Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2013, Human Immunology
…
1 page
1 file
Aim: Dried Blood Spots (DBS) on FTA cards serve as a good resource for HLA and other SNP genotyping studies. Isolation of gDNA from small punches of DBS for genetic testing, such as HLA typing, is cumbersome and inefficient. Herein, we describe a quick and inexpensive protocol for the preparation of DNA extract from DBS that shows promise for HLA typing based on results from LIFECODES HLA-A SSO typing kit. Methods: Small 3 mm discs of DBS were washed with FTA washing buffer to remove possible PCR inhib-490 Abstracts / Human Immunology 74 (2013) 483-499
Journal of Immunological Methods, 2012
We describe a rapid, reliable and cost-effective method for intermediate-to-high-resolution sequence-based HLA class I typing using frozen plasma as a source of genomic DNA. The plasma samples investigated had a median age of 8.5 years. Total nucleic acids were isolated from matched frozen PBMC (~2.5 million) and plasma (500 μl) samples from a panel of 25 individuals using commercial silica-based kits. Extractions yielded median [IQR] nucleic acid concentrations of 85.7 [47.0-130.0]ng/μl and 2.2 [1.7-2.6]ng/μl from PBMC and plasma, respectively. Following extraction,~1000 base pair regions spanning exons 2 and 3 of HLA-A,-B and-C were amplified independently via nested PCR using universal, locus-specific primers and sequenced directly. Chromatogram analysis was performed using commercial DNA sequence analysis software and allele interpretation was performed using a free web-based tool. HLA-A,-B and-C amplification rates were 100% and chromatograms were of uniformly high quality with clearly distinguishable mixed bases regardless of DNA source. Concordance between PBMC and plasma-derived HLA types was 100% at the allele and protein levels. At the nucleotide level, a single partially discordant base (resulting from a failure to call both peaks in a mixed base) was observed out of >46,975 bases sequenced (>99.9% concordance). This protocol has previously been used to perform HLA class I typing from a variety of genomic DNA sources including PBMC, whole blood, granulocyte pellets and serum, from specimens up to 30 years old. This method provides comparable specificity to conventional sequence-based approaches and could be applied in situations where cell samples are unavailable or DNA quantities are limiting.
BMC Genomics, 2013
Background: Human leukocyte antigen matching at allelic resolution is proven clinically significant in hematopoietic stem cell transplantation, lowering the risk of graft-versus-host disease and mortality. However, due to the ever growing HLA allele database, tissue typing laboratories face substantial challenges. In light of the complexity and the high degree of allelic diversity, it has become increasingly difficult to define the classical transplantation antigens at high-resolution by using well-tried methods. Thus, next-generation sequencing is entering into diagnostic laboratories at the perfect time and serving as a promising tool to overcome intrinsic HLA typing problems. Therefore, we have developed and validated a scalable automated HLA class I and class II typing approach suitable for diagnostic use. Results: A validation panel of 173 clinical and proficiency testing samples was analysed, demonstrating 100% concordance to the reference method. From a total of 1,273 loci we were able to generate 1,241 (97.3%) initial successful typings. The mean ambiguity reduction for the analysed loci was 93.5%. Allele assignment including intronic sequences showed an improved resolution (99.2%) of non-expressed HLA alleles.
Tissue Antigens, 2011
The high degree of polymorphism at HLA class I and class II loci makes high resolution HLA typing challenging. Current typing methods, including Sanger sequencing, yield ambiguous typing results due to incomplete genomic coverage and inability to set phase for HLA haplotype determination. The 454 Life Sciences GS FLX next generation sequencing system coupled with Conexio ATF software can provide very high resolution HLA genotyping. High throughput genotyping can be achieved by use of primers with multiplex identifier (MID) tags to allow pooling of the amplicons generated from different individuals prior to sequencing. We have conducted a double blind study in which eight laboratory sites performed amplicon sequencing using GS FLX standard chemistry and genotyped the same 20 samples for HLA-A,-B,-C, DPB1, DQA1, DQB1, DRB1, and DRB3, DRB4 and DRB5 (DRB3/4/5) in a single sequencing run. The average sequence read length was 250 base pairs (bp) and the average number of sequence reads per amplicon was 672, providing confidence in the allele assignments. Of the 1280 genotypes considered, assignment was possible in 95% of the cases. Failure to assign genotypes was the
International Journal of Human Genetics
DNA based HLA typing is fast replacing conventional Microlymphocytotoxicity based method, which has been regarded as the gold standard. Many laboratories in Mumbai have already switched over to molecular methods, as the results are far superior. This study was undertaken to compare the results of generic molecular typing by sequence specific primers (SSP) with that by serology in our laboratory. A pilot study was performed in which available data tissue typing results of 200 patients and their donors were analysed. DNA was extracted from whole blood or buffy coat using QIA amp @ DNA Mini kit from Qiagen (Germany). SSP based low resolution typing was performed for 50 individuals using commercial kits from Biotest (Germany) and Genovision (USA). Microlymphocytotoxicity based tissue typing was also done for twenty individuals using commercial sera, while the remaining were typed by SSP alone. Samples were run in two different time phases labeled in Table as first and second run. DNA quality and quantity was found to be sufficient by the method for tissue typing. Of the pilot study of 200 cases typed earlier by serology, all six HLA antigens were identified only in 40% individuals, with maximum number of blanks in DR typing. DNA typing results were best for class II typing and not very satisfactory for HLA B typing. The results of DR SSP typing were far superior and almost 90% of alleles were identified. The cost of molecular typing was approximately $ 82-124 per sample while for serology it was $ 64-69. The SSP based HLA typing is an economical, rapid, precise, technically simple and reproducible method. Further the non availability of specific HLA antisera from native populations, large number of blank alleles, and comparable cost of immunomagnetic isolation of B cells, it is suggested that DNA based methods must completely replace serology.
Journal of Clinical & Cellular Immunology
Human Leukocyte Antigen (HLA) encoding genes are part of the major histocompatibility complex (MHC) on human chromosome 6. This region is one of the most polymorphic regions in the human genome. Prior knowledge of HLA allelic polymorphisms is clinically important for matching donor and recipient during organ/tissue transplantation. HLA allelic information is also useful in predicting immune responses to various infectious diseases, genetic disorders and autoimmune conditions. India harbors over a billion people and its population is untapped for HLA allelic diversity. In this study, we explored and compared three HLA typing methods for South Indian population, using Sequence-Specific Primers (SSP), NGS (Roche/454) and single-molecule sequencing (PacBio RS II) platforms. Over 1020 DNA samples were typed at low resolution using SSP method to determine the major HLA alleles within the South Indian population. These studies were followed up with medium resolution HLA typing of 80 samples based on exonic sequences on the Roche/454 sequencing system and high-resolution (6-8 digit) typing of 8 samples for HLA alleles of class I genes (HLA-A, B and C) and class II genes (HLA-DRB1 and DQB1) using PacBio RS II platform. The long reads delivered by SMRT technology, covered the full-length class I and class II genes/alleles in contiguous reads including untranslated regions, exons and introns, which provided phased SNP information. We have identified three novel alleles from PacBio data that were verified by Roche 454 sequencing. This is the first case study of HLA typing using second and third generation NGS technologies for an Indian population. The PacBio platform is a promising platform for large-scale HLA typing for establishing an HLA database for the untapped ethnic populations of India.
Proceedings of the …, 1996
Background: HLA genotyping by next generation sequencing (NGS) requires three basic steps, PCR, NGS, and allele assignment. Compared to the conventional methods, such as PCR-sequence specific oligonucleotide primers (SSOP) and -sequence based typing (SBT), PCR-NGS is extremely labor intensive and time consuming. In order to simplify and accelerate the NGS-based HLA genotyping method for multiple DNA samples, we developed and evaluated four multiplex PCR methods for genotyping up to nine classical HLA loci including HLA-A, HLA-B, HLA-C, HLA-DRB1/3/4/5, HLA-DQB1, and HLA-DPB1. Results: We developed multiplex PCR methods using newly and previously designed middle ranged PCR primer sets for genotyping different combinations of HLA loci, (1) HLA-DRB1/3/4/5, (2) HLA-DQB1 (3.8 kb to 5.3 kb), (3) HLA-A, HLA-B, HLA-C, and (4) HLA-DPB1 (4.6 kb to 7.2 kb). The primer sets were designed to genotype polymorphic exons to the field 3 level or 6-digit typing. When we evaluated the PCR method for genotyping all nine HLA loci (9LOCI) using 46 Japanese reference subjects who represented a distribution of more than 99.5% of the HLA alleles at each of the nine HLA loci, all of the 276 alleles genotyped, except for HLA-DRB3/4/5 alleles, were consistent with known alleles assigned by the conventional methods together with relevant locus balance and no excessive allelic imbalance. One multiplex PCR method (9LOCI) was able to provide precise genotyping data even when only 1 ng of genomic DNA was used for the PCR as a sample template. Conclusions: In this study, we have demonstrated that the multiplex PCR approach for NGS-based HLA genotyping could serve as an alternative routine HLA genotyping method, possibly replacing the conventional methods by providing an accelerated yet robust amplification step. The method also could provide significant merits for clinical applications with its ability to amplify lower quantity of samples and the cost-saving factors.
Tissue Antigens, 2013
The human leukocyte antigen (HLA) class I and class II loci are the most polymorphic genes in the human genome; distinguishing the thousands of HLA alleles is challenging. Next generation sequencing of exonic amplicons with the 454 genome sequence (GS) FLX System and CONEXIO ASSIGN ATF 454 software provides high resolution, high throughput HLA genotyping for eight class I and class II loci. HLA typing of potential donors for unrelated bone marrow donor registries typically uses a subset of these loci at high sample throughput and low cost per sample. The Fluidigm Access Array System enables the incorporation of 48 different multiplex identifiers (MIDs) corresponding to 48 genomic DNA samples with up to 48 different primer pairs in a microfluidic device generating 2304 parallel polymerase chain reactions (PCRs). Minimal volumes of reagents are used. During genomic PCR, in this 4primer system, the outer set of primers containing the MID and the 454 adaptor sequences are incorporated into an amplicon generated by the inner HLA targetspecific primers each containing a common sequence tag at the 5 end of the forward and reverse primers. Pools of the resulting amplicons are used for emulsion PCR and clonal sequencing on the 454 Life Sciences GS FLX System, followed by genotyping with CONEXIO software. We have genotyped 192 samples with 100% concordance to known genotypes using 8 primer pairs (covering exons 2 and 3 of HLA-A, B and C, and exon 2 of DRB1, 3/4/5 and DQB1) and 96 MIDs in a single GS FLX run. An average of 166 reads per amplicon was obtained. We have also genotyped 96 samples at high resolution (14 primer pairs covering exons 2, 3, and 4 of the class I loci and exons 2 of DRB1, 3/4/5, DQA1, DQB1, DPB1, and exon 3 of DQB1), recovering an average of 173 sequence reads per amplicon.
Lingua Posnaniensis, 2018
Loss of Biodiversity and Conservation Efforts, 2024
NETWORKED SPACES: THE SPATIALITY OF NETWORKS IN THE RED SEA AND WESTERN INDIAN OCEAN, 2022
Caracterización cualitativa sobre la brecha de participación, 2019
Soil Dynamics and Earthquake Engineering
2019 ASEE Annual Conference & Exposition Proceedings
Transplant Infectious Disease, 2019
BÜYÜK GÜÇLERİN MÜCADELE ALANI GÜNEY AZERBAYCAN (1914-1918), 2024
Otolaryngology -- Head and Neck Surgery, 2011
Journal of Neuroscience, 2013
Human Molecular Genetics, 2017
Journal of Experimental and Theoretical Physics Letters, 2004