Hindawi
Journal of Chemistry
Volume 2022, Article ID 6602899, 9 pages
https://doi.org/10.1155/2022/6602899
Research Article
On Acyclic Structures with Greatest First Gourava Invariant
Mariam Imtiaz,1 Maria Naseem,2 Misbah Arshad,3 Salma Kanwal ,4 and Maria Liaqat4
1
University of Engineering and Technology, KSK Campus, Lahore, Pakistan
Department of Mathematics, Faculty of Science, University of Central Punjab, Lahore, Pakistan
3
COMSATS University Islamabad, Sahiwal Campus, Pakistan
4
Lahore College for Women University, Lahore, Pakistan
2
Correspondence should be addressed to Salma Kanwal;
[email protected]
Received 27 December 2021; Accepted 1 April 2022; Published 25 April 2022
Academic Editor: Haidar Ali
Copyright © 2022 Mariam Imtiaz et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Let ξ be a simple connected graph. The first Gourava index of graph ξ is defined as GO1 ðξÞ = ∑μη∈EðξÞ ½dðμÞ + dðηÞ + dðμÞdðηÞ,
where dðμÞ indicates the degree of vertex μ. In this paper, we will find the upper bound of GO1 ðξÞ for trees of given diameter,
order, size, and pendent nodes, by using some graph transformations. We will find the extremal trees and also present an
ordering of these trees having this index in decreasing order.
1. Introduction
Topological index is very basic tool in chemical modeling. In
molecular graph, atoms are considered as vertices and chemical bonds as edges. In short, the graph is a combination of
vertices and edges. First chemical index was Wiener index
introduced by Wiener [1] in 1947 to compare the boiling
points of few alkanes isomers; he revealed that this index is
highly agreed with the boiling point of molecules of alkanes.
Later study on QSAR manifested that this index is also helpful to correlate with other quantities like density, critical
point, and surface tension. The mathematical formula of this
index is given as
W ðξÞ = 〠 dξ ðμ, ηÞ,
ð1Þ
fμ,ηg
M 2 ðξÞ = 〠
μη∈EðξÞ
μη∈EðξÞ
dξ ðμÞdξ ðηÞ :
EM1 ðξÞ = 〠
f1 ∈EðξÞ
d f1
2
,
ð2Þ
ð3Þ
EM 2 ðξÞ = 〠 d f1 dg1 :
f1 ~g1
The 1st and 2nd Gourava indices were presented by V. R.
Kulli in 2017 [6]. These indices are defined as
GO1 ðξÞ = 〠 ½d ðμÞ + d ðηÞ + dðμÞdðηÞ,
μη∈EðξÞ
where dξ ðμ, ηÞ indicates the distance between the vertices μ
and η in ξ. The most studied degree-based indices, i.e.,
Zagreb indices introduced by Gutman and Das [2], are
defined as follows
2
M 1 ðξÞ = 〠 dξ ðμÞ = 〠 dξ ðμÞ + dξ ðηÞ,
μ,η∈V ðξÞ
Some properties about these indices are depicted in [3, 4].
The 1st and 2nd reformulated Zagreb indices were regenerated by Milic̆evic ′ et al. [5] in terms of edge degree, defined as
GO2 ðξÞ = 〠 ½d ðμÞ + d ðηÞðd ðμÞd ðηÞÞ:
ð4Þ
μη∈EðξÞ
A topological index is a mathematical formula, which has
significant applications in chemical graph theory, because it
is used as a molecular descriptor to investigate physical as
well as chemical properties of chemical structure. Therefore,
it is a powerful technique in avoiding high-cost and longterm laboratory experiments. There are 3,000 topological
invariants registered till now. All these indices have their
2
applications in chemical graph theory. In these molecular
descriptors, Gourava and hyper-Gourava invariants are used
to find out the physical and chemical properties (such as
entropy, acentric factor, and DHAVP) of octane isomers.
The 1st and 2nd Gourava invariants highly correlate with
entropy and acentric factor, respectively.
In [7], the graph operations for Gourava index are
presented. In our present study, we considered that all
graphs are simple and connected. For any graph, the degree
of a vertex is defined as the number of edges attached to it.
The smallest degree of graph ξ is represented by δðξÞ. The
vertex in a graph whose degree is one is known as pendent
vertex. The neighborhood of a vertex μ is the set of all nodes
attached with μ, represented by NðμÞ. There are two types of
neighborhood, open neighborhood and closed neighborhood. If NðμÞ includes all the other nodes except μ, then it
is called open neighborhood, but if it includes the node μ,
then it is called closed neighborhood. Closed neighborhood
is defined as N½μ = NðμÞ ∪ fμg (for further notations in
graph theory, we refer [8]).
Some bounds of reformulated Zagreb indices are given
in [9]. In 2012, Xu and Das [10] established some graph
transformations that maximize or minimize the multiplicative sum Zagreb index of graphs and used these graph transformations to determine the extremal graphs among trees,
unicyclic, and bicyclic graphs for multiplicative sum Zagreb
index. Two years later, in 2014, Ji et al. [11] extended the
work of Xu and Das [10] for the 1st reformulated Zagreb
index. In 2017, Gao et al. [12] used the same graph transformations as given in [11] to compute the similar results as
computed in [11] but for the hyper-Zagreb index.
Tomescu and Kanwal [13] in 2013 introduced some
graph transformations to compute the general sumconnectivity index for acyclic connected graphs of given
diameter, order, and pendant vertices and determined the
corresponding extremal trees and gave the ordering of trees
with minimum general sum-connectivity index. Ilic ′ et al. in
2011 [14] used some graph transformations to find the
bounds for unicyclic and bicyclic graphs with respect to
degree distance index. Liu et al. [15] analyzed the newly
introduced chemical invariant termed as Mostar invariant
for tree-like phenylenes and provided a detailed discussion
for the obtained results. Liu et al. [16], provided an ordering
of acyclic, bicyclic, and tricyclic structures with respect to
recently introduced invariants Sombor and reduced Sombor
invariants. In [17], Liu et al. determined some degree-based
chemical invariants for octahedron networks. Qi et al. [18]
put forward computations of several degree-based chemical
invariants for rhombus-type silicate and oxide structures.
In [19], the authors investigated several degree-based invariants for planar octahedron networks and made comparison
of obtained numerical results. Hu et al. [20] analyzed certain
distance-based invariants for chemical interconnection networks and analyzed their behavior.
In this work, we are aimed to determine the acyclic
structures having maximum values of first Gourava invariant and put forward acyclic structures attaining first five
greatest values of first Gourava invariant. Plan of work and
methodology behind attaining main results of this work is
Journal of Chemistry
η1
μ1,2
μ1,1 η1,1
μ1 η1
η1,2
μ1,2
η1,h
μ1, f
μ1,1
η1,1
η1,2
μ1
μ1, f
η1,h
Figure 1: B1 -tranform
to apply certain edge swapping transformations to acyclic
graphs and observe the behavior of first Gourava invariant.
We will see that it increased for the resultant graph and
eventually leads us to acyclic structures with the first five
bigger values of above-mentioned invariant.
2. Gourava Index and Graph Transformations
In this section, we use certain graph transformations presented by Ji et al. [11]. Further, we will notice that these
transformations increase the GO1 for trees. These transformations are narrated below.
In B1 ‐transformation, let ξ be a nontrivial connected
graph having vertices η, μ ∈ ξ, such that Nðη1 Þ = μ1 , η1,1 ,
η1,2 , ⋯, η1,h and Nðμ1 Þ = η1 , μ1,1 , μ1,2 , ⋯, μ1, f , where η1 and
μ1 have no common neighbors in ξ, f ≥ 0 and h ≥ 1.
Let ξ ′ be the graph obtained after applying B1 −
transformation, such that ξ ′ = ξ − η1 η1,1 , η1 η1,2 , ⋯, η1 η1,h +
μ1 η1,1 , μ1 η1,2 , ⋯, μ1 η1,h as explained in Figure 1.
Lemma 1. Let ξ be a connected graph with no cycle and ξ ′ be
a graph obtained after applying B1 -transformation (as shown
in Figure 1), and then, GO1 ðB1 ðξÞÞ = GO1 ðξ ′ Þ > GO1 ðξÞ for
any f , h ≥ 1.
Proof. From Figure 1, d ξ′ = f + h + 1 and d ξ ′ ðη1 Þ = 1. We can
easily guess that degree of μ1 increases, while degree of η1
decreases after applying transformation, and all other vertices preserve their degrees.
GO1 ξ ′ − GO1 ðξÞ
f n
o
= 〠 d ξ ′ μ1,i + d ξ ′ ðμ1 Þ + dξ ′ μ1,i d ξ ′ ðμ1 Þ
i=1
h n
o
+ 〠 d ξ ′ η1, j + d ξ ′ μ1 + dξ , η1, j dξ ′ ðμ1 Þ
j=1
n
+ d ξ , ðμ1 Þ + d ξ ′ ðη1 Þ + dξ ′ ðμ1 Þd ξ ′ ðη1 Þ
o
f
− 〠 dξ μ1,i + d ξ μ1 + dξ μ1,i dξ ðμ1 Þ
i=1
h n
o
− 〠 d ξ η1, j + dξ ðη1 + d ξ η1, j d ξ ðη1 Þ
j=1
− d ξ ðμ 1 Þ + d ξ ðη 1 Þ + d ξ ðμ 1 Þd ξ ð η 1 Þ
Journal of Chemistry
3
η1,1 η1,h
γ1,1
μ1,1
η1,1
μ1
η1
γ1
μ1,1
b1
μ1, f
γ1,1
η1,h
μ1
η1
γ1
b1
μ1, f
Figure 2: B2 -transform.
Proof. Here d ξ ′ ðμ1,i Þ = d ξ ðμ1,i Þ, and d ξ ′ ðη1,i Þ = dξ ðη1,i Þ, and
after transformation, dξ ′ ðμ1 Þ > d ξ ðμ1 Þ and d ξ ′ ðη1 Þ < dξ ðη1 Þ.
f hn
o
= 〠 dξ , μ1,i + d ξ ′ ðμ1 Þ + dξ ′ μ1,i d ξ , ðμ1 Þ
i=1
i
− dξ μ1,i + d ξ ðμ1 Þ + dξ μ1,i dξ ðμ1 Þ
GO1 ξ ′ − GO1 ðξÞ
h hn
o
+ 〠 d ξ , η1, j + d ξ , ðμ1 + d ξ , η1, j dξ , ðμ1 Þ
f n
o
= 〠 d ξ ′ μ1,i + d ξ ′ ðμ1 Þ + dξ ′ μ1,i d ξ ′ ðμ1 Þ
j=1
i=1
n
oi
− d ξ η1, j + dξ ðη1 + d ξ η1, j d ξ ðη1 Þ
n
o
+ d ξ , ðμ1 Þ + d ξ , ðη1 Þ + dξ ′ ðμ1 Þdξ ′ ðη1 Þ
− dξ ðμ1 Þ + d ξ ðη1 Þ + d ξ ðμ1 Þd ξ ðη1 Þ
h n
o
+ 〠 dξ ′ η1, j + dξ ′ ðμ1 Þ + d ξ ′ η1, j dξ ′ ðμ1 Þ
j=1
n
o
+ dξ ′ ðμ1 Þ + d ξ ′ ðη1 Þ + dξ ′ ðμ1 Þd ξ ′ ðη1 Þ
n
o
+ dξ ′ ðη1 Þ + d ξ ′ ðγ1 Þ + d ξ ′ ðη1 Þd ξ ′ ðγ1 Þ
f hn
o
= 〠 dξ ′ μ1,i + ð f + h + 1Þ + ð f + h + 1Þd ξ ′ μ1,i
i=1
f
− 〠 d ξ μ1,i dξ ðη1 Þ
i
− dξ μ1,i + ð f + 1Þ + ð f + 1Þd ξ μ1,i
i=1
h
hn
o
+ 〠 d ξ ′ η1, j + ð f + h + 1Þ + ð f + h + 1Þdξ ′ η1, j
j=1
n
oi
− d ξ η1, j + ðh + 1Þ + ðh + 1Þdξ η1, j
+ f ð f + h + 1Þ + 1 + ð f + h + 1Þg
− d ξ ðμ1 Þ + dξ ðη1 Þ + dξ ðμ1 Þd ξ ðη1 Þ
− d ξ ðη1 Þ + dξ ðγ1 Þ + d ξ ðη1 Þdξ ðγ1 Þ
f hn
o
= 〠 d ξ ′ μ1,i + d ξ ′ ðμ1 Þ + dξ ′ μ1,i d ξ ′ ðμ1 Þ
i=1
i
− d ξ μ1,i + d ξ ðμ1 Þ + d ξ μ1,i d ξ ðμ1 Þ
− f ð f + 1Þ + ðh + 1Þ + ð f + 1Þðh + 1Þg
f
h n
o
− fh
= 〠 h + hd ξ μ1,i + 〠 f + f dξ η1, j
i=1
h
+〠
j=1
j=1
n
o
− fh
= f h + hd ξ μ1,i + h f + f dξ η1, j
n
o
= hf d ξ μ1,i + hf d ξ η1, j + hf
n
o
= hf d ξ μ1,i + d ξ η1, j + 1 > 0 ⇒ GO1 ðB1 ðξÞÞ
= GO1 ξ ′ > GO1 ðξÞ
ð5Þ
hn
o
d ξ ′ η1, j + d ξ ′ ðμ1 Þ + dξ ′ η1, j d ξ ′ ðμ1 Þ
n
oi
− dξ η1, j + d ξ ðη1 Þ + dξ η1, j dξ ðη1 Þ
n
o
+ dξ ′ ðμ1 Þ + d ξ ′ ðη1 Þ + dξ ′ ðμ1 Þd ξ ′ ðη1 Þ
− d ξ ðμ1 Þ + dξ ðη1 Þ + dξ ðμ1 Þd ξ ðη1 Þ
n
o
+ dξ ′ ðη1 Þ + d ξ ′ ðγ1 Þ + d ξ ′ ðη1 Þd ξ ′ ðγ1 Þ
− d ξ ðη1 Þ + dξ ðγ1 Þ + d ξ ðη1 Þdξ ðγ1 Þ
f hn
o
= 〠 d ξ ′ μ1,i + ð f + h + 1Þ + ð f + h + 1Þd ξ ′ μ1,i
i=1
Lemma 2. Let ξ be an acyclic graph, and ξ ′ is obtained after
applying B2 -transformation (as shown in Figure 2) where
d ξ ðγ1 , b1 Þ ≥ 1; then,
GO1 ðB2 ðξÞÞ = GO1 ξ ′ > GO1 ðξÞ,
for any f > 1 and h, ℓ ≥ 1.
i
− d ξ μ1,i + ð f + 1Þ + ð f + 1Þdξ μ1,i
h
+〠
j=1
ð6Þ
hn
o
d ξ ′ η1, j + ð f + h + 1Þ + ð f + h + 1Þd ξ ′ η1, j
n
oi
− dξ η1, j + ðh + 2Þ + ðh + 2Þd ξ η1, j
+ f ð f + h + 1Þ + 2 + 2ð f + h + 1Þg
4
Journal of Chemistry
γ1,1
η1,h
η1,h γ1,1
η1,1
η1,1
µ1
g1
g2
η1
γ1
g3
µ1
µ1,1
g1
g2
η1
γ1
g3
µ1,f
Figure 3: B3 -transform.
h n
o
− 〠 d ξ η1, j + dξ ðη1 Þ + dξ η1, j dξ ðη1 Þ
− f ð f + 1Þ + ðh + 2Þ + ð f + 1Þðh + 2Þg
+ f2 + ðℓ + 1Þ + 2ðℓ + 1Þg
j=1
− fðh + 2Þ + ðℓ + 1Þ + ðh + 2Þðℓ + 1Þg
f h
i
i h h
= 〠 h + hd ξ ′ μ1,i + 〠 ð f − 1Þ + ð f − 1Þdξ ′ η1, j
i=1
j=1
+ ðh − hf Þ + ð−2h − hℓÞ
i
h
i h
= f h + hd ξ ′ μ1,i + h ð f − 1Þ + ð f − 1Þdξ ′ η1, j
− dξ ðμ1 Þ + d ξ ðg1 Þ + d ξ ðμ1 Þd ξ ðg1 Þ
− dξ ðg2 Þ + d ξ ðη1 Þ + d ξ ðg2 Þd ξ ðη1 Þ
− dξ ðη1 Þ + d ξ ðγ1 Þ + d ξ ðη1 Þd ξ ðγ1 Þ
f hn
o
= 〠 dξ ′ μ1,i + dξ ′ ðμ1 Þ + d ξ ′ μ1,i dξ ′ ðμ1 Þ
i=1
i
− dξ μ1,i + d ξ ðμ1 Þ + dξ μ1,i dξ ðμ1 Þ
+ ðh − hf Þ + ð−2h − hℓÞ
= hf + hf + hf − h + hf − h + h − hf − 2h − hℓ
= 3hf − 3h − hℓ = h½3f − ðℓ + 3Þ > 0 ⇒ GO1 ðB2 ðξÞÞ
= GO1 ξ ′ > GO1 ðξÞ:
h hn
o
+ 〠 d ξ ′ η1, j + d ξ ′ ðμ1 Þ + d ξ ′ η1, j d ξ ′ ðμ1 Þ
j=1
ð7Þ
Lemma 3. Let ξ be an acyclic graph and B3 ðξÞ = ξ ′ is obtained
after applying B3 -transformation (as shown in Figure 3),
where d ξ ðμ1 , η1 Þ = dB3 ðξÞ ðμ1 , η1 Þ ≥ 2 and d ξ ðγ1 , g3 Þ = dB3 ðγ1 ,
g3 Þ ≥ 0. If f > 1, h, ℓ ≥ 1, then,
GO1 ðB3 ðξÞÞ = GO1 ξ ′ > GO1 ðξÞ
ð8Þ
n
oi
− d ξ η1, j + dξ ðη1 Þ + dξ η1, j d ξ ðη1 Þ
n
o
+ d ξ ′ ðμ1 Þ + dξ ′ ðg1 Þ + d ξ ′ ðμ1 Þd ξ ′ ðg1 Þ
− dξ ðμ1 Þ + d ξ ðg1 Þ + d ξ ðμ1 Þd ξ ðg1 Þ
n
o
+ d ξ ′ ðg2 Þ + dξ ′ ðη1 Þ + d ξ ′ ðg2 Þdξ ′ ðη1 Þ
− dξ ðg2 Þ + d ξ ðη1 Þ + d ξ ðg2 Þd ξ ðη1 Þ
n
o
+ d ξ ′ ðη1 Þ + dξ ′ ðγ1 Þ + d ξ ′ ðη1 Þdξ ′ ðγ1 Þ
− dξ ðη1 Þ + d ξ ðγ1 Þ + d ξ ðη1 Þd ξ ðγ1 Þ
f hn
o
= 〠 dξ ′ μ1,i + ð f + h + 1Þ + ð f + h + 1Þdξ ′ μ1,i
i=1
i
− dξ μ1,i + ð f + 1Þ + ð f + 1Þd ξ μ1,i
Proof. Like the previous lemma, we have
h hn
o
+ 〠 d ξ ′ η1, j + ð f + h + 1Þ + ð f + h + 1Þdξ ′ η1, j
j=1
f
GO1 ðξÞ = 〠
i=1
hn
oi
dξ ′ μ1,i + dξ ′ ðμ1 Þ + d ξ ′ μ1,i dξ ′ ðμ1 Þ
h hn
oi
+ 〠 dξ ′ η1, j + dξ ′ ðμ1 Þ + d ξ ′ η1, j dξ ′ ðμ1 Þ
j=1
n
o
+ d ξ ′ ðμ1 Þ + dξ ′ ðg1 Þ + dξ ′ ðμ1 Þdξ ′ ðg1 Þ
n
o
+ d ξ ′ ðg2 Þ + d ξ ′ ðη1 Þ + dξ ′ ðg2 Þdξ ′ ðη1 Þ
n
o
+ d ξ ′ ðη1 Þ + dξ ′ ðγ1 Þ + dξ ′ ðη1 Þdξ ′ ðγ1 Þ
f
− 〠 d ξ μ1,i + d ξ ðμ1 Þ + d ξ μ1,i d ξ ðμ1 Þ
i=1
n
oi
− d ξ η1, j + ðh + 2Þ + ðh + 2Þd ξ η1, j
+ f ð f + h + 1Þ + 2 + 2ð f + h + 1Þg
− f ð f + 1Þ + 2 + 2ð f + 1Þg + f2 + 2 + 4g
− fð2 + ðh + 2Þ + 2ðh + 2Þg + fð2 + ðℓ + 1Þ + 2ðℓ + 1Þg
− fðh + 2Þ + ðℓ + 1Þ + ðh + 2Þðℓ + 1Þg
f h
i
i h h
= 〠 h + hdξ ′ μ1,i + 〠 ð f − 1Þ + ð f − 1Þd ξ ′ η1, j
i=1
j=1
− hℓ − 2h
= f ½h + h + h½ ð f − 1Þ + ð f − 1Þ − hℓ − 2h
Journal of Chemistry
5
γ1,1
μ1,1
γ1,1
μ1,1
γ1,2
g1
μ1
μ1, f
g2
γ1,2
γ1
μ1
μ1, f
g1
g2
γ1
Figure 4: B4 -transform.
= f h + f h + f h − h + f h − h − hℓ − 2h
= 4hf − 4h − hℓ = h½hf − ðℓ + 4Þ > 0 ⇒ GO1 ðB3 ðξÞÞ
= GO1 ξ ′ > GO1 ðξÞ
ð9Þ
Lemma 4. Let ξ be acyclic connected graph, and ξ ′ = B4 ðξÞ
is obtained after applying B4 -transformation(as shown in
Figure 4) for any f > ðℓ − 1Þ; we have GO1 ðB4 ðξÞÞ = GOðξ ′ Þ
> GO1 ðξÞ.
Proof. Since dξ ðμ1 , γ1 Þ ≥ 1, and if dξ ðμ1 , γ1 Þ ≥ 2, then d ξ′
ðμ1 Þ + d ξ′ ðγ1 Þ = ðf + 1Þ + ðℓ + 1Þ = dξ ðμ1 Þ + dξ ðγ1 Þ; now by
using definition of GO1 ðξÞ, we have
j=1
+ f1 + ð f + 2Þ + ð f + 2Þg − f1 + ðℓ + 1Þ + ðℓ + 1Þg
ℓ−1n
o
+ 〠 d ξ ′ γ1, j + d ξ ′ ðγ1 Þ + d ξ ′ γ1, j dξ ′ ðγ1 Þ
j=1
i=1
= f ð2Þ + ð−2Þðℓ − 1Þ + f1 + ð f + 2Þ + ð f + 2Þg
− f1 + ðℓ + 1Þ + ðℓ + 1Þg + 3 − 3
− 〠 dξ μ1,i + d ξ ðμ1 Þ + dξ μ1,i dξ ðμ1 Þ
i=1
− 〠 d ξ γ1, j + dξ ðγ1 Þ + d ξ γ1, j d ξ ðγ1 Þ
j=1
o
− dξ ðγℓ Þ + d ξ ðγ1 Þ + d ξ ðγℓ Þd ξ ðγ1 Þ
− dξ ðμ1 Þ + dξ ðg1 Þ + d ξ ðμ1 Þdξ ðg1 Þ
− dξ ðγ1 Þ + d ξ ðg2 Þ + d ξ ðγ1 Þd ξ ðg2 Þ
f hn
o
= 〠 dξ ′ μ1,i + dξ ′ ðμ1 Þ + d ξ ′ μ1,i dξ ′ ðμ1 Þ
i=1
− dξ μ1,i + d ξ ðμ1 Þ + dξ μ1,i dξ ðμ1 Þ
ℓ−1n
o
+ 〠 d ξ ′ γ1, j + d ξ ′ ðγ1 Þ + d ξ ′ γ1, j dξ ′ ðγ1 Þ
j=1
j=1
+ f1 + ð f + 2Þ + ð f + 2Þg
− f1 + ðℓ + 1Þ + ðℓ + 1Þg + 3 − 3
f
+ f ð f + 2 Þ + 2 + 2 ð f + 2 Þg − f ð f + 1 Þ + 2 + 2 ð f + 1 Þg
+ fℓ + 2 + 2ðℓÞg − fðℓ + 1Þ + 2 + 2ðℓ + 1Þg
f h
i ℓ−1
= 〠 1 + d ξ ′ ðμ1 , iÞ + 〠 −1 − dξ ðμ1 , jÞ
n
o
+ d ξ ′ ðγℓ Þ + dξ ′ ðμ1 Þ + d ξ ′ ðγℓ Þdξ ′ ðμ1 Þ
n
o
+ d ξ ′ ðμ1 Þ + dξ ′ ðg1 Þ + d ξ ′ ðμ1 Þd ξ ′ ðg1 Þ
n
o
+ d ξ ′ ðγ1 Þ + dξ ′ ðg2 Þ + d ξ ′ ðγ1 Þdξ ′ ðg2 Þ
o
d ξ ′ γ1, j + ðℓÞ + ℓd ξ ′ γ1, j
n
oi
− d ξ γ1, j + ðℓ + 1Þ + ðℓ + 1Þd ξ γ1, j
i=1
n
oi
− d ξ ′ μ1,i + ð f + 1Þ + ð f + 1Þdξ ′ μ1,i
ℓ−1hn
f n
o
= 〠 d ξ ′ μ1,i + d ξ ′ ðμ1 Þ + dξ ′ μ1,i d ξ ′ ðμ1 Þ
i=1
+〠
GO1 ξ ′ − GO1 ðξÞ
ℓ−1n
n
o
− dξ γ1, j + d ξ ðγ1 Þ + dξ γ1, j d ξ ðγ1 Þ
n
+ d ξ ′ ðγℓ Þ + dξ ′ ðμ1 Þ + d ξ ′ ðγℓ Þdξ ′ ðμ1 Þ
− dξ ðγℓ Þ + d ξ ðγ1 Þ + d ξ ðγℓ Þd ξ ðγ1 Þ
n
o
+ d ξ ′ ðμ1 Þ + dξ ′ ðg1 Þ + d ξ ′ ðμ1 Þd ξ ′ ðg1 Þ
− dξ ðμ1 Þ + dξ ðg1 Þ + d ξ ðμ1 Þdξ ðg1 Þ
n
o
+ d ξ ′ ðγ1 Þ + dξ ′ ðg2 Þ + d ξ ′ ðγ1 Þdξ ′ ðg2 Þ
− dξ ðγ1 Þ + d ξ ðg2 Þ + d ξ ðγ1 Þd ξ ðg2 Þ
f hn
o
= 〠 d ξ ′ μ1,i + ð f + 2Þ + ð f + 2Þd ξ ′ μ1,i
= 4f − 4ℓ + 4 = 4ð f − ðℓ − 1ÞÞ > 0 ⇒ GO1 ðB4 ðξÞÞ
= GO1 ξ ′ > GO1 ðξÞ
ð10Þ
If dξ ðμ1 , γ1 Þ = 1, then
GO1 ξ ′ − GO1 ðξÞ
f n
o
= 〠 dξ ′ μ1,i + dξ ′ ðμ1 Þ + d ξ ′ μ1,i d ξ ′ ðμ1 Þ
i=1
ℓ−1n
o
+ 〠 dξ ′ γ1, j + dξ ′ ðγ1 Þ + dξ ′ γ1, j d ξ ′ ðγ1 Þ
j=1
6
Journal of Chemistry
n
o
+ dξ ′ ðγℓ Þ + dξ ′ ðμ1 Þ + d ξ ′ ðγℓ Þd ξ ′ ðμ1 Þ
n
o
+ d ξ ′ ðμ1 Þ + d ξ ′ ðg1 Þ + dξ ′ ðμ1 Þdξ ′ ðg1 Þ
n
o
+ d ξ ′ ðγ1 Þ + d ξ ′ ðg2 Þ + dξ ′ ðγ1 Þd ξ ′ ðg2 Þ
f
− 〠 d ξ μ1,i + dξ ðμ1 Þ + d ξ μ1,i d ξ ðμ1 Þ
i=1
ℓ−1n
o
− 〠 dξ γ1, j + d ξ ðγ1 Þ + dξ γ1, j d ξ ðγ1 Þ
j=1
− d ξ ðγℓ Þ + dξ ðγ1 Þ + dξ ðγℓ Þdξ ðγ1 Þ
− d ξ ðμ1 Þ + d ξ ðg1 Þ + dξ ðμ1 Þd ξ ðg1 Þ
− d ξ ðγ1 Þ + dξ ðg2 Þ + dξ ðγ1 Þdξ ðg2 Þ
f hn
o
= 〠 d ξ ′ μ1,i + d ξ ′ ðμ1 Þ + dξ ′ μ1,i d ξ ′ ðμ1 Þ
i=1
− d ξ μ1,i + dξ ðμ1 Þ + d ξ μ1,i d ξ ðμ1 Þ
ℓ−1n
o
+ 〠 dξ ′ γ1, j + dξ ′ ðγ1 Þ + d ξ ′ γ1, j d ξ ′ ðγ1 Þ
j=1
n
o
− d ξ γ1, j + d ξ ðγ1 Þ + dξ γ1, j dξ ðγ1 Þ
n
+ d ξ ′ ðγℓ Þ + d ξ ′ ðμ1 Þ + dξ ′ ðγℓ Þd ξ ′ ðμ1 Þ
− d ξ ðγℓ Þ + dξ ðγ1 Þ + dξ ðγℓ Þdξ ðγ1 Þ
n
o
+ d ξ ′ ðμ1 Þ + d ξ ′ ðg1 Þ + dξ ′ ðμ1 Þdξ ′ ðg1 Þ
− d ξ ðμ1 Þ + d ξ ðg1 Þ + dξ ðμ1 Þd ξ ðg1 Þ
n
o
+ d ξ ′ ðγ1 Þ + d ξ ′ ðg2 Þ + dξ ′ ðγ1 Þd ξ ′ ðg2 Þ
− d ξ ðγ1 Þ + dξ ðg2 Þ + dξ ðγ1 Þdξ ðg2 Þ
f hn
o
= 〠 d ξ ′ μ1,i + ð f + 2Þ + ð f + 2Þdξ ′ μ1,i
= 4f − 4ℓ + 4
= 4ð f − ðℓ − 1ÞÞ > 0 ⇒ GO1 ðB4 ðξÞÞ
= GO1 ξ ′ > GO1 ðξÞ
ð11Þ
3. Ordering Trees Having Maximum GO1
In this section, we identify the trees having maximum first
Gourava index, and also, we give a sequence of these trees
having first five largest values of GO1 .
Theorem 5. Let T ∗ be a set of trees having order λ and
diameter d ∗ , where λ ≥ 3 and 2 ≤ d∗ ≤ λ − 1. Then, GO1 is
maximum value for T ∗ = S∗λ,λ−d∗ +1 .
Proof. First, we apply B1 -transformation to those vertices of
T ∗ which are other than diametral path, and we observe that
maximum value of GO1 is obtained for MSðλ1 , λ2 , ⋯, λd∗ −1 Þ.
Then, we apply all those transformations which are explained
above, and we conclude that the maximum value is acquired
only for λ1 = λ − d∗ , λ2 = λ3 = ⋯ = 0, λd∗ −1 = 1 for S∗λ,λ−d∗ +1 .
Corollary 6. (a) Let T ∗ denotes the set of trees with order λ.
Then,
max GO1 ðT ∗ Þ >
diamðT ∗ Þ=ℓ
max
diamðT ∗ Þ=m ′
GO1 ðT ∗ Þ,
ð12Þ
where 2 ≤ ℓ ≤ m ′ ≤ λ − 1.
(b) Let the order of set of trees of T ∗ be λ with diameter
3 ≤ d∗ ≤ λ − 2; then the greatest value of GO1 ðT ∗ Þ for these
graphs is in the following order: MSðλ − d∗ , 0, ⋯, 0, 1Þ, MS
ðλ − d ∗ − 1, 0, ⋯, 0, 2Þ, ⋯, MSðdλ − d∗ + 1/2e, 0, ⋯, 0, bλ − d∗
+ 1/2cÞ:
i=1
n
oi
− d ξ ′ μ1,i + ð f + 1Þ + ð f + 1Þd ξ ′ μ1,i
ℓ−1hn
+〠
j=1
o
dξ ′ γ1, j + ðℓÞ + ℓdξ ′ γ1, j
n
oi
− d ξ γ1, j + ðℓ + 1Þ + ðℓ + 1Þdξ γ1, j
+ f1 + ð f + 2Þ + ð f + 2Þg − f1 + ðℓ + 1Þ + ðℓ + 1Þg
+ f ð f + 2Þ + 2 + 2ð f + 2Þg − f ð f + 1Þ + 2 + 2ð f + 1Þg
+ fℓ + 2 + 2ðℓÞg − fðℓ + 1Þ + 2 + 2ðℓ + 1Þg
f h
i ℓ−1
= 〠 1 + dξ ′ ðμ1 , iÞ + 〠 −1 − d ξ ðμ1 , jÞ
i=1
j=1
+ f1 + ð f + 2Þ + ð f + 2Þg
− f1 + ðℓ + 1Þ + ðℓ + 1Þg + 3 − 3
= f ð2Þ + ð−2Þðℓ − 1Þ + f1 + ð f + 2Þ + ð f + 2Þg
− f1 + ðℓ + 1Þ + ðℓ + 1Þg + 3 − 3
Proof. We can achieve MSðλ − ℓ, 0, ⋯, 0, 1Þ from MSðλ −
m ′ , 0, ⋯, 0, 1Þ by repeated use of first transformation (as
described in Lemma 1).
(b) We use first three transformations (as explained in
Lemmas 1 to 3, and then, we use the fourth transformation
to multistars MSðg1 , 0, ⋯, 0, g2 Þ with order λ where g1 +
g2 = λ − d ∗ + 1.
Theorem 7. For λ > 10, the trees having the greatest 1st Gourava index can be given in the following order (shown in
Figure 5):
GO1 ðK 1,λ−1 Þ > GO1 ðBSðλ − 3, 1ÞÞ > GO1 ðBSðλ − 4, 2ÞÞ
> GO1 S∗λ,λ−3 > GO1 ðBSðλ − 5, 3ÞÞ:
ð13Þ
Proof. In the family of trees having diameter 2, the star
K 1,λ−1 is the only tree which by above corollary possesses
Journal of Chemistry
7
κ1 , λ – 1
Sλ , λ – 2 = BS (λ – 3, 1)
BS (λ – 4, 2)
Sλ , λ – 3
BS (λ – 5, 3)
Figure 5: Five trees having maximum first Gourava index.
the greatest 1st Gourava index. The second maximum value
of 1st Gourava index reaches for S∗λ,λ−2 = BSðλ − 3, 1Þ for the
trees having diameter 3. The third maximum value of this
sequence can be obtained for BSðλ − 4, 2Þ which also belongs
to the class of trees having diameter 3. For λ = 5, the
BSðλ − 4, 2Þ coincides with BSðλ − 3, 1Þ. The next graph in
the class of trees with diameter 3 is BSðλ − 5, 3Þ. The next
maximum value is obtained by S∗λ,λ−3 which has diameter 4.
We obtain
GO1 ðBSðλ − 4, 2ÞÞ > GO1 S∗λ,λ−3 :
ð14Þ
Applying τ1 -transform to S∗λ,λ−3 , we obtain BSðλ − 4, 2Þ.
It follows that for λ ≥ 6, the order of trees possessing
maximum value is GO1 ðK 1,λ−1 Þ > GO1 ðBSðλ − 3, 1ÞÞ > GO1
ðBSðλ − 4, 2ÞÞ. For the fourth term of this series, we have
GO1 ðBSðλ − 5, 3Þ − GO1 S∗λ,λ−3
ð16Þ
= 2ðλ − 4Þ > 0:
For λ > 4, MSðλ − 5, 0, 2Þ gets the 2nd maximum value of
GO1 in the set of trees of diameter 4. Applying 1st transformation (as described earlier) to MSðλ − 5, 0, 2Þ, we get
MSðλ − 5, 0, 0, 1Þ which attains maximum value of 1st
Gourava index in the set of trees of diameter 5 and MS
ðλ − 5, 0, 0, 1Þ < MSðλ − 5, 0, 2Þ which terminates the proof.
For example, for λ = 12, we see that
GO1 ðK 1,λ−1 Þ > GO1 ðBSðλ − 3, 1ÞÞ > GO1 ðBSðλ − 4, 2ÞÞ
> GO1 S∗λ,λ−3 > GO1 ðBSðλ − 5, 3ÞÞ,
ð17Þ
which as a result verifies our main result of this work.
= ½ðλ − 5Þð1 + λ − 4 + λ − 4Þ + ðλ − 4 + 4 + 4ðλ − 4ÞÞ
+ 3ð4 + 1 + 4Þ − ½ðλ − 4Þð1 + λ − 3 + λ − 3Þ
+ ðλ − 3 + 2 + 2ðλ − 3ÞÞ + ð2 + 2 + 4Þ + ð1 + 2 + 2Þ
= ½ðλ − 5Þð2λ − 7Þ + ð5λ − 16Þ + 3ð9Þ
− ½ðλ − 4Þð2λ − 5Þ + ð3λ − 7Þ + 8 + 5
2
= 2λ − 12λ + 46 − 2λ2 − 10λ + 26
GO1 ðK 1,λ−1 Þ =
〠
½d ðμÞ + dðηÞ + dðμÞd ðηÞ
μη∈ðEðK 1,λ−1 ÞÞ
= 11½11 + 1 + 11 = 25GO1 ðBSðλ − 3, 1ÞÞ
〠
=
½d ðμÞ + d ðηÞ + d ðμÞd ðηÞ
μη∈ðEBSðλ−3,1ÞÞ
= 9½1 + 10 + 10 + ½10 + 2 + 20 + ½2 + 1 + 2
= 2½10 − λ < 0
= 226,
ð15Þ
This implies that GO1 ðBSðλ − 5, 3Þ < GO1 ðS∗λ,λ−3 Þ for
λ > 10. So for λ > 10, the fourth member in the above constructed sequence is S∗λ,λ−3 . For next member, we calculate
GO1 ðBSðλ − 5, 3Þ − GO1 ðMSðλ − 5, 0, 2ÞÞ
= ½ðλ − 5Þð1 + λ − 4 + λ − 4Þ + ðλ − 4 + 4 + 4ðλ − 4ÞÞ
+ 3ð4 + 1 + 4Þ − ½ðλ − 5Þð1 + λ − 4 + λ − 4Þ + ðλ − 4Þ
+ 2 + 2ðλ − 4Þ + ð2 + 3 + 6Þ + 2ð1 + 3 + 3Þ
= ½ðλ − 5Þð2λ − 7Þ + ð5λ − 16Þ + 3ð9Þ
− ½ðλ − 5Þð2λ − 7Þ + ð3λ − 6Þ + 11 + 14
2
= 2λ − 12λ + 46 − 2λ2 − 14λ + 54
GO1 ðBSðλ − 4, 2ÞÞ =
〠
½d ðμÞ + dðηÞ + dðμÞd ðηÞ
μη∈ðEBSðλ−4,2ÞÞ
= 8½1 + 9 + 9 + ½9 + 3 + 27 + 2½1 + 3 + 3
= 205,
GO1 ðSλ,λ−3 Þ =
〠
½d ðμÞ + dðηÞ + dðμÞd ðηÞ
μη∈ðESλ,λ−3 Þ
= 8½1 + 9 + 9 + ½9 + 2 + 18 + ½8 + 4 + 32
+ ½ 2 + 2 + 4 + ½ 2 + 1 + 2
= 194,
8
Journal of Chemistry
Table 1: Comparison of different values of GO1 ðT ∗ðλ−1Þ for λ = 14:
GO T ∗ðλ−1Þ
T ∗ðλ−1Þ
κ1,13
351
BSð11, 1Þ
318
BSð10, 2Þ
291
S14,11
278
BSð9, 3Þ
270
〠
GO1 ðBSðλ − 5, 3ÞÞ =
½dðμÞ + d ðηÞ + d ðμÞd ðηÞ
Since dðℓ0 ≥ 2, we have
h n
o
d y ′ − 1 + d ðℓ0 Þ + d y ′ − 1 d ðℓ0 Þ
n
oi
− d y ′ + d ðℓ 0 Þ + d y ′ d ð ℓ 0 Þ
n o n o
≤ 3d y ′ − 1 − 3d y ′ + 2 :
ð23Þ
For the remaining dðy ′ Þ − 2 nodes ℓ ∈ Nðy ′ Þ \ fx ′ , ℓ0 g,
we conclude that
μη∈ðEBSðλ−5,3ÞÞ
= 7½1 + 8 + 8 + ½8 + 4 + 32 + 3½1 + 4 + 4
= 190:
ð18Þ
Hence proved
GO1 ðK 1,λ−1 Þ > GO1 ðBSðλ − 3, 1ÞÞ > GO1 ðBSðλ − 4, 2ÞÞ
> GO1 S∗λ,λ−3 > GO1 ðBSðλ − 5, 3ÞÞ:
ð19Þ
Table 1 provides certain trees T ∗ðλÞ of order λ, along with
their value of GO1 .
Theorem 8. Let T ∗ be a tree having order λ ≥ 5 with α-leaf
nodes, where 3 ≤ α ≤ λ − 2. Then,
GO1 ðT ∗ Þ ≤ 2 α2 − 3α + 4λ − 5 :
ð20Þ
Equality holds if T ∗ = S∗λ,α .
ð24Þ
This implies that
GO1 ðT ∗ Þ − GO1 ðT ∗ Þ
h i hn
= 2d y ′ + 1 −
d y ′ − 1 + d ðℓ0 Þ
oi
o n
+ d y ′ − 1 dðℓ0 Þ − d y ′ + d ðℓ0 Þ + d y ′ dðℓ0 Þ
hn
o
− d y′ − 2
d y ′ − 1 + dðℓÞ + d y ′ − 1 d ðℓÞ
n
oi
− d y ′ + dðℓÞ + d y ′ dðℓÞ
h i hn o n oi
≤ 2d y ′ + 1 − 3d y ′ − 1 − 3d y ′ + 2
hn o n oi
− 2d y ′ − 1 − 2d y ′ + 1 4 d y ′ :
ð25Þ
Proof. First under the supposition of theorem, we prove that
if x ′ is a pendant node attached to a vertex y ′ , then
GO1 ðT ∗ Þ − GO1 ðT ∗ − xÞ ≤ 4α:
hn
o
d y ′ − 1 + d ðℓÞ + d y ′ − 1 d ðℓÞ
n
oi
− d y ′ + d ðℓ Þ + d y ′ d ðℓ Þ
n o n o
≤ 2d y ′ − 1 − 2d y ′ + 1 :
ð21Þ
Since dðy ′ Þ ≤ α,
⇒GO1 ðT ∗ Þ − GO1 ðT ∗ Þ ≤ 4α:
ð26Þ
S∗λ,α
Equality holds for
and for dðy ′ Þ = α. Here, we notice
that there exist a vertex ℓ0 ∈ Nðy ′ Þ \ fx ′ g such that dðℓ0 Þ ≥ 2
since otherwise T ∗ would be a star, which is against the supposition of theorem. Now,
GO1 ðT ∗ Þ − GO1 ðT ∗ Þ
h
i
= d y′ + 1 + d y′
h n
o
−
〠
d y ′ − 1 + d ð ℓÞ + d y ′ − 1 d ð ℓÞ
z∈N ðy ′ Þfx ′ g
n
oi
− d y ′ + d ðℓÞ + d y ′ d ðℓÞ :
ð22Þ
Equality holds if dðy ′ Þ = α, one neighbor of y ′ has degree
two, while all the neighbor are leaf nodes, i.e., T ∗ = S∗λ,α .
Now, the proof follows by induction on λ. For λ = 5, we
obtain α = 3, and S∗5,3 = BS∗ ð1, 2Þ is a single tree of order 5
having three pendant nodes.
Let α ≥ 6 and suppose that the theorem is true for all the
trees of order λ − 1 having α-leaf nodes where 3 ≤ α ≤ λ − 3.
Let x ′ be the pendant node that is attached to node y ′ . Here,
we examine two subcases:
(a) When dðy ′ Þ = 2
(b) When dðy ′ Þ ≥ 3
Journal of Chemistry
9
(a) For dðy ′ Þ = 2, we have
GO1 ðT ∗ Þ − GO1 T ∗ − x ′
= ðd ðℓÞ + 2 + 2dðℓÞÞ + ð2 + 1 + 2Þ
− ðd ðℓÞ + 1 + dðℓÞÞGO1 ðT ∗ Þ − GO1 T ∗ − x ′
= 6 + d ðℓÞGO1 ðT ∗ Þ
= 6 + d ðℓÞ + GO1 T ∗ − x ′ GO1 ðT ∗ Þ
≤ 6 + d ðℓÞ + 2α2 − 3α + 4ðλ − 1Þ − 5
= 2 α2 − 3α + 4ðλÞ − 5 − 8 + 6 + dðℓÞ
⟹ GO1 ðT ∗ Þ ≤ S∗λ,α + dðℓÞ − 2
ð27Þ
Equality holds for dðℓÞ = 2. If α = λ − 2, then T − x ′ has
λ − 1 nodes and λ − 2 pendent nodes, i.e., T ∗ − x ′ = κ1,λ−2
and T ∗ = S∗λ,λ−2 = Sλ,α .
(b) For dðy ′ Þ ≥ 3, then T ∗ − x ′ has λ − 1 nodes and α − 1
leaf nodes. Then, by induction, we obtain
GO1 ðT ∗ Þ ≤ GO1 ðT ∗ Þ + 4α ≤ S∗λ−1,α−1 + 4α = S∗λ,α
ð28Þ
Equality holds if T ∗ − x ′ = S∗λ−1,α−1 and dðy ′ Þ = α, i.e.,
T = S∗λ,α .
∗
Data Availability
The data used to support the findings of this study are cited
at relevant places within the articles in references.
Conflicts of Interest
The authors declare that they have no conflicts of interest.
References
[1] H. Wiener, “Structural determination of paraffin boiling
points,” Journal of the American Chemical Society, vol. 69,
no. 1, pp. 17–20, 1947.
[2] I. Gutman and K. C. Das, “The first Zagreb index 30 years
after,” MATCH Communications in Mathematical and in
Computer Chemistry, vol. 50, no. 1, pp. 83–92, 2004.
[3] I. Gutman and N. Trinajstić, “Graph theory and molecular
orbitals. Total ϕ-electron energy of alternant hydrocarbons,”
Chemical Physics Letters, vol. 17, no. 4, pp. 535–538, 1972.
[4] K. C. Das and I. Gutman, “Some properties of the second
Zagreb index,” MATCH Communications in Mathematical
and in Computer Chemistry, vol. 52, no. 1, 2004.
[5] A. Miličević, S. Nikolić, and N. Trinajstić, “On reformulated
Zagreb indices,” Molecular Diversity, vol. 8, pp. 393–399, 2004.
[6] V. R. Kulli, “The Gourava indices and coindices of graphs,”
Annals of Pure and Applied Mathematics, vol. 14, no. 1,
pp. 33–38, 2017.
[7] V. R. Kulli, “The Gourava index of four operations on graphs,”
Mathematical Combinatorics, vol. 4, pp. 65–67, 2018.
[8] J. A. Bondy and U. S. R. Murty, Graph Theory, Springer, New
York, 2008.
[9] N. De, “Some bounds of reformulated Zagreb indices,” Applied
Mathematical Sciences, vol. 6, no. 101, pp. 5005–5012, 2012.
[10] K. Xu and K. C. Das, “Trees, unicyclic, and bicyclic graphs
extremal with respect to multiplicative sum Zagreb index,”
MATCH Communications in Mathematical and in Computer
Chemistry, vol. 68, pp. 257–272, 2012.
[11] S. Ji, X. Li, and B. Huo, “On reformulated Zagreb indices with
respect to acyclic, unicyclic and bicyclic graphs,” MATCH
Communications in Mathematical and in Computer Chemistry, vol. 72, pp. 723–732, 2014.
[12] W. Gao, M. K. Jamil, A. Javed, M. R. Farahani, S. Wang, and
J. B. Liu, “Sharp bounds of the hyper- Zagreb index on acyclic,
unicyclic and bicycli,” Discrete Dynamics in Nature and Society, vol. 2017, Article ID 6079450, 5 pages, 2017.
[13] I. Tomescu and S. Kanwal, “Ordering trees having small general sum- connectivity index,” MATCH Communications in
Mathematical and in Computer Chemistry, vol. 69, pp. 535–
548, 2013.
[14] A. Ilić, D. Stevanović, L. Feng, G. Yu, and P. Dankelmann,
“Degree distance of unicyclic and bicyclic graphs,” Discrete
Applied Mathematics, vol. 159, pp. 779–788, 2011.
[15] H. Liu, H. Chen, Z. Tang, and L. You, “Ordering tree-like phenylenes by their Mostar indices,” 2021, https://arxiv.org/abs/
2103.04018.
[16] H. Liu, L. You, and Y. Huang, “Ordering chemical graphs by
Sombor indices and its applications,” MATCH Communications in Mathematical and in Computer Chemistry, vol. 87,
no. 1, pp. 5–22, 2022.
[17] J. B. Liu, H. Ali, M. K. Shafiq, G. Dustigeer, and P. Ali, “On
topological properties of planar octahedron networks,” Polycyclic Aromatic Compounds, vol. 42, pp. 1–17, 2021.
[18] R. Qi, H. Ali, U. Babar, J. B. Liu, and P. Ali, “On the Sum of
Degree-Based Topological Indices of Rhombus-Type Silicate
and Oxide Structures,” Journal of Mathematics, vol. 2021, Article ID 1100024, 16 pages, 2021.
[19] W. Zhen, P. Ali, H. Ali, G. Dustigeer, and J. B. Liu, “On Computation Degree-Based Topological Descriptors for Planar
Octahedron Networks,” Journal of Mathematics, vol. 2021,
Article ID 4880092, 12 pages, 2021.
[20] M. Hu, H. Ali, M. A. Binyamin, B. Ali, J. B. Liu, and C. Fan,
“On Distance-Based Topological Descriptors of Chemical
Interconnection Networks,” Journal of Mathematics, vol. 2021,
Article ID 5520619, 10 pages, 2021.