Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2018
…
64 pages
1 file
The differences between planning proton-beam therapy and photon-beam therapy derive from the differences in the physics of protons and photons, namely [1]: That protons have a finite and controllable (through choice of energy) penetration in depth with virtually no exit dose (Fig. 3.1). That the penetration of protons is strongly affected by the nature (e.g., density) of the tissues through which they pass, while photons are much less affected (density changes generally give rise to only small intensity changes, except for the lung). Therefore, heterogeneities are much more important in proton-beam therapy than in photon-beam therapy (Fig. 3.2). The apparatus for proton-beam delivery is different, and its details affect the dose distributions (Chap. 2).
Radiotherapy and Oncology, 1999
Purpose: A comparative treatment planning study has been undertaken between standard photon delivery techniques,b intensity modulated photon methods and spot scanned protons in order to investigate the merits and limitations of each of these treatment approaches.
Medical Physics, 2005
Radiation Oncology
The driving force behind the use of proton therapy in clinical radiotherapy is to exploit its physical and biological characteristics. Proton beam has the properties of; sharper penumbra, relatively low entrance skin dose (Plateau), Bragg peak and relative biological effectiveness (RBE) close to unity. With proton beam normal tissues can be spared due to rapid dose fall off leading to less side effects and complications. Proton beam has the ability to treat tumors close to the critical organs, which is especially beneficial in treating benign conditions. With the help of Pro ton beam therapy dose escalation and re-irradiation of recurrent tumors is possible. Proton therapy in indications including pediatric tumors is well established. In near future, proton therapy may replace the conventional radiotherapy if the portable proton therapy project succeeds.
Radiation oncology (London, England), 2014
The increase in relative biological effectiveness (RBE) of proton beams at the distal edge of the spread out Bragg peak (SOBP) is a well-known phenomenon that is difficult to quantify accurately in vivo. For purposes of treatment planning, disallowing the distal SOBP to fall within vulnerable tissues hampers sparing to the extent possible with proton beam therapy (PBT). We propose the distal RBE uncertainty may be straightforwardly mitigated with a technique we call "range modulation". With range modulation, the distal falloff is smeared, reducing both the dose and average RBE over the terminal few millimeters of the SOBP. One patient plan was selected to serve as an example for direct comparison of image-guided radiotherapy plans using non-range modulation PBT (NRMPBT), and range-modulation PBT (RMPBT). An additional plan using RMPBT was created to represent a re-treatment scenario (RMPBTrt) using a vertex beam. Planning statistics regarding dose, volume of the planning t...
International Journal of Radiation Oncology*Biology*Physics, 2011
Purpose: To calculate the Linear Energy Transfer (LET) distributions in patients undergoing proton therapy. These distributions can be used to identify areas of elevated or diminished biological effect. The location of such areas might be influenced in intensity-modulated proton therapy (IMPT) optimization.
Medical Physics
Medical Physics, 2015
Purpose: Laser-driven proton acceleration is suggested as a cost-and space-efficient alternative for future radiation therapy centers, although the properties of these beams are fairly different compared to conventionally accelerated proton beams. The laser-driven proton beam is extremely pulsed containing a very high proton number within ultrashort bunches at low bunch repetition rates of few Hz and the energy spectrum of the protons per bunch is very broad. Moreover, these laser accelerated bunches are subject to shot-to-shot fluctuations. Therefore, the aim of this study was to investigate the feasibility of a compact gantry design for laser-driven proton therapy and to determine limitations to comply with. Methods: Based on a published gantry beam line design which can filter parabolic spectra from an exponentially decaying broad initial spectrum, a treatment planning study was performed on real patient data sets. All potential parabolic spectra were fed into a treatment planning system and numerous spot scanning proton plans were calculated. To investigate limitations in the fluence per bunch, the proton number of the initial spectrum and the beam width at patient entrance were varied. A scenario where only integer shots are delivered as well as an intensity modulation from shot to shot was studied. The resulting plans were evaluated depending on their dosimetric quality and in terms of required treatment time. In addition, the influence of random shot-to-shot fluctuations on the plan quality was analyzed. Results: The study showed that clinically relevant dose distributions can be produced with the system under investigation even with integer shots. For small target volumes receiving high doses per fraction, the initial proton number per bunch must remain between 1.4 × 10 8 and 8.3 × 10 9 to achieve acceptable delivery times as well as plan qualities. For larger target volumes and standard doses per fraction, the initial proton number is even more restricted to stay between 1.4 × 10 9 and 2.9 × 10 9. The lowest delivery time that could be reached for such a case was 16 min for a 10 Hz system. When modulating the intensity from shot to shot, the delivery time can be reduced to 6 min for this scenario. Since the shot-to-shot fluctuations are of random nature, a compensation effect can be observed, especially for higher laser shot numbers. Therefore, a fluctuation of ±30% within the proton number does not translate into a dosimetric deviation of the same size. However, for plans with short delivery times these fluctuations cannot cancel out sufficiently, even for ±10% fluctuations. Conclusions: Under the analyzed terms, it is feasible to achieve clinically relevant dose distributions with laser-driven proton beams. However, to keep the delivery times of the proton plans comparable to conventional proton plans for typical target volumes, a device is required which can modulate the bunch intensity from shot to shot. From the laser acceleration point of view, the proton number per 5120 Med. Phys. 42 (9), September 2015 0094-2405/2015/42(9)/5120/10 © Author(s) 2015 5120 bunch must be kept under control as well as the reproducibility of the bunches.
Medical Physics, 2013
Biological effect of radiation can be enhanced with hypofractionation, localized dose escalation, and, in particle therapy, with optimized distribution of linear energy transfer (LET). The authors describe a method to construct inhomogeneous fractional dose (IFD) distributions, and evaluate the potential gain in the therapeutic effect from their delivery in proton therapy delivered by pencil beam scanning. Methods: For 13 cases of prostate cancer, the authors considered hypofractionated courses of 60 Gy delivered in 20 fractions. (All doses denoted in Gy include the proton's mean relative biological effectiveness (RBE) of 1.1.) Two types of plans were optimized using two opposed lateral beams to deliver a uniform dose of 3 Gy per fraction to the target by scanning: (1) in conventional full-target plans (FTP), each beam irradiated the entire gland, (2) in split-target plans (STP), beams irradiated only the respective proximal hemispheres (prostate split sagittally). Inverse planning yielded intensity maps, in which discrete position control points of the scanned beam (spots) were assigned optimized intensity values. FTP plans preferentially required a higher intensity of spots in the distal part of the target, while STP, by design, employed proximal spots. To evaluate the utility of IFD delivery, IFD plans were generated by rearranging the spot intensities from FTP or STP intensity maps, separately as well as combined using a variety of mixing weights. IFD courses were designed so that, in alternating fractions, one of the hemispheres of the prostate would receive a dose boost and the other receive a lower dose, while the total physical dose from the IFD course was roughly uniform across the prostate. IFD plans were normalized so that the equivalent uniform dose (EUD) of rectum and bladder did not increase, compared to the baseline FTP plan, which irradiated the prostate uniformly in every fraction. An EUD-based model was then applied to estimate tumor control probability (TCP) and normal tissue complication probability (NTCP). To assess potential local RBE variations, LET distributions were calculated with Monte Carlo, and compared for different plans. The results were assessed in terms of their sensitivity to uncertainties in model parameters and delivery. Results: IFD courses included equal number of fractions boosting either hemisphere, thus, the combined physical dose was close to uniform throughout the prostate. However, for the entire course, the prostate EUD in IFD was higher than in conventional FTP by up to 14%, corresponding to the estimated increase in TCP to 96% from 88%. The extent of gain depended on the mixing factor, i.e., relative weights used to combine FTP and STP spot weights. Increased weighting of STP typically yielded a higher target EUD, but also led to increased sensitivity of dose to variations in the proton's range. Rectal and bladder EUD were same or lower (per normalization), and the NTCP for both remained below 1%. The LET distributions in IFD also depended strongly on the mixing weights: plans using higher weight of STP spots yielded higher LET, indicating a potentially higher local RBE. Conclusions: In proton therapy delivered by pencil beam scanning, improved therapeutic outcome can potentially be expected with delivery of IFD distributions, while administering the prescribed quasi-uniform dose to the target over the entire course. The biological effectiveness of IFD may be further enhanced by optimizing the LET distributions. IFD distributions are characterized by a dose gradient located in proximity of the prostate's midplane, thus, the fidelity of delivery would depend crucially on the precision with which the proton range could be controlled.
British Journal of Radiology, 2015
Intensity modulated proton therapy (IMPT) implies the electromagnetic spatial control of well-circumscribed "pencil beams" of protons of variable energy and intensity. Proton pencil beams take advantage of the charged-particle Bragg peak-the characteristic peak of dose at the end of range-combined with the modulation of pencil beam variables to create target-local modulations in dose that achieves the dose objectives. IMPT improves on X-ray intensity modulated beams (intensity modulated radiotherapy or volumetric modulated arc therapy) with dose modulation along the beam axis as well as lateral, in-field, dose modulation. The clinical practice of IMPT further improves the healthy tissue vs target dose differential in comparison with X-rays and thus allows increased target dose with dose reduction elsewhere. In addition, heavy-charged-particle beams allow for the modulation of biological effects, which is of active interest in combination with dose "painting" within a target. The clinical utilization of IMPT is actively pursued but technical, physical and clinical questions remain. Technical questions pertain to control processes for manipulating pencil beams from the creation of the proton beam to delivery within the patient within the accuracy requirement. Physical questions pertain to the interplay between the proton penetration and variations between planned and actual patient anatomical representation and the intrinsic uncertainty in tissue stopping powers (the measure of energy loss per unit distance). Clinical questions remain concerning the impact and management of the technical and physical questions within the context of the daily treatment delivery, the clinical benefit of IMPT and the biological response differential compared with X-rays against which clinical benefit will be judged. It is expected that IMPT will replace other modes of proton field delivery. Proton radiotherapy, since its first practice 50 years ago, always required the highest level of accuracy and pioneered volumetric treatment planning and imaging at a level of quality now standard in X-ray therapy. IMPT requires not only the highest precision tools but also the highest level of system integration of the services required to deliver high-precision radiotherapy.
Kiki Fidi Astrida | Teknik Informatika Unsoed
Ο αναγνώστης, 1η Ιουλίου 2024, ηλεκτρονική δημοσίευση: https://www.oanagnostis.gr/i-diarkeia-toy-ergoy-toy-seferi-erotimata-kai-apantiseis-toy-eyripidi-garantoydi/
Scholarly Articles, 2010
دار الزمان للطباعة والنشر , 2010
lib.utexas.edu, 2006
SSRN Electronic Journal, 2012
Lughawiyah: Journal of Arabic Education and Linguistics
International Journal of Computing Algorithm, 2016
DataLabBLOG/KonKoop, 2024
Majalah Geografi Indonesia, 2016
Grasas y Aceites, 2003