Academia.eduAcademia.edu

ESR and endor study of vanadium pentoxide gels

1984, Colloids and Surfaces

An E~R and i~NDOR study of the vanadium pentoxtde gels was performed during the first stages of the process of swelll,g ~sith water. It shows that water molecules belong to the coordination polyhedron of the V(IV) ions giving rise to hydrated vanadyl species. Swelling can be described as the Intercalation of water layers between vanadium oxide ribbons. Some Brownish motion of the vanadyl ions at the surface of the gel o~urs assoon as the mean distance between the ribbons becomes larger than fi X.

C o l l o i d . a n d Surfaces. 11 (1984) 119--128 Elsevier Science Publishers B.V.. Amsterdam - . , - , . . 119 Printed in The Netherlands . " . . ESR AND ENDOR STUDY OF VANADIUM PENTOXIDE _ . . . k L GELS P. B A R B O U X , D. GOURIER and J. LIVAGE Spectrochimte d u Solide, L A 302, Universit~ Pierre et ltfarie Curie, 4. place Ju~ieu, 7 5 2 3 0 Paris ~ e d e x 0 5 (France) (Received 20 October 1983; accepted in final form 4 January 1984) ABSTRACT An E~R and i~NDOR study o f the vanadium pentoxtde gels was performed during the first stages o f the process o f swelll,g ~sith water. It shows that water molecules belong to the coordination polyhedron of the V(IV) ions giving rise to hydrated vanadyl species. Swelling can be described as the Intercalation o f water layers between vanadium oxide ribbons. Some Brownish m o t i o n o f the vanadyl ions at the surface o f the gel o ~ u r s a s soon as the mean distance between the ribbons becomes larger than fi X. INTRODUCTION V a n a d i u m p e n t o x i d e gels e x h i b i t a l a y e r e d s t r u c t u r e [ 1 ] . E l e c t r o n a n d X-ray diffraction studies [2,3] have shown that the colloidal particles are a c t u a l l y f l a t r i b b o n s a b o u t 103 A l o n g a n d 102 A wide.. T h e t w o - d i m e n s l o n a l cell p a r a m e t e r s a ffi 2 7 A a n d b ~ 8 . 6 A s u g g e s t t h a t t h e o r g a n i z a t i o n w i t h i n t h e r i b b o n is c l o s e l y r e l a t e d t o t h e l a m e l l a r s t r u c t u r e o f o r t h o r h o m b i c V = O s [ 2 ] . S o m e s t a c k i n g o f t h 0 r i b b o n s is o b s e r v e d w h e n t h e g e l is d e p o s i t e d o n t o a substrate leading to a turbostratfc on,dimensional order along the e direction, perpendicular to the surface of the ribbons. The basal spacing d along t h e o d i r e c t i o n d e p e n d s o n t h e a m o u n t o f w a t e r : d -- 1 1 . 5 A fGr a x e r o g e l dried at room temperature and containing about 1.6 H=O per V=Os. Under v a c u u m o r u p o n h e a t i n g , a n o t h e r x e r o g e i c o r r e s p o n d i n g t o V , O s , 0 . 5 H = O is obtained, exhibiting a d spacing of 8.7 A [1], By comparison with similar layered clay systems [3], the 2.8 A shortening of the d spacing was atrrio b u t e d t o t h e d e p a r t u r e o f o n e i n t e r f o l i a r w a t e r l a y e r . A s w e l l i n g p r o c e s s in w h i c h t h e d s p a c i n g i n c r e a s e s p r o g r e s s i v e l y is o b s e r v e d w h e n w a t e r is a d d e d to the xerogel, leading to a colloidal solution [4] . . . . V a n a d i u m p e n t o x i d e gels, V2Os* n H 2 0 , a p p e a r t o b e m i x e d c o n d u c t o r s . Electronic conductivity arises from the hopping of small polarons between v a n a d i u m i o n s in d i f f e r e n t v a l e n c e s t a t e s , n a m e l y V ( V ) a n d V ( I V ) [ 5 ] , w h i l e i o n i c c o n d u c t i v i t y arises f r o m t h e d i f f u s i o n o f p r o t o n s t h r o u g h t h e g e l [ 6 ] , T h e s e geis c a n b e r U S e d as a s t a r t i n g m a t e r i a l f o r m a k i n g t h i n layer3 b y t h e s o l - - g e l p r o c e s s [ 7 ] . S u c h l a y e r s c o u l d l e a d t o n e w a p p l i c a t i o n s in t h e 0166-6622/841508.00 O 1984 Elsevier Science Publishers B.V. 120 . . ~L ,~ • . " . ~ . ...... - field o f material ~cienee as antistatic coatings [8] o r s w i t c h i n g devices [9,101. T h e e l e c t r o n i c c o n d u c t i v i t y o f t h e gel d e p e n d s o n t h e m n o t m t o f param a g n e t i c V ( I V ) ions, w h i l e t h e p r o t o n i c c o n d u c t i v i t y ' d e p e n d s o n t h e a m o u n t o f water. This p a p e r will t h e r e f o r e p r e s e n t an ESR mxd E N D O R s t u d y of t h e i n t e r a c t i o n s b e t w e e n w a t e r m o l e c u l e s a n d V ( I V ) c e n t e r s a t t h e interface b e t w e e n t h e colloidal particles a n d the interfoliar water. " PREPARATION OF THE GELS V a n a d i u m o x i d e gels can b e o b t a i n e d b y acidification o f a s o d i u m m e t a v a n a d a t e s o l u t i o n at a p H o f a b o u t 2. In o r d e r t o avoid foreig31 ions, acidification is p e r f o r m e d b y p r o t o n e x c h a n g e t h r o u g h an i o n - e x c h a n g e resin ( D o w e x 50W-X2, 5 0 - - 1 0 0 mesh). Decavanadic acid• s o l u t i o n s arc thus obt a i n e d [ 1 1 | . T h e y p o l y m e r i z e s p o n t a n e o u s l y at r o o m t e m p e r a t u r e , giving rise t o a red viscous gel a f t e r a few hours. S o m e r e d u c t i o n occurs d u r i n g t h e process, a n d a b o u t 1% o f t h e v a n a d i u m ions are in t h e V ( I V ) o x i d a t i o n state [ 1 2 ] . Most o f t h e w a t e r can b e r e m o v e d a t r o o m t e m p e r a t m ' e , giving a p o w d e r y xerogel t h a t can be d e s c r i b e d by the r o u g h f o r m u l a V 2 O s . n H ~ O , w h e r e n ~ 1.6. T h e r m a l analysis o f this xerogel s h o w s t h a t t h e r e m a i n i n g w a t e r can b e r e m o v e d in t w o steps [ 1 ] . T h e first begins at r o o m t e m p e r a t u r e m~d e x t e n d s to a b o u t 150°C, w i t h a m a x i m u m a r o u n d 130°C. I t c o r r e s p o n d s to weaklyb o n d e d water. More s t r o n g l y - b o n d e d w a t e r c o r r e s p o n d i n g t o V~O~* 0.5 H 2 0 is r e m o v e d b e t w e e n 2 4 0 a n d 2 7 0 ° C . Crystallization into o r t h o r h o m b i c V2Os t h e n occurs above 300°C. ELECTRON sPIN RESONANCE L o w temperature experiments O n c e the gel is m a d e , it d o e s n o t seem t o b e possible t o r e m o v e all t h e w a t e r b y h e a t i n g w i t h o u t d e s t r o y i n g its lamellar s t r u c t u r e a n d getting crystalline V2Os. However, in a previous s t u d y we s h o w e d t i m t a m o r p h o u s V2Os c o u l d b e o b t a i n e d b y splat c o o l i n g o f t h e m o l t e n o x i d e [13]. This a m o r p h o u s o x i d e also e x h i b i t s a fibrous t e x t u r e a n d could lead t o a gel o r a colloidal s o l u t i o n w i t h t h e a d d i t i o n o f w a t e r [ 14]. Figure Xa s h o w s t h e ESR s p e c t r u m o f an a n h y d r o u s a m o r p h o u s V2Os o13rained b y splat cooling. It" is r a t h e r p o o r l y resolved b u t e x h i b i t s t h e hypero fine features typical o f a V ( I V ) i o n ( S - - 1 / 2 , I = 7 / 2 ) in an axially d i s t o r t e d crystal field a n d can be d e s c r i b e d b y t h e usual spin H a m i l t o n i a n Fig. 1. ESR (b) VzO:*0.5 spectra r~-arded at low temperature (T=,77 HzO xeregel; (¢) VzOs- 1.5 HzO xerogel. K). (a) Amorphous Y2Os; • 121 la H c Ga..s~ 2SO0 3000 3500 g.._]l lb | Fig. 1. ! 3OOO ! ~00. H(8i 122 = g , H . S z + g , (iIxSx ÷ H y S y ) + AtSzlz + Ai(SXlx-+ Syly) :~ The ESIt parameters deduced from the spectrum are gt = 1.913 At - 176G g. = 1.981 A~ --- 6 6 G T h e g p a r a m e t e r s a p p e a r t o b e v e r y c l o s e t o t h o s e o f c r y s t a l l i n e V2Os [ 1 5 1 , s u g g e s t i n g t h a t t h e s h o r t r a n g e o r d e r is a l m o s t t h e s a m e i n b o t h c o m p o u n d s , i.e., a VOs s q u a r e p y r a m i d w i t h a v e r y s h o r t V ~ O d o u b l e b o n d ( 1 . 5 8 A ) a l o n g t h e z axis [ 1 6 ] . Figure lb shows the ESR spectrum of a V2Os. 0.5 H~O xerogel obtained b y d r y i n g t h e gel u n d e r v a c u u m . I t is still r a t h e r p o o r l y n.,solvc,d. A s b e f o r e , it c o r r e s p o n d s t o a V ( I V ) in a n a x i a l l y d i s t o r t e d crysta~ field a n d c a n b e described b y the same spin H a m i l t o n i a n with g# --1.925 gl -- 1 . 9 8 2 Af = 196G Ai = 76G T h e s e p a r a m e t e r s are s l i g h t l y d i f f e l ' e n t f r o m t h e p t e v i o l m o n e s , s h o w i n g t h a t t h e c o o r d i n a t i o n p o l y h e d r o n o f t h e V ( I V ) ions has b e e n m o d i f i e d b y hydration. F i g u r e l c s h o w s t h e E S R s p e c t r u m o f a V a O s " 1.6 H a O x e r o g e l d r i e d a t r o o m t e m p e r a t u r e . I t is m u c h b e t t e r r e s o l v e d t h a n t h e p r e v i o u s s p e c t r u m . T h e E S l t l i n e w i d t h a p p e a r s t o b e m u c h s m a l l e r . T h e p e a k - t o - p e a k ilnew i d t h o f t h e parallel h y p e r f i n e lines d e c r e a s e s f r o m 8 0 t o 16 G. T h i s E S R s p e c t r u m is still t y p i c a l o f a V ( I V ) i o n in a n a x i a l ligand field, b u t t h e E S R parameters are quite different gn -- 1 . 9 3 5 AS --- 2 0 4 G g1 = 1.986 AI = 78G T h e y a r e n o w q u i t e s i m i l a r t o t h o s e p u b l i s h e d b y Ballhmx~en a n d G r a y f o r the hydrated vanadyl ion VO(H,O)]* [17|. T h i s suggests t h a t w a t e r m o l e c u l e s n o w b e l o n g t o t h e c o o r d i n a t i o n p o l y h e d r o n o f tile V ( I V ) i o n t h a t s h o u l d b e s u r r o u n d e d b y six o x y g e n n e a r e s t n e i g h b o u r s w i t h a l o n g e r V = O d o u b l e b o n d (VffiO = 1 . 6 7 A). Room temperature experiments T h e r o o m t e m p e r a t u r e E S R s p e c t r u m o f a V 2 O s • 0.5 H ~ O x e r o g e l is s h o w n it! Fig. 2a. N o m o d i f i c a t i o n is o b s e r v e d w h e n t h e r e c o r d i n g t e m p e r a t u r e increases, a n d this s p e c t r u m is q u i t e s i m i l a r t o t h e o n e ~ h o w n in Fig. l b . A d r a s t i c m o d i f i c a t i o n is o b s e r v e d , h o w e v e r , w h e n t h e i x e r o g e l c o n t a i n s 1.6 H a O p e r V a O s . F i g u r e 2 b s h o w s t h e E S R s p e c t r u m o f a V ~ O s . 1.6 H z O x e r o g e l . I t e x h i b i t s o n l y e i g h t lines "arising f r o m t h e h y p e r f i n e c o u p l i n g o f one "unpaired electron (8 =1/2) with' the nuclear, spin (I=7/2) -of, the v a n a d i u m a t o m a n d c a n b e d e s c r i b e d b y t h e i s o t r o p i e s p i n :Ham-.'lt0nian ~:g#HS+AS~ ~ ~ " ~ ~:~ '" " .... " ~th g = I,967 A = 117 G _20 _ -' ~oo ~o H(6) Ft~'. 2. IF~IR spectra recorded at room temperature ( T = 3 0 0 K). (a) V~Os.O.5 HjO; (b) V,O, "1.6 H,O. A n intensity d i s t r i b u t i o n is observed among the h y p e r f i n e lin~.s. Thei¢ w i d t h appears to depend o n the corcesponding nuclear s p i n q u a n t u m number M. Such a behavior is typical o f a f a s t t u m b l i n g o f the V ( I V ) ions under study. This could be due to a Brownian m o t i o n o f the molecular species containing the V ( I V ) ion. A n analysis o f this m o t i o n can be performed according to the model developed b y Wilson and Kivelson [ 1 8 ] . I n the fast t u m b l i n g referee, ~ the l i n e w i d t h Z~H(Jtf) o f - e a c h h y p e r f i n e component, can be e x p r e s s e d as w h e r e ~ , Q, ~ a n d 6 p a r a m e t e r s d e p e n d o n t h e A a n d g t e n s o r s , t h e m i c r o , 124 wave f r e q u e n c y ~ , a n d t h e c o r r e l a t i o n t i m e ~ j o f t h e m o t i o n a n d t h e . ~ residual l i n e w i d t h a t . A d e t a i l e d analysis o f s u c h a m o t i o n in t h e case o f h y d r a t e d a m o r p h o u s V2Os has a l r e a d y b~en p u b l i s h e d [ 1 9 ] . T h e s a m e analysis p e r f o r m e d fo r a V 2 0 s - 1.6 Hz O gel leads t o (i) an a c t i v a t i o n e n e r g y E ffi6 kcal m o l e -t a n d a c o r r e l a t i o n t i m e re ffi 0 . 8 - 1 0 t3 s in t h e case o f a t h e r m a l l y a c t i v a t e d m o t i o n d e s c r i b e d h y re = T0 exp -E/I~T. (it) a n e q u i v a l e n t r a d i u s a = 5.2 A in t h e case o f a B r o w n i a n m o t i o n d e s c r i b e d b y r e - - 4 / 3 - = a 3 . ~ / k T , wllere q c o r r e s p o n d s t o t h e viscosity o f water T h e t h e r m a l a c t i v a t i o n e n e r g y de c reas es t o a b o u t 2 k c a l m o l e -z , w h i l e t h e e q u i v a l e n t radius r e m a i n s b e t w e e n 4 mid ~ A w h e n t h e w a t e r c o n t e n t increases in t h e gel [ 1 2 ] . This suggests t h a t t h e m o t i o n d o e s n o t involve t h e w h o l e r i b b o n b u t r e m a i n s l o c a l i z e d a r o u n d t h e V (IV) a t o m s . ENDOR D u r i n g a n E N D O R e x p e r i m e n t t h e static m a g n e t i c field H0 o f t h e E S R s p e c t r u m is k e p t c o n s t a n t w h i l e a r a d i o - f ~ q u e n c y field is swept. T h e ENI~OR s p e c t r u m t h e n c o r r e s p o n d s t o t h e i n t e n s i t y v a r i a t i o n o f t h e E S R line o n w h i c h H0 is s e t versus t h e f r e q u e n c y o t t h e r t field. A t y p i c a l p r o t o n E N D O R s p e c t r u m e x h i b i t s several d o u b l e t s c e n t e r e d o n t h e free p r o t o n n u c l e a r f r e q u e n c y Vp. T h e i r s e p a r a t i o n c o r r e s p o n d s , i n a first o r d e r approxim a t i o n , t o t h e e l e c t r o n - - p r o t o n h y p e r f i n e co u p lin g . T h e E S I t spec.tmm o f t h e V 2O s , n H 2 0 gels exhibits an axial s y m m e t r y . O n e o f t w o sets of E S R lines c a n t h e n be c h o s e n fo r E N D O ) t , t h e parallel or p e r p e n d i c u l a r h y p e r f i n e lines. W h e n t h e m a g n e t i c field H0 is s et o n a parallel line ( f o r i n s t a n c e M l ffi - 7 / 2 ) , t h e E N D O t t s p e c t r u m s h o w s o n l y t h e V4*--H couplings c o r r e s p o n d i n g t o t h e v a n a d i u m sites having t h e i r V--O s h o r t e s t b o n d parallel ( o r n e a r l y parallel) t o t h e H0 d i r e c t i o n . T h e E N D O R s p e c t r u m t h e n l o o k s like a "single crystnl s p e c t r u m " [ 2 0 ] . W h e n H0 is set o n o n e o f t h e seven p e r p e n d i c u l a r h y p e r f i n e lines, all t h e V 4. ions having t h e i r v = o b o n d p e r p e n d i c u l a r t o t l o will c o n t r i b u t e t o t h e E N D O R s p e c t r u m . We t h e n have a " t w o - d i m e n s i o n a l s p e c t r u m " [ 2 0 ] . E N D O R e x p e r i m e n t s w e r e perl~ormed o n a B n l k e r 2 2 0 D s p e c t r o m e t e r e q u i p p e d with a B r u k e r E N D O R a c c e s s o r y a n d an O x f o r d I n s t r u m e n t E S R 9 c o n t i n u o u s h e l i u m flow c r y o s t a t . T h e o p t i m u m t e m p e r a t u r e for r e c o r d i n g o f t h e E N D O I t s p e c t r u m was f o u n d t o b e a r o u n d 10 K. O t h e r i n s t r u m e n t a l p a r a m e t e r s w e r e as follows: m i c r o w a v e p o w e r N 2.5 roW, r a d i o f r e q u e n c y p o w e r 100 W ( t h e m a x i m u m p o w e r available With o u r r f amp lifier), m o d u l a t i o n 100 kHz. Figure 3 s h o w s t h e p r o t o n E N D O R s p e c t r a o f • V2 O s , 1.6 H 2 0 xerogel. T h e m a g n e t i c field H o was set o n t h e M i = - ' / [ 2 l~mrallel a n d M i -~ + 7 / 2 p e r p e n d i c u l a r c o m p o n e n t s o f t h e E S R s p e c t r u m . - O n l y t w o pairs o f lines, • . 125 a r o u n d i.0.8 , a n d s 6 , 4 MHz,~ican b e seen in t h e almost~crystal-like E N D O R s p e c t r u m : (Fig,-3a)...Thel pair ~w i t h i t h e larger ~separationl arises f r o m ' t h e c o u p l i n g w i t h p r o t o n s clo~e t o t h e V = O axis, w h i l e t h e o t h e r o n e s h o u l d c o r r e s p o n d t o p r o t o n s s i t u a t e d in o r n e a r a plane p e r p e n d i c u l a r tO this V - O axis. T h e u n p a i r e d e l e c t r o n b e i n g in a p u r e l y dxy orbital1 i t s h y p e r f i n e c o u p l i n g w i t h an axial~ p r o t o n (situated near t h e z axis) s h o u l d he m a i n l y dipolar, t h e c o n t a c t t e r m b e i n g nearly zero in this case [ 2 1 , 2 2 ] . T h e value o f t h e h y p e r f i n e c o u p l i n g s h o u l d t h e n be close t o 2 Ap, c o r r e s p o n d i n g t o t h e d i p o l e - d i p o l e e l e c t r o n - - p r o t o n c o u p l i n g along t h e z d i r e c t i o n . T h e parallel c o u p l i n g for t h e axial p r o t o n s s h o u l d t h e n be (At)axial "" 2 A p -- 6.4 MHz. (MHz) 3b.,, ~,~ .L Fig. 3. Proton ENDOR spectra of V~Ot* 1.6 HzO xero~el. (a) Parallel spectrum; (b) perpendieular spectrum. T h e p e r p e n d i c u l a r E N D O R s p e c t r u m (Fig. 3b) exhibits several pairs o f lines separated b y 0.8, 3.1, 4.9, 8.3 a n d 15.5 MHz. T h e 3.1 MHz pair closely c o r r e s p o n d s t o t h e p e r p e n d i c u l a r c o u p l i n g o f t h e axial p r o t o n s (At)axlal ~ - A p ffi - 3 . 1 MHz. T h e s e p r o t o n s p r e s u m a b l y c o r r e s p o n d t o an axial water m o l e c u l e b o n d e d t o t h e V 4÷ ion a l o n g t h e z axis, o p p o s i t e t o t h e V = O s h o r t b o n d [ 2 3 ] . All o t h e r E N D O I t lines can be a t t r i b u t e d t o equatorial p r o t o n s [ 2 4 ] . T h e s e p r o t o n s m a y b e l o n g t o w a t e r m o l e c u l e s situated i n t h e equatorial plane, a s f o r V O ( H 2 0 ) ] ~ . It is m o r e probable, h o w e v e r , t h a t s o m e p r o t o n a t i o n o f t h e bridging o x y g e n occurs. These E N D O K spectra, t o g e t h e r with t h e m e a s u r e d ESR parameters, are q u i t e similar t o t h o s e a l r e a d y pub- 126 l i s h e d f o r V O ( H 2 0 ) ] -~ in f r o z e n s o l u t i o n s [ 2 1 ] o r i n T u t t o n salts [ 2 2 ] : a n d f o r V O 2÷ a d s o r b e d o n a Y Z e o l i t e [ 2 3 ] . We m a y a s s u m e t h e n t h a t t h e l i g a n d f i e l d a r o u n d V ( I V ) i n t h e V 2 O s " 1 . 6 H 2 0 x e r o g e l is q u i t e s i m i l a r t o t h a t o f VO(H20)~*. . . . . Figure 4 shows the proton ENDOR spectra of a V~Os. 0.0 H20 xeregel obtained by dehydration under vacuum at room temperature. On each side of the central line we see pairs of peaks corresponding to _ A s ffi 6 . 9 M H z i n t h e p a r a l l e l s p e c t r u m A t -- 2 . 9 M H z in t h e p e r p e n d i c u l a r s p e c t r u m This proton ENDOR spectrum appears to be 8omewhat different from the p r e v i o u s o n e a n d f r o m t h e V O ( H 2 0 ) ] + E N D O R s p e c t r u m . T h e A t -- 6 . 9 MI~:r, a n d A t ffi 2 . 9 M H z h y p e r f i n e c o u p l i n g s s u g g e s t t h a t s o m e p r o t o n s r e m a i n in a n a p p r o x i m a t i v e l y a x i a l p o s i t i o n . T h e e q u a t o r i a l p r o t o n s , h o w e v e r , are n o l o n g e r d e t e c t a b l e , 4o/ -7/2// Fig. 4. Proton E N D O R spectra o f V=Oj* 0.5 H~O xeroget$. (a) Parallel spectrum; (b) perpendicular spectrum. T h e E N D O R c e n t r a l l i n e t h a t c a n b e s e e n a r o u n d .the p r o t o n f r e q a e n c y , p in b ~ t h p a r a l l e l a n d p e r p e n d i c u l a r s p e c t r a s h o u l d c o r r e s p o n d t o t h e soc a l l e d " m a t r i x l i n e . " i t arises f r o m t h e c o u p l i n g w i t h t h e p r o t o n s s i t u a t e d ffLr f r o m t h e p a r a m a g n e t i c V 4. i o n . CONCLUSION • : . X-ray a n d n e u t r o n d i f f r a c t i o n e x P e r i m e n t s have s h o w n t h a t t h e first stages o f h y d r a t i o n c o r r e s p o n d ~t o t h e i n t e r c a l a t i o n o f w a t e r : l a y e r s b e t w e e n ~t h e r i b b o n s o f t h e gel [ 4 ] . T h e basal s pacin g d alo n g t h e ¢ d i r e c t i o n t h e n i n c r e a s e s b y steps of~ 2.8 A; This c o u l d e x p l a i n w h y t h e l i n e w i d t h o f t h e h y p e r f i n e lines decreases u p o n h y d r a t i o n . T h e m e a n d i s t a n c e b e t w e e n V ( I V ) ions s i t u a t e d a t t h e Surface o f t h e r i b b o n s inCreases, d e c r e a s i n g t h e d i p o l a r i n t e r a c t i o n s b e t w e e n p a r a m a g n e t i c centers. As s h o w n b y E N D O R , t h e V2 Os- 1.6 H 2 0 E S R l i n e w i d t h is m a i n l y g o v e r n e d b y n o n r e s o l v e d h y p e r f i n e interactions with protons. R o o m temperature ESR spectra show that some m o l e c u l a r m o t i o n , c h a r a c t e r i z e d b y an e q u i v a l e n t radius o f a b o u t 5 A, o c c u r s w h e n t h e w a t e r c o n t e n t b e c o m e s g reater t h a n 1.6 I120 p e r V2Os. S u c h a col" ,,osition c o r r e s p o n d s t o t h e i n t e r c a l a t i o n o f t w o w a t e r layers, w i t h an i n t e r l a y e r s e p a r a t i o n o f 2.8 × 2 ~ 5.6 A [ 3 ] t allowing t h e r o t a t i o n o f t h e v a n a d y l ions a t t h e s u r f a c e o f t he gel. Magnetic r e s o n a n c e e x p e r i m e n t s give s o m e m o r e i n f o r m a t i o n a b o u t t h e i n t e r a c t i o n b e t w e e n V ( I V ) ions a n d w a t e r m o l e c u l e s at t h e su rface o f t h e gel. T h e ESIt a n d E N D O R s p e c t r a o f t h e V 2 O s - l . 6 H 2 0 x ero g el are q u i t e similar to t h o s e o f t h e h y d r a t e d v a n a d y l io n VO(H20)~+. T h e y suggest t h a t s o m e w a t e r belongs t o t h e c o o r d i n a t i o n p o l y h e d r o n o f t h e V ( I V ) ions s i t u a t e d a t t h e s u r f a c e o f t h e ribbons. T h e s e V ( I V ) ions are s u r r o u n d e d b y six o x y g e n n e a r e s t n e i g h b o r s , t h e sixth o x y g e n arising f r o m o n e w a t e r m o l e c u l e s i t u a t e d a l o n g t h e c axis, o p p o s i t e to t h e V--O d o u b l e b o n d . W h e n r e m o v e d , this w a t e r m o l e c u l e w o u l d leave a five-fold• c o o r d i n a t i o n . This agrees w i t h t h e t h e r m a l analysis o f t h e x ero g el s h o w i n g t h a t , a f t e r d e h y d r a t i o n a bove 300°C, o r t h o r h o m b i c V2Os is o b t a i n e d in w h i c h t h e v a n a d i u m ls s u r r o u n d e d b y five o x y g e n o n l y •[16]. T h e E S R a n d E N D O R s p e c t r a o f t h e V2Os, 0.5 H 2 0 are s o m e w h a t d i f f e r e n t . T h e y still e x h i b i t p r o t o n hyperfine c o u p l i n g s p r e s u m a b l y arising f r o m azial p r o t o n s , b u t t h e c o o r d i n a t i o n p o l y h e d r o n is c l e a r l y d i f f e r e n t f r o m w h a t is o b s e l v e d in c r y s t a l l i n e V20~ a n d VO(H20)~+. In particular, w e m a y p o i n t o u t t h a t t h e E N D O R signal d u e to e q u a t o r i a l p r o t o n s are n o l o n g e r d e t e c t a b l e . All t h e s e results agree q u i t e well w i t h a previous infrared s t u d y p e r f o r m e d o n V~O5 gels [ 2 5 ] . As a c o n c l u s i o n , w e p o i n t o u t t h e fo llo w in g features: T h e stronglyb o n d e d w a t e r m o l e c u l e s (V2Os • 0.5 H 2 0 ) s e e m t o be l i n k e d n e a r t h e V ( I V ) ions, leading t o s o m e m o d i f i c a t i o n o f t h e g a n d A tensors. T h e basal spacing o f t h e r i b b o n s is d ffi 8.{$ A. T h e i n t e r l a y e r spacing r e m a i n s q u i t e small so t h a t d i p o l a r i n t e r a c t i o n s are still i m p o r t a n t an d n o m o t i o n is possible. S o m e swelling is o b s e r v e d w h e n m o r e w a t e r is a d d e d . I t leads t o an increase o f t h e i n t e r l a y e r spacing (d " 1 1 . 5 A). T h e d i p o l a r i n t e r a c t i o n s d e c r e a s e a n d s o m e local m o t i o n s a r o u n d V ( I V ) ions b e c o m e possible. E N D O R e x p e r i m e n t s clearly s h o w t h a t t h e c o o r d i n a t i o n o f V ( I V ) is t h e n q u i t e close t o t h a t o f VO(H 20)~+ ion. N o significant m o d i f i c a t i o n o f t h e E S R s p e c t r u m is o b s e r v e d w h e n m o r e w a t e r is a d d e d . T h e V ( I V ) c o o r d i n a t i o n p o l y h e d r o n d o e s n o t seem t o vary. 128 REFERENCr~S 1 P. Aldebert, N. Baffler, N. Gharbl and J. Livage, Mater. Res. Bull., 16 ( 1 9 8 1 ) 669. 2 J.J. Legendre and J. Livage, d. Colloid Interface SeI., 94 (1083) 75. 3 J.J. Legendre, P. Aldebert, N. Baffler and J. L[vage, J. Colloid i nt erface Sei., 94 (19831 84. 4 P..]Lldehert, HAV. Hnesslin, N. Barrier and J. Livoge, J. Colloid Int erface Hei., 98 (1~84) 478. 5 C. Sanchez, F. Babonneau, R. Morfneau, J. L[vage and J. Bullot, Philos. Mag. B, 47 (19831 279. 6 P. B a r b o u x , N. Baffler, R. Morineau, J. Livage, Solid S t a t e foni©s, 9, 10 (19831 1073. 7 J. Livage and J. Lemerle, Annu. Re','. Mater, Sci., 12 ( 1 9 8 2 ) 103. 8 Kodak PathS, French p a t e n t B F. 2429252, 1979. 9 J. Bullot and J. Liva~e, French patent 81. 13665, 1981. 10 J. Bullot, O. Gallais, M. G a ut hl e r and J. Livage, Phys. S t a t u s S o l l d i A, 71 (19821 KL. 11 J. L e m e d e , L. Ne|em and J. Lefebvre, J. Chem. R e s . , ( i 9 7 8 ) 525301. | 2 N. Gharbi, C. Sanehez, J. I,[vage, J. Lemerle, L . N e j e m and J. Lefebvre, Inorg. Chem., 21 ( I 9 8 2 1 2768. 13 L. Rivoalen, A. Revc.~levs©hi, J. L|vage and R. Collongues, J. N o n - t r y s t . Solids, 21 (19761 171. 14 J. Livage, N. Gharhi. 11LC. L e r o y and M. Mlehattd, Mater. Res. Bull., 1 3 ( 1 9 7 8 1 1117. 15 E. Glllis and ~-. Boesman, Phys. St at us Solldi, 14 (19661 337. 16 H.G. Bachmann, F.R. A h m e d and W.H. Barnes, Z. Krist., 115 (19611 110. 110. 17 C.J. Rmllhausen and H.R. Gray, Inorg. Chem., I (10621 111. 18 R. W i l s o n and D. Kivel~on, J. Chem. Phys., 44 ( 1 9 6 6 ) i b4. 19 P. Tougne, A.P. Legrand, C. Sanchez and J. Livage, J. Phys. Chem. Solids, 42 ( 1 9 8 1 ) 101. ~10 | l . g . Oersmann and J.D. Swallen, J. Chem. Phys., 36 (1~]621 3221. Ol H. van Will;gen, J. ~|aRn. Reson., 39 (1980) 37. 22 23 24 2~ N.M. A t h e r t o n and J . F . S h a e k [ e t o n , Mol. Phys., 39 (1980) 1471. !1. van Willigen and T.K. Chandrashekar, J. Am. Chem. Soc., 1 U 5 ( 1 9 8 3 1 4 2 3 2 . H. van Wllllgen, C.F. Mulks and N.M. A t h e r t o n , Inorg. Chem., 21 (19821 1709. M.T. Vandenhorre, R. Pros,, E. Huard and J. Livage, Mater. Res. Bull., 18 ( 1 9 8 3 ) !133.