Paleoceanography and Paleoclimatology
Supporting Information for
Chronology and eccentricity phasing for the Early Turonian greenhouse (~93-94 Ma):
constraints on astronomical control of the carbon cycle
Jiří Laurin1, David Uličný1, Stanislav Čech2, Jakub Trubač3, Jiří Zachariáš3, Andrea Svobodová4
1
Institute of Geophysics of the Czech Academy of Sciences, Boční II/1401, 141 31 Prague, Czech Republic
2
Czech Geological Survey, Prague, Czech Republic
3
Institute of Geochemistry, Mineralogy and Mineral Resources, Charles University, Prague, Czech Republic
4
Institute of Geology of the Czech Academy of Sciences, Prague, Czech Republic
Contents of this file
Figures S1 to S18
Text S1 to S3
Tables S1 to S4
Additional Supporting Information (Files uploaded separately)
Datasets S1 to S5
Introduction
Supporting information includes a detailed well-log correlation of boreholes in the western
depocenter of Bohemian Cretaceous Basin (Figures S1 – S6), geochemistry and lithology of the
reference borehole 4523-A (Figures S7 and S8), spectral estimates for a resistivity log of borehole J719 670 (Fig. S9), results of the TimeOpt analysis of boreholes J-719 670 (Fig. S10) and 4523-A (Fig.
S11), spectral estimates for borehole Bch-1 (Fig. S12), correlation of the Cenomanian-Turonian
boundary interval to key reference sections, the USGS #1 Portland core and Eastbourne (Fig. S13),
correlation to astronomical solution La2010d (Figs. 14 and 15), spectral estimate for the amplitude
modulation of La2010d obliquity (Fig. S16), comparison of age-calibrated data with the Contessa
section (Fig. S17), nannofossil taxa (Fig. S18), methodology of carbon-isotope analysis (Text S1),
methodology of nannofossil analysis (Text S2), Bchron scripts (Text S3), list of key boreholes and
their coordinates (Table S1), astronomical frequencies and input parameters of the Average
Spectral Misfit (Tables S2a and 2b), age calibration of correlation markers (Table S3), occurrence of
nannofossil taxa in the core 4523-A (Table S4), carbon-isotope data for the core 4523-A (Dataset
S1), carbon-isotope data for the core 4530-A (Dataset S2), well-log data analyzed in this study
(Dataset S3), greyscale data for the core 4523-A (Dataset S4), and Si/Al data for the core Bch-1
(Dataset S5).
1
J-703 684
J-719 670
J-693 687
J-665 718
J-650 704
J-648 707
J-625 716
GR
XNN
GR
RES
GR
RES
GR
RES
GR
RES
GR
RES
GR
RES
GR
RES
GR
RES
GR
RES
GR
lin.
log.
lin.
log.
lin.
log.
lin.
log.
lin.
log.
lin.
log.
lin.
log.
lin.
log.
lin.
log.
lin.
log.
lin.
RES
log.
200
Lithostratigraphy
J-734 684
J-736 735
Genetic sequences
UD-2
Upper TUR
300
300
Middle TURONIAN
Middle TURONIAN
300
46
45
46
46
45
45
44
45
44
43
43
43
45
42
45
45
42
41
41
40
39b
42
41
40
Jizera Fm.
300
400
TUR 3 - TUR 6
350
100
300
100
40
40
39b
39
39b
38
38
37
39b
37
37
36b
36b
13
11
10
9
8
7
6
5
2b
2a
1c1,2
(1b)
5
3
9
6
7
5
4
12
TUR 2
17
16
15
14
13
12
11
13
11
10
9
8
7
6
5
4
3
2b
10
9
7
1c1,2
1b
8
6
4
3
2b
3
2b
2b
2a
2a
1c
1b
2a
2a
1b
1b
1a
1a
1a
1a
1a
25
23
22
21
20
18
17
16
15
14
10
8
5
4
2b
2a
1c
1b
28
27
26
24
18
18
17
16
15
14
13
12
11
17
16
15
14
13
11 12
10
8
76
21
20
19
18
3
2b
2a
28
27
26
25
24
23
22
23
22
21
20
23
22
21
20
21
20
18
17
16
15
13
12
11
10
9
8 7
6
25
24
24
24
23
21
17
30
29
29
Lower TUR.
27
26
25
25
29
28
27
26
28
27
26
25
29
28
27
24
23
17
13
11
10
9
8
7
6
5
3
29
31
31
29
28
25
24
23
21
30
30
30
32
32
29
28
27
36
33
33
31
31
31
31
33
33
33
32
32
32
32
34
34
32
31
35
34
3333
35
34
33
33
35
33
Lower TUR.
34
36
35
34
36
36
35
36a
36a
36
35
36a
37
38
37
36
36a
36a
36
38
37
36a
Bílá Hora Fm.
37
1b
500
m
500
m
300
m
W. SUDETIC
ISLAND
J-650704
4523A
TUR 2
0
sand-dominated
shoreface siliclastics
offshore and
hemipelagic fines
chronostratigraphic
boundaries
marginal-marine
and fluvial siliciclastics
(Upper Cenomanian)
1 .... 45
donwlap/truncation
correlation markers
300
m
10 km
0.7
4523-A
450
m
300
m
TUR 1
J-719670
-
500
m
510
m
-500
1.9
UD-2
2.5
J-736 735
1.0
J-734 684
1.0
J-719 670
Figure S1. Well-log correlation of key boreholes discussed in this study.
0.5
J-703 684
2.1
J-693 687
1.0
J-665 718
0.2
J-650 704
Peruc-Korycany Fm.
550
m
450
m
CEN 1-6
200
450
230
m
Upper CENOMANIAN
Upper CENOMANIAN
0
50
TUR 1
Chronostratigraphy
4523-A
Figure 5
Chronostratigraphy
Figures 4, 5
Figure 6
1.3
J-648 707
Distance [km]
J-625 716
lin.
lin.
GR
RES
GR
RES
GR
lin.
log.
lin.
log.
lin.
RES
GR
RES
GR
RES
log.
lin.
log.
lin.
log.
Lithostratigraphy
XNN
J-719 670
J-734 684
Genetic sequences
GR
J-766 669
J-798 664
Chronostratigraphy
J-805 736
4523-A
0
300
Middle TURONIAN
45
100
42
Jizera Fm.
300
300
TUR 3 - TUR 6
200
Middle TURONIAN
Chronostratigraphy
Upper TUR
Figures 4, 5
Figure 6
100
40
39b
45
37
36a
36
32
34
31
Lower TUR.
Lower TUR.
30
33
29
32
31
28
27
26
25
29
28
27
24
25
23
22
21
20
25
24
23
21
18
21
17
13
11
10
9
8
7
6
5
3
13
9
8
8
7
5
3
17
16
15
14
13
11 12
10
76
3
2b
2b
2a
4
5
2b
2a
1c
1c1,2
(1b)
Bílá Hora Fm.
33
35
TUR 1
34
36
TUR 2
35
37
1c1,2
1b
1a
450
m
400
W. SUDETIC
ISLAND
250
m
TUR 1
Peruc-Korycany Fm.
450
m
CEN 1-6
Upper CENOMANIAN
Upper CENOMANIAN
200
450
220
m
TUR 2
J-719670
4523A
0
10 km
300
m
4.5
4523-A
sand-dominated
shoreface siliclastics
1.4
J-805 736
offshore and
hemipelagic fines
1.6
J-798 664
1.8
J-766 669
chronostratigraphic
boundaries
Distance [km]
1.0
J-734 684
marginal-marine
and fluvial siliciclastics
(Upper Cenomanian)
Figure S2. Well-log correlation of key boreholes discussed in this study.
J-719 670
1 .... 45
donwlap/truncation
correlation markers
Chronostratigraphy
4523-A
Sedlec
UD-2
Sedlec
GR
RES
XNN
lin.
lin.
J-734836
RES
GR
log.
lin.
log.
lin.
GR
J-709799
GR
J-662902
RES
GR
log.
lin.
J-694991
Be-1
4530-A
H. Berkovice
RES
log.
lin.
0
0
70
Middle TURONIAN
0
GR
-27
RES
-24
GR
log.
lin.
δ13Corg
[‰VPDB]
RES
GR
log.
lin.
0
RES
log.
lin.
δ13Corg
[‰VPDB]
0
45
0
-26
-24
37
36
35
Lower TUR.
34
33
32
31
~Lulworth
29
28
27
25
24
23
21
CIE “se-20”
31
25
17
21
13
11
10
9
8
7
6
5
3
CIE “se-10”
CIE “se-6”
CIE “se-2b”
be-20 ~ se-20
13
be-10 ~ se-10
11
be-6 ~ se-6
7
5
2b
2a
be-2b ~ se-2b
2b
1c1,2
?2a
(1b)
1c
Upper CENOMANIAN
1b
220
m
240
m
W. SUDETIC
ISLAND
130
m
150
m
TUR 1
J-719670
J-650704
250
m
170
m
250
m
TUR 2
4523A
0
250
m
10 km
sand-dominated
shoreface siliclastics
Nm-1
offshore and
hemipelagic fines
chronostratigraphic
boundaries
marginal-marine
and fluvial siliciclastics
(Upper Cenomanian)
1 .... 45
correlation markers
4530A
0.7
4523-A
Sedlec
3.8
UD-2
Sedlec
2.3
J-709799
Figure S3. Well-log correlation of boreholes 4523-A and 4530-A.
5.0
J-734836
4.8
J-662902
6.5
J-694991
5.7
Be-1
Distance [km]
4530-A
H. Berkovice
Ko-1
Že-2
Želechovice
J-969 747
GR
GR
4523-A
Sedlec
TUR 2
GR
RES
GR
RES
GR
RES
RES
RES
GR
XNN
lin.
lin.
4523A
log.
lin.
log.
lin.
log.
lin.
log.
lin.
log.
lin.
0
Nm-1
20
30
4530A
δ13Corg
[‰VPDB]
30
0
10 km
-27
-24
45
Pecínov
30
Middle TURONIAN
J-650704
DB-2
ZM-28
TUR 1
J-719670
Chronostratigraphy
W. SUDETIC
ISLAND
37
36
35
Pecínov
29
CaCO3
[wt.%]
28
27
25
24
23
21
CIE “se-20”
17
-27
-22
1000
4000
0
100
13
11
10
9
8
7
6
5
3
20 m
OAE II
0
CIE “se-10”
CIE “se-6”
CIE “se-2b”
2b
2a
M.n.
M.pu.
1c1,2
(1b)
M.ge.
220
m
170
m
150
m
170
m
condensed at Pecinov
~ 200 kyr
160
m
200
m
sand-dominated
shoreface siliclastics
24.5
Pecínov
18.2
ZM-28
5.1
DB-2
marginal-marine
and fluvial siliciclastics
(Upper Cenomanian)
chronostratigraphic
boundaries
offshore and
hemipelagic fines
9.0
Ko-1
interval condensed
at Pecínov
OAE II
5.9
Že-2
Želechovice
1 .... 45
correlation markers
9.5
J-969 747
Figure S4. Well-log correlation of boreholes 4523-A and the Pecínov section. Pecínov data are adopted from Košťák et al. (2018).
Distance [km]
4523-A
Sedlec
Upper CENOMANIAN
Cenomanian
Turonian
32
31
GR
[imp/min]
Lower TUR.
34
33
δ13Corg
[‰ VPDB]
cross section S5
W. SUDETIC
ISLAND
J-665 718
GR
J-719670
J-650704
RES
lin.
TUR 1
J-641 732
GR
lin.
log.
RES
GR
lin.
log.
GR
XNN
XNN
lin.
lin.
GR
Žv 1
RES
lin.
GR
lin.
log.
Cho 1
RES
GR
lin.
log.
MV 1
RES
GR
lin.
log.
Nm 1
RES
GR
XNN
XNN
XNN
XNN
lin.
lin.
lin.
lin.
lin.
RES
lin.
log.
XNN
log.
XNN
lin.
0
RES
0
log.
lin.
Str 1
GR
log.
2H117
log.
lin.
VÚj 1
RES
lin.
RES
XNN
TUR 2
4522a
J-641 748
0
0
XNN
0
200
4523A
lin.
GR
0
10 km
RES
lin.
log.
0
XNN
Nm-1
J-656 811
4530A
J-597 846
2H113
50
log.
Chronostratigraphy
0
J-650 704
GR
lin.
GR
RES
GR
log.
lin.
RES
RES
GR
log.
lin.
RES
log.
lin.
XNN
log.
0
log.
0
300
Middle TURONIAN
0
46
45
44
43
42
41
40
39b
39
38
37
36b
37
37
36
36
37
36a
36
36
35
34
33
37
37
36
32
Lower TUR.
37
36
31
36
30
29
28
27
26
37
36
37
36
37
36
25
24
9
23
22
21
20
19
18
17
16
15
14
13
12
11
10
8
6
7
5
4
37
36
37
36
37
36
37
36
37
36
C. woollgari
(255.5 m)
3
2b
2a
1b
Upper CENOMANIAN
1a
310
m
300
m
310
m
320
m
510
m
310
m
250
m
550
m
230
m
400
m
450
m
330
m
330
m
300
m
sand-dominated
shoreface siliclastics
chronostratigraphic
boundaries
offshore and
hemipelagic fines
marginal-marine
and fluvial siliciclastics
(Upper Cenomanian)
1 .... 45
correlation markers
280
m
1.0
J-650 704
1.4
J-665 718
0.8
J-641 732
3.3
J-641 748
3.6
J-656 811
2.2
J-597 846
3.7
2H113
3.7
Str 1
7.3
2H117
8.9
4522a
2.6
VÚj 1
3.8
Žv 1
2.5
Cho 1
Figure S5. Well-log correlation of the first occurrence (FO) of Collignoniceras woollgari in the study area. The index ammonite has been identified in borehole Nm-1, core depth 255.5 m (S. Čech, this study). A margin of ±0.5 m is applied to accommodate possible inaccuracies in the well-log depth assignment.
3.6
MV 1
Distance [km]
Nm 1
cross section S6
W. SUDETIC
ISLAND
RES
lin.
2H117
J-650704
GR
4523A
RES
lin.
0
GR
log.
10 km
lin.
GR
Chronostratigraphy
GR
XNN
lin.
lin.
J-734836
RES
GR
GR
lin.
lin.
lin.
log.
XNN
lin.
0
0
log.
lin.
XNN
lin.
J-662902
RES
lin.
RES
lin.
RES
0
RES
log.
lin.
log.
lin.
GR
J-709799
GR
XNN
RES
lin.
UD-2
Sedlec
XNN
0
GR
XNN
4523-A
Sedlec
XNN
0
0
log.
GR
log.
lin.
log.
Nm 1
RES
Sř 1
lin.
RES
lin.
lin.
log.
MV 1
GR
RES
0
XNN
0
Nm-1
GR
log.
XNN
4530A
lin.
RES
lin.
Lib 1
Cho 1
RES
XNN
2H125
2H124
TUR 2
GR
log.
TUR 1
J-719670
Žv 1
Je 1
GR
log.
lin.
log.
lin.
0
0
0
70
Middle TURONIAN
0
δ13Corg
[‰VPDB]
-27
-24
45
37
37
36
37
36
36
35
37
Lower TUR.
34
36
33
37
32
31
37
36
36
28
27
36
25
36
36
36
36
24
23
21
CIE “se-20”
C. woollgari
(255.5 m)
37
36
29
36
36
17
13
11
10
9
8
7
6
5
3
CIE “se-10”
CIE “se-6”
CIE “se-2b”
2b
2a
1c1,2
Upper CENOMANIAN
(1b)
220
m
240
m
280
m
310
m
290
m
220
m
330
m
330
m
320
m
250
m
250
m
320
m
250
m
sand-dominated
shoreface siliclastics
chronostratigraphic
boundaries
offshore and
hemipelagic fines
marginal-marine
and fluvial siliciclastics
(Upper Cenomanian)
1 .... 45
correlation markers
250
m
0.7
4523-A
Sedlec
3.8
UD-2
Sedlec
2.3
J-709799
6.8
5.0
J-734836
J-662902
8.5
2H117
4.8
Lib 1
1.8
2H125
2H124
3.6
Sř 1
3.0
Je 1
3.8
Žv 1
2.5
Cho 1
Figure S6. Same as Figure S5 for a correlation line to borehole 4523-A. The index ammonite Collignoniceras woollgari has been identified in borehole Nm-1, core depth 255.5 m (S. Čech, this study). A margin of ±0.5 m is applied to accommodate possible inaccuracies in the well-log depth assignment.
Distance [km]
3.6
MV 1
Nm 1
Figure S7. Lithofacies and elemental geochemistry of rhythmically bedded offshore strata,
borehole 4523-A. Type A lithology is dominated by hemipelagic marlstones and limestones with
an admixture of siliciclastic silt and very fine-grained sand. Type B lithology is notably richer in
siliciclastic silt and very fine- to fine-grained sand. All lithologies are strongly bioturbated.
Correlation markers (labelled 1-36 along the greyscale log) are best delineated in the Type B
lithology, where they are typically coarser-grained (up to fine-sand quartz) and richer in calcareous
bioclasts (mostly foraminifera and sponge spicules) and glauconite as compared to the
background sediment. Most of the marker beds correspond to maxima in the S4 signal (Fig. 6).
Note that the sample spacing of XRF data is too wide to fully capture the short-term (S4,
precessional) cyclicity. See Figures S8a and S8b for additional details.
2
Figure S8a. Lithofacies and elemental geochemistry of rhythmically bedded offshore strata,
borehole 4523-A. Detail of the CaCO3 and Si/Al signatures of the Type B cyclicity. GR = gamma ray
log, XNN = neutron-neutron log.
3
Figure S8b. Characteristics of the Type A and Type B cycles. Photomicrographs under crossed
nicols. Scale bar = 200 µm.
4
Figure S9. Spectral estimates, borehole J-719670. (a) Stratigraphy, gamma-ray (GR) and resistivity
(RES) data. Labels 1a through 45 along the RES log denote correlation markers most of which
correspond to maxima in the S4 signal. (b) MTM amplitude (left) and F-test significance (right)
estimates for the common logarithm of RES obtained with a 7-m moving window (EHA). Potential
signals are labelled S1 through S4. Interference patterns (IP) are highlighted by arches “)”. Note that
power and F-test maxima corresponding to the S4 signal migrate towards lower frequencies
paralleling an upward increase in sand contents and a large-scale progradational pattern in the
coeval siliciclastic system (Fig. S1). The EHA pattern resembles a reciprocal function of signal
wavelength, consistent with a linear increase in sedimentation rate. In the following step, the
depth scale was modified to remove the increase in sedimentation rate (Fig. 4). (c) MTM (3 2p)
estimates and results of ASM analysis for selected intervals. Ho/SL = null-hypothesis significance
level. The ASM analysis is based on all F-test maxima exceeding the 0.95 level between frequencies
0 and 5 cycle/m. Yellow bar denotes the range of plausible sedimentation rates based on GTS2020.
Blue lines and symbols indicate the best fit to the astronomical terms of long eccentricity (E1; 405
kyr period), short eccentricity (E2,3; 127 and 97 kyr periods), obliquity (O1,2; 49 and 39 kyr periods)
and precession (P1-4; 23 - 19 kyr periods; Tab. S2a).
5
Figure S10. TimeOpt results for borehole J-719670; the depth scale was modified to remove a
linear increase in sedimentation rate (see Fig. 4). (a) Resistivity (RES) data. (b) EHA amplitude and
F-test significance estimates for RES (7-m window, MTM 3 2p). Interpreted signals are labelled S1
through S4. Note distinct interference patterns (IP) in the S4 band. Intervals of constructive
interference of the S4a and S4b signals (x) delineate ~100-kyr eccentricity maxima. (c) TimeOpt
results for the interval of marker beds 5 through 31. The results are used here to confirm the
phasing of short-eccentricity (S2) signal. The underlying and overlying parts of the study interval
exhibit reduced signal to noise ratios, and are therefore not suitable for the TimeOpt analysis. Note
that the TimeOpt interval is too short for the evaluation of 405-kyr phasing.
6
Figure S11. TimeOpt results for borehole 4523-A. (a) Carbon-isotope data, greyscale and filtered
signals. Carbon-isotope excursions are labelled “se-2b”, “se-6”, etc., where the second part of the
index refers to a correlation marker. Filter setup (Taner, roll-off rate 4 × 104): S4 = 1.00±0.30
cycle/m, S2 = 0,23±0.05 cycle/m. (b) TimeOpt results for the interval of marker beds 1a through 6.
The results are used here to confirm the phasing of short-eccentricity (S2) signal. Reduced signal to
noise ratios and a facies change above marker bed 6 (Fig. S7) prevent the use of TimeOpt analysis
across a broader interval. Note that the TimeOpt interval is too short for the evaluation of 405-kyr
phasing.
7
Figure S12. A transient record of short-eccentricity (S2) in the Lower/Middle Turonian boundary
interval, borehole Bch-1, central part of the basin. (a) Chronostratigraphy and d13Corg curve; grey
line = 3-point moving average; adopted from Uličný et al. (2014) and Jarvis et al. (2015). (b)
Neutron-neutron log (XNN); Uličný et al. (2014). (c) Si/Al data and filtered S2 signal (Taner,
0.15±0.04 cycle/m, roll-off rate 4 × 104); this study. (d) MTM (3 3p) spectral estimate for XNN,
interval 356-396 m. (e) MTM (3 2p) spectral estimate for Si/Al, interval 356-390 m. Grey band marks
the expected frequency range of short eccentricity based on chronostratigraphic constraints
(GTS2020).
8
Figure S13. Correlation of d13C records of the Bohemian Cretaceous Basin (Pecínov and 4523-A) with key reference sections. Note that the Pecinov
record is condensed near the Cenomanian/Turonian (C/T) boundary, but most of the condensation occurs in the lowermost Turonian, in an interval
corresponding to the isotope maximum “C” as defined by Jarvis 2006 (not be confused with phases A, B and C of Pratt 1985); the Cenomanian portion of
OAE II is not visibly affected by condensation near the C/T boundary. Note that a detailed age calibration of the 4523-A record applies only to the interval
above marker bed 1a (Tab. S3). The underlying part of the d13C record (grey curve) is linearly interpolated (to the base of OAE II) and extrapolated (below
OAE II) using astrochronology of the Portland and Angus cores (Sageman et al. 2006; Ma et al. 2014)
9
Figure S14. Age-model construction; correlation of precessional and eccentricity cycles from the study
interval to one of the compatible segments of the La2010d solution (Laskar et al. 2011a). The same
procedure is applied to all compatible segments of La2010d between 89 and 99 Myr ago (Fig. S15). See
text for details. Black numbers 1-43 refer to correlation markers, which are manifestations of the
precessional (S4) cyclicity. Ochre bars denote 405-kyr maxima inferred from interference patterns (Fig. 5).
Timing of precessional and short-eccentricity maxima was determined with EPNOSE (Laurin et al. 2017).
Filter setup as in Figure 7.
Note: The phase of precessional signal is not resolved in the study interval; the contribution of this
phasing uncertainty to the bulk uncertainty of the age model should not exceed ±2 kyr (half the range of
precessional periods; Tab. S2a), and is therefore neglected in this study.
10
Figure S15. Segments of the astronomical solution La2010d (Laskar et al. 2011a) selected for the
estimation of the astronomical tuning target. Individual segments are labelled 1 through 21. Two
segments with poorly defined ~100-kyr cyclicity in the center (nodes in Myr-scale modulation) were
excluded, because such a configuration contradicts the well-defined eccentricity signature in the middle
part of the study interval. The excluded segments are marked with X. Red crosses = maxima in
precessional index; the ages of individual precessional maxima were identified with EPNOSE (Laurin et al.
2017). Filter setup (Taner, roll-off rate 4 × 104), short eccentricity = 10±3 cycle/Myr, long eccentricity =
2.47±0.5 cycle/Myr. See also Figure S14.
11
Figure S16. Spectral estimate (MTM 3 2p) for amplitude modulation of obliquity, solution La2010d
(Laskar et al. 2011a), interval 89-99 Ma. Amplitude envelope was obtained using the Hilbert transform in
the EPNOSE (Laurin et al. 2017).
12
Figure S17. Comparison of the astrochronology inferred in this study with the eccentricity cycles interpreted for the Contessa section (Batenburg et al.
2016). (a) Chronology of the Early Turonian (Tab. 2) anchored to the C/T boundary, 93.9 ±0.15 Myr ago (Meyers et al. 2012a). (b) The nearest segment of
13
the astronomical solution La2010d (Laskar et al. 2011a) whose eccentricity phasing is compatible with eccentricity signatures in the study interval (Figs. 5
and 7). Filter setup as in Figure 7. (c) Timing of 405-kyr eccentricity maxima (ochre shading) and minima inferred in this study. Numbers refer to the
sequence of cycles in the 405-kyr metronome (Laskar 2020). (d) Age-calibrated carbon-isotope curves. The Early Turonian interval of 4523-A is calibrated
in high resolution using the La2010d precessional and eccentricity tuning targets (see text for explanation). A linear sedimentation rate of 1.55 cm/kyr is
applied to the Cenomanian segment of 4523-A, beneath marker 1a (grey part of d13C curve; Fig. S13). Local isotope excursions are indicated (“se-6”, etc.).
Wunstorf astrochronology after Voigt et al. (2008). The age model for English Chalk (Jarvis et al. 2006; Pearce et al. 2020) has been updated by adjusting
the duration of the Early Turonian to 885 kyr; option 1 = Eastbourne and Culver data are interpolated to the GTS2012 age of FO M.n. (details in Pearce et
al. 2020); option 2 = linear interpolation between C/T boundary and FO C.w., ignoring the GTS age of FO M.n. (e) Contessa d13C data (Stoll and Schrag
2000) and 405-kyr eccentricity maxima (Batenburg et al. 2016); plotted in the depth domain; the vertical scale is adjusted linearly to align 405-kyr
maxima of the Contessa section with 405-kyr maxima interpreted in this study (ochre shading). Numbers refer to the sequence of cycles in the solution
La2011 (Laskar et al. 2011b). The 405-kyr cyclicity interpreted for the Contessa section apparently differs from the 405-kyr framework interpreted here.
Namely, the C/T boundary is located in the falling phase of 405-kyr cycle in the Contessa section, whereas the BCB data place the C/T boundary into the
rising phase of 405-kyr eccentricity. However, the two interpretations can be aligned with each other when considering a 150-kyr uncertainty for the
Contessa astrochronology (Batenburg et al. 2016) and delineating the Contessa C/T boundary as in Wendler (2013).
14
Figure S18. Selected calcareous nannofossil taxa in the core 4523-A, interval 175.75-188.75 m.
Cross polarized light, scale bar represents 10 µm. See Text S2 and Table S4.
(A) Ahmuellerella octoradiata (Górka, 1957) Reinhardt, 1966; 175.75 m. (B) Broinsonia enormis
(Shumenko, 1968) Manivit, 1971; 175.75 m. (C) Broinsonia signata (Noël, 1969) Noël, 1970; 178.75
m. (D) Cylindralithus biarcus Bukry, 1969; 175.75 m. (E) Corollithion signum Stradner, 1963; 178.75
m. (F) Chiastozygus litterarius (Górka, 1957) Manivit, 1971; 178.75 m. (G) Eprolithus floralis
15
(Stradner, 1962) Stover, 1966; 188.75 m. (H) Eprolithus moratus (Stover, 1966) Burnett 1998; 175.75
m. (I) Eprolithus octopetalus Varol, 1992; 178.75 m. (J) Eiffellithus gorkae Reinhardt, 1965; 175.75 m.
(K) Eiffellithus turriseiffelii (Deflandre in Deflandre & Fert, 1954) Reinhardt, 1965; 178.75 m. (L)
Grantarhabdus coronadventis (Reinhardt, 1966) Grün in Grün and Allemann, 1975; 178.75 m. (M)
Gartnerago obliquum (Stradner, 1963) Noël, 1970; 178.75 m. (N) Helicolithus compactus (Bukry,
1969) Varol & Girgis, 1994; 175.75 m. (O) Helicolithus trabeculatus (Górka, 1957) Verbeek, 1977;
181.75 m. (P) Lithraphidites carniolensis Deflandre, 1963; 181.75 m. (Q) Lucianorhabdus
maleformis Reinhardt, 1966; 175.75 m. (R) Lucianorhabdus maleformis Reinhardt, 1966; 178.75 m.
(S) ? Lucianorhabdus maleformis; 181.75 m. (T) Manivitella pemmatoidea (Deflandre in Manivit,
1965) Thierstein, 1971; 175.75 m. (U) Prediscosphaera columnata (Stover, 1966) Perch-Nielsen,
1984; 178.75 m. (V) Prediscosphaera cretacea (Arkhangelsky, 1912) Gartner, 1968; 175.75 m. (W)
Prediscosphaera ponticula (Bukry, 1969) Perch-Nielsen, 1984; 175.75 m. (X) Tranolithus
orionatus (Reinhardt, 1966a) Reinhardt, 1966b; 178.75 m. (Y) Quadrum gartneri Prins & PerchNielsen in Manivit et al., 1977; 175.75 m. (Z) Quadrum intermedium Varol, 1992; 188.75 m. (AA)
Quadrum intermedium Varol, 1992; 183.75 m. (AB) Retecapsa octofenestrata (Bralower in Bralower
et al., 1989) Bown in Bown & Cooper, 1998; 181.75 m. (AC) Watznaueria barnesiae (Black in Black &
Barnes, 1959) Perch-Nielsen, 1968; 175.75 m. (AD) Watznaueria britannica (Stradner, 1963)
Reinhardt, 1964; 183.75 m. (AE) Watznaueria ovata Bukry, 1969; 181.75 m. (AF) Zeugrhabdotus
bicrescenticus (Stover, 1966) Burnett in Gale et al., 1996; 183.75 m. (AG) Zeugrhabdotus
diplogrammus (Deflandre in Deflandre & Fert, 1954) Burnett in Gale et al., 1996; 181.75 m. (AH)
Zeugrhabdotus embergeri (Noël, 1959) Perch-Nielsen, 1984; 175.75 m. (AI) Zeugrhabdotus
scutula (Bergen, 1994) Rutledge & Bown, 1996; 175.75 m. (AJ) Zeugrhabdotus noeliae Rood et al.,
1971; 181.75 m.
16
Text S1. Carbon-isotope analysis
Core 4523-A
Samples from the core 4523-A were analyzed in the Stable Isotope Laboratory of the Geological
Survey, Prague. Inorganic carbon was removed before analysis by acid washing with HCl followed
by rinsing with water, drying at 60 °C and homogenisation. Carbon-isotope measurements were
performed by flash combustion in Fisons 1108 elemental analyzer coupled with isotope ratio mass
spectrometer Delta V Advantage (ThermoFisher, Bremen, Germany) in continuous flow regime.
Sample size was adjusted to contain a sufficient amount of carbon. Isotope ratios are reported as
delta (δ) values and expressed relative to VPDB. International standards NBS 22 (-30,031‰), IAEACH-7 (-32,151‰) and in-house standard Soil (-27,82 ‰) were used to verify proper instrument
function, and to conduct a normalization procedure. The long-term reproducibility is better than
±0.15‰.
Core 4530-A
Samples from the core 4530-A were analyzed in the Institute of Geochemistry, Mineralogy and
Mineral Resources, Charles University, Prague. Stable isotopic composition of carbon was
determined using a Thermo Flash 2000 elemental analyzer connected to a Thermo Delta V
Advantage isotope ratio mass spectrometer in a Continuous Flow IV system. Minimal weight of
samples depends on the wt% amount of carbon element. Samples wrapped in tin capsules were
combusted. Released gases (CO2) separated in a GC column was transferred to MS source through
a capillary. Isotope ratios are reported as delta (δ) values and expressed relative to VPDB. Delta
values are normalized to a calibration curve based on international standards IAEA-CH-6, IAEA-CH3 and IAEA 600.
17
Text S2. Nannofossils
Nannofossil assemblages were examined in the lower part of the 4523-A core in order to confirm
the correlation of ammonite Zone M. nodosoides. The results are listed in Table S4, and the key taxa
are depicted in Figure S18.
Methodology:
Calcareous nannofossils were analysed in smear slides prepared by decantation method described
in Švábenická (2012) and mounted in Entellan. To obtain the semi-quantitative information about
hte calcareous nannofossil assemblage, 500 specimens were counted in each slide. Smear slides
were examined under and an Olympus BX53 light microscope at 1000× magnification using an oilimmersion objective. Biostratigraphic data were interpreted with respect to standard UC zones
sensu Burnett (1998).
Interpretation:
In this core, nannofossil taxa Lucianorhabdus maleformis and Quadrum gartneri show their first
occurrences at 178.75 and 175.75 m depths, respectively. These taxa are indicative of the
nannofossil Zone UC 7 the base of which correlates above the base of the M. nodosoides ammonite
zone (Burnett 1998). Together with an uncertain occurrence of L. maleiformis at 181.75m and
Eprolithus moratus, indicative of the UC 6b Zone, below this level, these data indicate the base of
the UC 7 Zone at approximately 178.75-181.75 m depth of this core.
References:
Burnett, J.A. 1998. Upper Cretaceous. In: Calcareous Nannofossil Biostratigraphy (P.R. Bown): 132–
199. British Micropalaeontological Society, London.
Švábenická, L. 2012. Nannofossil record across the Cenomanian-Coniacian interval in the
Bohemian Cretaceous Basin and Tethyan foreland basins (Outer Western Carpathians), Czech
Republic. Geologica Carpathica, 63, 3, 201–217.
18
Text S3. Bchron scripts and input parameters.
Ages in kyr, depths in meters. The floating ages (Tab. S3) were anchored arbitrarily to 10000 kyr
ago, in order to comply with the Bchron setup and maintain computational stability: (1) the
original floating ages, extending down to -1104 kyr, are out of the definition range of “normal”
calibration, and (2) numerical ages linked to the C/T boundary (93900 kyr ago) result in a failure of
the computation when combined with the low standard deviation (1 kyr) of markers 1b, 1c1 and
1c2.
J-719670 input parameters:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
id
42
40
38
37
36a
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
8
7
6
5
4
3
2b2
2a
1c2
1c1
1b
1a
ages
8927
8966
9043
9064
9108
9133
9153
9173
9194
9231
9251
9271
9285
9299
9317
9337
9357
9376
9396
9416
9437
9458
9483
9507
9528
9548
9569
9597
9618
9638
9658
9687
9733
9762
9785
9804
9825
9846
9903
9947
10000
10020
10040
10085
ageSds
19
19
16
16
10
20
20
20
20
18
17
18
17
16
16
16
15
15
13
14
14
14
11
12
12
12
12
10
10
11
11
15
15
14
12
12
13
13
12
12
1
1
1
10
position
338.3
342.8
353.8
356.8
361.3
363.3
366.9
369.6
373.1
377.1
379.8
382.2
384.1
386.7
388.6
390.7
392.2
394.3
396.7
398.2
399.4
400.5
402.1
403
404.2
405.2
406.1
407.1
408
408.9
410.2
411.2
412.1
413
414
415
416.3
417.3
419.9
422.2
424
424.8
426
428.2
thickness
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
calCurves
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
19
J-719670 script:
J719670 = read.table(file='J-719670_anch10000.txt',header=TRUE)
J719670Out = Bchronology(ages=J719670$ages,#
ageSds=J719670$ageSds, #
calCurves=J719670$calCurves,#
positions=J719670$position, #
positionThicknesses=J719670$thickness,#
ids=J719670$id, #
predictPositions=seq(330,430,by=0.1))
plot(J719670Out,#
main="J-718670",#
xlab='Floating Age (kyr, arbitrary anchor at 10000 kyr ago)',#
ylab='Depth (m)',#
las=1)
summary(J719670Out)
J-650704 input parameters:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
id
43
40
38
37
36b
36a
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2b2
ages
8896
8966
9043
9064
9084
9108
9133
9153
9173
9194
9231
9251
9271
9285
9299
9317
9337
9357
9376
9396
9416
9437
9458
9483
9507
9528
9548
9569
9597
9618
9638
9658
9687
9713
9733
9762
9785
9804
9825
9846
9903
ageSds
23
19
16
16
10
10
20
20
20
20
18
17
18
17
16
16
16
15
15
13
14
14
14
11
12
12
12
12
10
10
11
11
15
15
15
14
12
12
13
13
12
position
359.2
367.7
376.9
379.8
383
386.3
389
393.9
395
396.6
399.3
402
404.5
407.4
409.5
411
412.7
413.8
415.3
417
418.2
419.4
420.7
422.2
423.3
424.8
425.7
426.7
427.7
428.5
429.8
431.8
433.2
434.2
436
437
438
439
440.1
441.4
443.8
thickness
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
calCurves
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
20
42
43
44
45
46
2a
1c2
1c1
1b
1a
9947
10000
10020
10040
10085
12
1
1
1
10
445.3
447.2
447.6
448.2
450
0.1
0.1
0.1
0.1
0.1
normal
normal
normal
normal
normal
J-650704 script:
J650704 = read.table(file='J-650704_anch10000.txt',header=TRUE)
J650704Out = Bchronology(ages=J650704$ages,#
ageSds=J650704$ageSds, #
calCurves=J650704$calCurves,#
positions=J650704$position, #
positionThicknesses=J650704$thickness,#
ids=J650704$id, #
predictPositions=seq(350,450,by=0.1))
plot(J650704Out,#
main="J-650704",#
xlab='Floating Age (kyr, arbitrary anchor at 10000 kyr ago)',#
ylab='Depth (m)',#
las=1)
summary(J650704Out)
4523-A input parameters:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
id
43
40
38
37
36
35
34
33
32
31
29
27
25
24
23
21
18
17
16
13
11
10
9
8
7
6
5
4
3
2b3
2b2
2b1
2a
1c2
1c1
1b
ages
8896
8966
9043
9064
9133
9153
9173
9194
9231
9251
9285
9317
9357
9376
9396
9437
9507
9528
9548
9618
9658
9687
9713
9733
9762
9785
9804
9825
9846
9883
9903
9924
9947
10000
10020
10040
ageSds
23
19
16
16
20
20
20
20
18
17
17
16
15
15
13
14
12
12
12
10
11
15
15
15
14
12
12
13
13
12
12
13
12
1
1
1
position
125
127
139.84
143.3
147.34
150.44
154.54
157.84
161.34
163.34
166.14
169.64
172.34
174.54
176.24
177.64
179.34
180.34
181.34
183.04
184.44
185.7
186.8
188.2
189.45
190.5
191.7
192.45
193.1
194.6
195.5
196.5
197.6
199.4
200.15
201.2
thickness
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
calCurves
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
21
37
1a
10085
10
202.4
0.1
normal
4523-A script:
Sedlec4523a = read.table(file='4523a_anch10000.txt',header=TRUE)
Sedlec4523aOut = Bchronology(ages=Sedlec4523a$ages,#
ageSds=Sedlec4523a$ageSds, #
calCurves=Sedlec4523a$calCurves,#
positions=Sedlec4523a$position, #
positionThicknesses=Sedlec4523a$thickness,#
ids=Sedlec4523a$id, #
predictPositions=seq(120,203,by=0.1))
plot(Sedlec4523aOut,#
main="Sedlec 4523a",#
xlab='Floating Age (kyr, arbitrary anchor at 10000 kyr ago)',#
ylab='Depth (m)',#
las=1)
summary(Sedlec4523aOut)
22
Table S1. Localities, their geographic coordinates and types of data used in this study.
Site/borehole
4523-A Sedlec
Location (WGS 84)
N 50o 32' 26''
E 14o 13' 46''
Data
d 13Corg
greyscale
biostratigraphy
Reference
this study
this study
this study
4530-A Horní Beřkovice
N 50o 21' 19''
E 14o 21' 45''
d13Corg
this study
J-719 670 Kotelice
N 50o 35' 23''
E 14o 13' 58''
resitivity log
this study
J-650 704 Srdov
N 50o 35' 36''
E 14o 17'
resitivity log
this study
Nm-1 Nemyslovice
N 50o 21' 43''
E 14o 45'
biostratigraphy
S. Čech, this study
Bch-1 Běchary
N 50°18′54.2′′
E 15°17′42.03′′
d13Corg
Uličný et al. (2014)
Si/Al
this study
Biostratigraphy
CaCO3, gamma log
Košťák et al. (2018)
this study
Pecínov quarry
N 50° 7′45.6′′
E 13° 55′1.8′′
23
Table S2a. Astronomical frequencies used in ASM analysis; k refers to Earth’s precession rate; g2
through g5 and s3 through s6 are secular frequencies of the Solar System (Laskar et al. 2004).
Term (abbrev.)
Origin
g2-g5
Frequency
[cycle/kyr]
1/405.47
Uncertainty
[%]
2.3
Eccentricity (E1)
Eccentricity (E2)
g4-g2
1/126.98
4.6
Eccentricity (E3)
g4-g5
1/96.91
4.2
Obliquity (O1)
k+s6
1/48.54
1.6
Obliquity (O2)
Precession (P1)
Precession (P2)
Precession (P3)
Precession (P4)
k+s3, k+s4
k+g5
k+g2
k+g4
k+g3
1/39.10
1/23.05
1/21.81
1/18.54
1/18.69
2.8
1.6
1.5
1.6
1.6
References
Laskar et al. (2011a);
Meyers et al. (2012b)
Laskar et al. (2011a);
Meyers et al. (2012b)
Laskar et al. (2011a);
Meyers et al. (2012b)
Laskar et al. (2004);
Meyers et al. (2012b)
Waltham (2015)
Waltham (2015)
Waltham (2015)
Waltham (2015)
Waltham (2015)
Table S2b. Parameters of the Average Spectral Misfit (ASM) analyses. Astronomical frequencies
are listed in Table S2a.
Data, interval
F-test
threshold
Nyquist
freq.
Rayleigh
freq.
Number of
simulations
Number of terms
evaluated
J-719670, RES
395-436 m
0.95
5
0.02439024
100 000
9
J-719670, RES
428-450 m
0.95
5
0.04545455
100 000
9
J-719670, RES
380-418 m
(detrended)
0.90
5
0.02631579
100 000
9
4523-A, greyscale
190-203 m
0.95
50
0.07686395
100 000
8
24
Table S3. Age calibration of correlation markers 1 through 43, and eccentricity maxima and
minima. 0 Myr = marker 1c2 (~C/T boundary). Number of measurements, n = 21. See text for
explanation.
Marker
ID
Floating
age
mean
[Myr]
Floating
age
st.dev.
[Myr]
Shorteccentricity
max(+)/min(-)
Floating
age
mean
[Myr]
Floating
age
st.dev.
[Myr]
Longeccentricity
max(+)/min(-)
Floating
age
mean
[Myr]
Floating
age
st.dev.
[Myr]
43
42
41
40
39
38
37
36b
36a
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2b3
2b2
2b1
2a
1c2
1c1
1b
1a
-1.104
-1.073
-1.054
-1.034
-0.997
-0.957
-0.936
-0.916
-0.892
-0.867
-0.847
-0.827
-0.806
-0.769
-0.749
-0.729
-0.715
-0.701
-0.683
-0.663
-0.643
-0.624
-0.604
-0.584
-0.563
-0.542
-0.517
-0.493
-0.472
-0.452
-0.431
-0.403
-0.382
-0.362
-0.342
-0.313
-0.287
-0.267
-0.238
-0.215
-0.196
-0.175
-0.154
-0.117
-0.097
-0.076
-0.053
0.000
0.020
0.040
0.085
0.023
0.019
0.019
0.019
0.016
0.016
0.016
0.010
0.010
0.020
0.020
0.020
0.020
0.018
0.017
0.018
0.017
0.016
0.016
0.016
0.015
0.015
0.013
0.014
0.014
0.014
0.011
0.012
0.012
0.012
0.012
0.010
0.010
0.011
0.011
0.015
0.015
0.015
0.014
0.012
0.012
0.013
0.013
0.012
0.012
0.013
0.012
0.000
0.001
0.001
0.010
(-1)
(+1)
(-1)
(+1)
(-1)
(+1)
(-1)
(+1)
(-1)
(+1)
(-1)
(+1)
(-1)
(+1)
(-1)
(+1)
(-1)
(+1)
(-1)
(+1)
(-1)
(+1)
(-1)
(+1)
(-1)
(+1)
-1.089
-1.048
-1.003
-0.953
-0.900
-0.847
-0.797
-0.749
-0.707
-0.666
-0.622
-0.574
-0.525
-0.472
-0.419
-0.369
-0.323
-0.281
-0.239
-0.194
-0.144
-0.092
-0.041
0.011
0.059
0.103
0.021
0.020
0.021
0.022
0.023
0.025
0.029
0.029
0.028
0.027
0.027
0.027
0.027
0.027
0.027
0.026
0.025
0.024
0.021
0.020
0.022
0.023
0.023
0.022
0.021
0.020
(-1)
(+1)
(-1)
(+1)
(-1)
(+1)
(-1)
-1.092
-0.890
-0.688
-0.486
-0.284
-0.082
0.120
0.034
0.033
0.032
0.031
0.032
0.033
0.034
25
Table S4. Occurrence of nannofossil taxa in the core 4523-A, interval 175.75-188.75 m.
26