Academia.eduAcademia.edu

Linearization of proper group actions

2009, Topology and its Applications

AI-generated Abstract

We prove that if G is a locally compact group acting properly (in the sense of R. Palais) on a space X that is metrizable by a G-invariant metric, then X can be embedded equivariantly into a normed linear G-space E endowed with a linear isometric G-action which is proper on the complement E \ {0}. If, in addition, G is a Lie group then E \ {0} is a G-equivariant absolute extensor. One can make this equivariant embedding even closed, but in this case the non-proper part of the linearizing G-space E may be an entire subspace instead of {0}.

Topology and its Applications Volume 156, Issue 11, 15 June 2009, Pages 1946-1956 Linearization of proper group actions Antonyan, N.a, Antonyan, S.A.b, Rodríguez-Medina, L.b a Departamento de Matemáticas, Division de Ingeniería y Arquitectura, Instituto Tecnológico y de Estudios Superiores de Monterrey, Campus Ciudad de México, 14380 México Distrito Federal, México b Departamento de Matemáticas, Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510 México Distrito Federal, México We prove that if G is a locally compact group acting properly (in the sense of R. Palais) on a space X that is metrizable by a G-invariant metric, then X can be embedded equivariantly into a normed linear G-space E endowed with a linear isometric G-action which is proper on the complement E {set minus} {0}. If, in addition, G is a Lie group then E {set minus} {0} is a G-equivariant absolute extensor. One can make this equivariant embedding even closed, but in this case the non-proper part of the linearizing G-space E may be an entire subspace instead of {0}. © 2009 Elsevier B.V. All rights reserved. SciVal Topic Prominence Topic: G-space | Equivariant | Locally compact group Prominence percentile: 36.705 Author keywords G-ANR space; Linearization; Locally compact group; Proper G-space; Slice Funding details Funding sponsor Consejo Nacional de Ciencia y Tecnología Funding number Acronym Funding text ✩ The authors were supported in part by grant CB-79536 from CONACYT (Mexico). * Corresponding author. E-mail addresses: [email protected] (N. Antonyan), [email protected] (S.A. Antonyan), [email protected] (L. Rodríguez-Medina).       ISSN: 01668641 CODEN: TIAPD Source Type: Journal Original language: English DOI: 10.1016/j.topol.2009.03.016 Document Type: Article