
407
407
409
410
410
414
414
418
421
421
422
423
426
x iv
CONTENTS
20.10.b Application: Buffon's needle
20.11 Independance, correlation, causality
21 Convergence of random variables: central limit theorem
21.1 Various types of convergence
21.2 The law of large numbers
21.3 Central limit theorem
Exercises
Problems
Solutions
549
550
553
553
555
556
560
563
564
Appendices
A Reminders concerning topology and normed vector spaces
A.I Topology, topological spaces
A.2 Normed vector spaces
A.2.a Norms, seminorms
A.2.b Balls and topology associated to the distance
A.2.C Comparison of sequences
A.2.d Bolzano-Weierstrass theorems
A.2.e Comparison of norms
:
A.2.f Norm of a linear map
Exercise
Solution
573
573
577
577
578
580
581
581
583
583
584
B Elementary reminders of differential calculus
B.I Differential of a real-valued function
B.l.a Functions of one real variable . l
B.l.b Differential of a function / : M." -» R
B.l.c Tensor notation
B.2 Differential of map with values in W
B.3 Lagrange multipliers
Solution
585
585
585
586
587
587
588
591
C Matrices
C.I Duality
C.2 Application to matrix representation
C.2.a Matrix representing a family of vectors
C.2.b Matrix of a linear map
C.2.C Change of basis
C.2.d Change of basis formula
C.2.e Case of an orthonormal basis
593
593
594
594
594
595
595
596
D A few proofs
597
CONTENTS
XV
Tables
Fourier transforms
609
Laplace transforms
613
Probability laws
616
Further reading
617
References
621
Portraits
627
Sidebars
629
Index
631