Academia.eduAcademia.edu

Laurin et al 2021 SUPPLEMENTARY MATERIALS

2021, Paleoceanography and Paleoclimatology

Supplementary Materials for "Chronology and eccentricity phasing for the Early Turonian greenhouse (~93-94 Ma): constraints on astronomical control of the carbon cycle"

Paleoceanography and Paleoclimatology Supporting Information for Chronology and eccentricity phasing for the Early Turonian greenhouse (~93-94 Ma): constraints on astronomical control of the carbon cycle Jiří Laurin1, David Uličný1, Stanislav Čech2, Jakub Trubač3, Jiří Zachariáš3, Andrea Svobodová4 1 Institute of Geophysics of the Czech Academy of Sciences, Boční II/1401, 141 31 Prague, Czech Republic 2 Czech Geological Survey, Prague, Czech Republic 3 Institute of Geochemistry, Mineralogy and Mineral Resources, Charles University, Prague, Czech Republic 4 Institute of Geology of the Czech Academy of Sciences, Prague, Czech Republic Contents of this file Figures S1 to S18 Text S1 to S3 Tables S1 to S4 Additional Supporting Information (Files uploaded separately) Datasets S1 to S5 Introduction Supporting information includes a detailed well-log correlation of boreholes in the western depocenter of Bohemian Cretaceous Basin (Figures S1 – S6), geochemistry and lithology of the reference borehole 4523-A (Figures S7 and S8), spectral estimates for a resistivity log of borehole J719 670 (Fig. S9), results of the TimeOpt analysis of boreholes J-719 670 (Fig. S10) and 4523-A (Fig. S11), spectral estimates for borehole Bch-1 (Fig. S12), correlation of the Cenomanian-Turonian boundary interval to key reference sections, the USGS #1 Portland core and Eastbourne (Fig. S13), correlation to astronomical solution La2010d (Figs. 14 and 15), spectral estimate for the amplitude modulation of La2010d obliquity (Fig. S16), comparison of age-calibrated data with the Contessa section (Fig. S17), nannofossil taxa (Fig. S18), methodology of carbon-isotope analysis (Text S1), methodology of nannofossil analysis (Text S2), Bchron scripts (Text S3), list of key boreholes and their coordinates (Table S1), astronomical frequencies and input parameters of the Average Spectral Misfit (Tables S2a and 2b), age calibration of correlation markers (Table S3), occurrence of nannofossil taxa in the core 4523-A (Table S4), carbon-isotope data for the core 4523-A (Dataset S1), carbon-isotope data for the core 4530-A (Dataset S2), well-log data analyzed in this study (Dataset S3), greyscale data for the core 4523-A (Dataset S4), and Si/Al data for the core Bch-1 (Dataset S5). 1 J-703 684 J-719 670 J-693 687 J-665 718 J-650 704 J-648 707 J-625 716 GR XNN GR RES GR RES GR RES GR RES GR RES GR RES GR RES GR RES GR RES GR lin. log. lin. log. lin. log. lin. log. lin. log. lin. log. lin. log. lin. log. lin. log. lin. log. lin. RES log. 200 Lithostratigraphy J-734 684 J-736 735 Genetic sequences UD-2 Upper TUR 300 300 Middle TURONIAN Middle TURONIAN 300 46 45 46 46 45 45 44 45 44 43 43 43 45 42 45 45 42 41 41 40 39b 42 41 40 Jizera Fm. 300 400 TUR 3 - TUR 6 350 100 300 100 40 40 39b 39 39b 38 38 37 39b 37 37 36b 36b 13 11 10 9 8 7 6 5 2b 2a 1c1,2 (1b) 5 3 9 6 7 5 4 12 TUR 2 17 16 15 14 13 12 11 13 11 10 9 8 7 6 5 4 3 2b 10 9 7 1c1,2 1b 8 6 4 3 2b 3 2b 2b 2a 2a 1c 1b 2a 2a 1b 1b 1a 1a 1a 1a 1a 25 23 22 21 20 18 17 16 15 14 10 8 5 4 2b 2a 1c 1b 28 27 26 24 18 18 17 16 15 14 13 12 11 17 16 15 14 13 11 12 10 8 76 21 20 19 18 3 2b 2a 28 27 26 25 24 23 22 23 22 21 20 23 22 21 20 21 20 18 17 16 15 13 12 11 10 9 8 7 6 25 24 24 24 23 21 17 30 29 29 Lower TUR. 27 26 25 25 29 28 27 26 28 27 26 25 29 28 27 24 23 17 13 11 10 9 8 7 6 5 3 29 31 31 29 28 25 24 23 21 30 30 30 32 32 29 28 27 36 33 33 31 31 31 31 33 33 33 32 32 32 32 34 34 32 31 35 34 3333 35 34 33 33 35 33 Lower TUR. 34 36 35 34 36 36 35 36a 36a 36 35 36a 37 38 37 36 36a 36a 36 38 37 36a Bílá Hora Fm. 37 1b 500 m 500 m 300 m W. SUDETIC ISLAND J-650704 4523A TUR 2 0 sand-dominated shoreface siliclastics offshore and hemipelagic fines chronostratigraphic boundaries marginal-marine and fluvial siliciclastics (Upper Cenomanian) 1 .... 45 donwlap/truncation correlation markers 300 m 10 km 0.7 4523-A 450 m 300 m TUR 1 J-719670 - 500 m 510 m -500 1.9 UD-2 2.5 J-736 735 1.0 J-734 684 1.0 J-719 670 Figure S1. Well-log correlation of key boreholes discussed in this study. 0.5 J-703 684 2.1 J-693 687 1.0 J-665 718 0.2 J-650 704 Peruc-Korycany Fm. 550 m 450 m CEN 1-6 200 450 230 m Upper CENOMANIAN Upper CENOMANIAN 0 50 TUR 1 Chronostratigraphy 4523-A Figure 5 Chronostratigraphy Figures 4, 5 Figure 6 1.3 J-648 707 Distance [km] J-625 716 lin. lin. GR RES GR RES GR lin. log. lin. log. lin. RES GR RES GR RES log. lin. log. lin. log. Lithostratigraphy XNN J-719 670 J-734 684 Genetic sequences GR J-766 669 J-798 664 Chronostratigraphy J-805 736 4523-A 0 300 Middle TURONIAN 45 100 42 Jizera Fm. 300 300 TUR 3 - TUR 6 200 Middle TURONIAN Chronostratigraphy Upper TUR Figures 4, 5 Figure 6 100 40 39b 45 37 36a 36 32 34 31 Lower TUR. Lower TUR. 30 33 29 32 31 28 27 26 25 29 28 27 24 25 23 22 21 20 25 24 23 21 18 21 17 13 11 10 9 8 7 6 5 3 13 9 8 8 7 5 3 17 16 15 14 13 11 12 10 76 3 2b 2b 2a 4 5 2b 2a 1c 1c1,2 (1b) Bílá Hora Fm. 33 35 TUR 1 34 36 TUR 2 35 37 1c1,2 1b 1a 450 m 400 W. SUDETIC ISLAND 250 m TUR 1 Peruc-Korycany Fm. 450 m CEN 1-6 Upper CENOMANIAN Upper CENOMANIAN 200 450 220 m TUR 2 J-719670 4523A 0 10 km 300 m 4.5 4523-A sand-dominated shoreface siliclastics 1.4 J-805 736 offshore and hemipelagic fines 1.6 J-798 664 1.8 J-766 669 chronostratigraphic boundaries Distance [km] 1.0 J-734 684 marginal-marine and fluvial siliciclastics (Upper Cenomanian) Figure S2. Well-log correlation of key boreholes discussed in this study. J-719 670 1 .... 45 donwlap/truncation correlation markers Chronostratigraphy 4523-A Sedlec UD-2 Sedlec GR RES XNN lin. lin. J-734836 RES GR log. lin. log. lin. GR J-709799 GR J-662902 RES GR log. lin. J-694991 Be-1 4530-A H. Berkovice RES log. lin. 0 0 70 Middle TURONIAN 0 GR -27 RES -24 GR log. lin. δ13Corg [‰VPDB] RES GR log. lin. 0 RES log. lin. δ13Corg [‰VPDB] 0 45 0 -26 -24 37 36 35 Lower TUR. 34 33 32 31 ~Lulworth 29 28 27 25 24 23 21 CIE “se-20” 31 25 17 21 13 11 10 9 8 7 6 5 3 CIE “se-10” CIE “se-6” CIE “se-2b” be-20 ~ se-20 13 be-10 ~ se-10 11 be-6 ~ se-6 7 5 2b 2a be-2b ~ se-2b 2b 1c1,2 ?2a (1b) 1c Upper CENOMANIAN 1b 220 m 240 m W. SUDETIC ISLAND 130 m 150 m TUR 1 J-719670 J-650704 250 m 170 m 250 m TUR 2 4523A 0 250 m 10 km sand-dominated shoreface siliclastics Nm-1 offshore and hemipelagic fines chronostratigraphic boundaries marginal-marine and fluvial siliciclastics (Upper Cenomanian) 1 .... 45 correlation markers 4530A 0.7 4523-A Sedlec 3.8 UD-2 Sedlec 2.3 J-709799 Figure S3. Well-log correlation of boreholes 4523-A and 4530-A. 5.0 J-734836 4.8 J-662902 6.5 J-694991 5.7 Be-1 Distance [km] 4530-A H. Berkovice Ko-1 Že-2 Želechovice J-969 747 GR GR 4523-A Sedlec TUR 2 GR RES GR RES GR RES RES RES GR XNN lin. lin. 4523A log. lin. log. lin. log. lin. log. lin. log. lin. 0 Nm-1 20 30 4530A δ13Corg [‰VPDB] 30 0 10 km -27 -24 45 Pecínov 30 Middle TURONIAN J-650704 DB-2 ZM-28 TUR 1 J-719670 Chronostratigraphy W. SUDETIC ISLAND 37 36 35 Pecínov 29 CaCO3 [wt.%] 28 27 25 24 23 21 CIE “se-20” 17 -27 -22 1000 4000 0 100 13 11 10 9 8 7 6 5 3 20 m OAE II 0 CIE “se-10” CIE “se-6” CIE “se-2b” 2b 2a M.n. M.pu. 1c1,2 (1b) M.ge. 220 m 170 m 150 m 170 m condensed at Pecinov ~ 200 kyr 160 m 200 m sand-dominated shoreface siliclastics 24.5 Pecínov 18.2 ZM-28 5.1 DB-2 marginal-marine and fluvial siliciclastics (Upper Cenomanian) chronostratigraphic boundaries offshore and hemipelagic fines 9.0 Ko-1 interval condensed at Pecínov OAE II 5.9 Že-2 Želechovice 1 .... 45 correlation markers 9.5 J-969 747 Figure S4. Well-log correlation of boreholes 4523-A and the Pecínov section. Pecínov data are adopted from Košťák et al. (2018). Distance [km] 4523-A Sedlec Upper CENOMANIAN Cenomanian Turonian 32 31 GR [imp/min] Lower TUR. 34 33 δ13Corg [‰ VPDB] cross section S5 W. SUDETIC ISLAND J-665 718 GR J-719670 J-650704 RES lin. TUR 1 J-641 732 GR lin. log. RES GR lin. log. GR XNN XNN lin. lin. GR Žv 1 RES lin. GR lin. log. Cho 1 RES GR lin. log. MV 1 RES GR lin. log. Nm 1 RES GR XNN XNN XNN XNN lin. lin. lin. lin. lin. RES lin. log. XNN log. XNN lin. 0 RES 0 log. lin. Str 1 GR log. 2H117 log. lin. VÚj 1 RES lin. RES XNN TUR 2 4522a J-641 748 0 0 XNN 0 200 4523A lin. GR 0 10 km RES lin. log. 0 XNN Nm-1 J-656 811 4530A J-597 846 2H113 50 log. Chronostratigraphy 0 J-650 704 GR lin. GR RES GR log. lin. RES RES GR log. lin. RES log. lin. XNN log. 0 log. 0 300 Middle TURONIAN 0 46 45 44 43 42 41 40 39b 39 38 37 36b 37 37 36 36 37 36a 36 36 35 34 33 37 37 36 32 Lower TUR. 37 36 31 36 30 29 28 27 26 37 36 37 36 37 36 25 24 9 23 22 21 20 19 18 17 16 15 14 13 12 11 10 8 6 7 5 4 37 36 37 36 37 36 37 36 37 36 C. woollgari (255.5 m) 3 2b 2a 1b Upper CENOMANIAN 1a 310 m 300 m 310 m 320 m 510 m 310 m 250 m 550 m 230 m 400 m 450 m 330 m 330 m 300 m sand-dominated shoreface siliclastics chronostratigraphic boundaries offshore and hemipelagic fines marginal-marine and fluvial siliciclastics (Upper Cenomanian) 1 .... 45 correlation markers 280 m 1.0 J-650 704 1.4 J-665 718 0.8 J-641 732 3.3 J-641 748 3.6 J-656 811 2.2 J-597 846 3.7 2H113 3.7 Str 1 7.3 2H117 8.9 4522a 2.6 VÚj 1 3.8 Žv 1 2.5 Cho 1 Figure S5. Well-log correlation of the first occurrence (FO) of Collignoniceras woollgari in the study area. The index ammonite has been identified in borehole Nm-1, core depth 255.5 m (S. Čech, this study). A margin of ±0.5 m is applied to accommodate possible inaccuracies in the well-log depth assignment. 3.6 MV 1 Distance [km] Nm 1 cross section S6 W. SUDETIC ISLAND RES lin. 2H117 J-650704 GR 4523A RES lin. 0 GR log. 10 km lin. GR Chronostratigraphy GR XNN lin. lin. J-734836 RES GR GR lin. lin. lin. log. XNN lin. 0 0 log. lin. XNN lin. J-662902 RES lin. RES lin. RES 0 RES log. lin. log. lin. GR J-709799 GR XNN RES lin. UD-2 Sedlec XNN 0 GR XNN 4523-A Sedlec XNN 0 0 log. GR log. lin. log. Nm 1 RES Sř 1 lin. RES lin. lin. log. MV 1 GR RES 0 XNN 0 Nm-1 GR log. XNN 4530A lin. RES lin. Lib 1 Cho 1 RES XNN 2H125 2H124 TUR 2 GR log. TUR 1 J-719670 Žv 1 Je 1 GR log. lin. log. lin. 0 0 0 70 Middle TURONIAN 0 δ13Corg [‰VPDB] -27 -24 45 37 37 36 37 36 36 35 37 Lower TUR. 34 36 33 37 32 31 37 36 36 28 27 36 25 36 36 36 36 24 23 21 CIE “se-20” C. woollgari (255.5 m) 37 36 29 36 36 17 13 11 10 9 8 7 6 5 3 CIE “se-10” CIE “se-6” CIE “se-2b” 2b 2a 1c1,2 Upper CENOMANIAN (1b) 220 m 240 m 280 m 310 m 290 m 220 m 330 m 330 m 320 m 250 m 250 m 320 m 250 m sand-dominated shoreface siliclastics chronostratigraphic boundaries offshore and hemipelagic fines marginal-marine and fluvial siliciclastics (Upper Cenomanian) 1 .... 45 correlation markers 250 m 0.7 4523-A Sedlec 3.8 UD-2 Sedlec 2.3 J-709799 6.8 5.0 J-734836 J-662902 8.5 2H117 4.8 Lib 1 1.8 2H125 2H124 3.6 Sř 1 3.0 Je 1 3.8 Žv 1 2.5 Cho 1 Figure S6. Same as Figure S5 for a correlation line to borehole 4523-A. The index ammonite Collignoniceras woollgari has been identified in borehole Nm-1, core depth 255.5 m (S. Čech, this study). A margin of ±0.5 m is applied to accommodate possible inaccuracies in the well-log depth assignment. Distance [km] 3.6 MV 1 Nm 1 Figure S7. Lithofacies and elemental geochemistry of rhythmically bedded offshore strata, borehole 4523-A. Type A lithology is dominated by hemipelagic marlstones and limestones with an admixture of siliciclastic silt and very fine-grained sand. Type B lithology is notably richer in siliciclastic silt and very fine- to fine-grained sand. All lithologies are strongly bioturbated. Correlation markers (labelled 1-36 along the greyscale log) are best delineated in the Type B lithology, where they are typically coarser-grained (up to fine-sand quartz) and richer in calcareous bioclasts (mostly foraminifera and sponge spicules) and glauconite as compared to the background sediment. Most of the marker beds correspond to maxima in the S4 signal (Fig. 6). Note that the sample spacing of XRF data is too wide to fully capture the short-term (S4, precessional) cyclicity. See Figures S8a and S8b for additional details. 2 Figure S8a. Lithofacies and elemental geochemistry of rhythmically bedded offshore strata, borehole 4523-A. Detail of the CaCO3 and Si/Al signatures of the Type B cyclicity. GR = gamma ray log, XNN = neutron-neutron log. 3 Figure S8b. Characteristics of the Type A and Type B cycles. Photomicrographs under crossed nicols. Scale bar = 200 µm. 4 Figure S9. Spectral estimates, borehole J-719670. (a) Stratigraphy, gamma-ray (GR) and resistivity (RES) data. Labels 1a through 45 along the RES log denote correlation markers most of which correspond to maxima in the S4 signal. (b) MTM amplitude (left) and F-test significance (right) estimates for the common logarithm of RES obtained with a 7-m moving window (EHA). Potential signals are labelled S1 through S4. Interference patterns (IP) are highlighted by arches “)”. Note that power and F-test maxima corresponding to the S4 signal migrate towards lower frequencies paralleling an upward increase in sand contents and a large-scale progradational pattern in the coeval siliciclastic system (Fig. S1). The EHA pattern resembles a reciprocal function of signal wavelength, consistent with a linear increase in sedimentation rate. In the following step, the depth scale was modified to remove the increase in sedimentation rate (Fig. 4). (c) MTM (3 2p) estimates and results of ASM analysis for selected intervals. Ho/SL = null-hypothesis significance level. The ASM analysis is based on all F-test maxima exceeding the 0.95 level between frequencies 0 and 5 cycle/m. Yellow bar denotes the range of plausible sedimentation rates based on GTS2020. Blue lines and symbols indicate the best fit to the astronomical terms of long eccentricity (E1; 405 kyr period), short eccentricity (E2,3; 127 and 97 kyr periods), obliquity (O1,2; 49 and 39 kyr periods) and precession (P1-4; 23 - 19 kyr periods; Tab. S2a). 5 Figure S10. TimeOpt results for borehole J-719670; the depth scale was modified to remove a linear increase in sedimentation rate (see Fig. 4). (a) Resistivity (RES) data. (b) EHA amplitude and F-test significance estimates for RES (7-m window, MTM 3 2p). Interpreted signals are labelled S1 through S4. Note distinct interference patterns (IP) in the S4 band. Intervals of constructive interference of the S4a and S4b signals (x) delineate ~100-kyr eccentricity maxima. (c) TimeOpt results for the interval of marker beds 5 through 31. The results are used here to confirm the phasing of short-eccentricity (S2) signal. The underlying and overlying parts of the study interval exhibit reduced signal to noise ratios, and are therefore not suitable for the TimeOpt analysis. Note that the TimeOpt interval is too short for the evaluation of 405-kyr phasing. 6 Figure S11. TimeOpt results for borehole 4523-A. (a) Carbon-isotope data, greyscale and filtered signals. Carbon-isotope excursions are labelled “se-2b”, “se-6”, etc., where the second part of the index refers to a correlation marker. Filter setup (Taner, roll-off rate 4 × 104): S4 = 1.00±0.30 cycle/m, S2 = 0,23±0.05 cycle/m. (b) TimeOpt results for the interval of marker beds 1a through 6. The results are used here to confirm the phasing of short-eccentricity (S2) signal. Reduced signal to noise ratios and a facies change above marker bed 6 (Fig. S7) prevent the use of TimeOpt analysis across a broader interval. Note that the TimeOpt interval is too short for the evaluation of 405-kyr phasing. 7 Figure S12. A transient record of short-eccentricity (S2) in the Lower/Middle Turonian boundary interval, borehole Bch-1, central part of the basin. (a) Chronostratigraphy and d13Corg curve; grey line = 3-point moving average; adopted from Uličný et al. (2014) and Jarvis et al. (2015). (b) Neutron-neutron log (XNN); Uličný et al. (2014). (c) Si/Al data and filtered S2 signal (Taner, 0.15±0.04 cycle/m, roll-off rate 4 × 104); this study. (d) MTM (3 3p) spectral estimate for XNN, interval 356-396 m. (e) MTM (3 2p) spectral estimate for Si/Al, interval 356-390 m. Grey band marks the expected frequency range of short eccentricity based on chronostratigraphic constraints (GTS2020). 8 Figure S13. Correlation of d13C records of the Bohemian Cretaceous Basin (Pecínov and 4523-A) with key reference sections. Note that the Pecinov record is condensed near the Cenomanian/Turonian (C/T) boundary, but most of the condensation occurs in the lowermost Turonian, in an interval corresponding to the isotope maximum “C” as defined by Jarvis 2006 (not be confused with phases A, B and C of Pratt 1985); the Cenomanian portion of OAE II is not visibly affected by condensation near the C/T boundary. Note that a detailed age calibration of the 4523-A record applies only to the interval above marker bed 1a (Tab. S3). The underlying part of the d13C record (grey curve) is linearly interpolated (to the base of OAE II) and extrapolated (below OAE II) using astrochronology of the Portland and Angus cores (Sageman et al. 2006; Ma et al. 2014) 9 Figure S14. Age-model construction; correlation of precessional and eccentricity cycles from the study interval to one of the compatible segments of the La2010d solution (Laskar et al. 2011a). The same procedure is applied to all compatible segments of La2010d between 89 and 99 Myr ago (Fig. S15). See text for details. Black numbers 1-43 refer to correlation markers, which are manifestations of the precessional (S4) cyclicity. Ochre bars denote 405-kyr maxima inferred from interference patterns (Fig. 5). Timing of precessional and short-eccentricity maxima was determined with EPNOSE (Laurin et al. 2017). Filter setup as in Figure 7. Note: The phase of precessional signal is not resolved in the study interval; the contribution of this phasing uncertainty to the bulk uncertainty of the age model should not exceed ±2 kyr (half the range of precessional periods; Tab. S2a), and is therefore neglected in this study. 10 Figure S15. Segments of the astronomical solution La2010d (Laskar et al. 2011a) selected for the estimation of the astronomical tuning target. Individual segments are labelled 1 through 21. Two segments with poorly defined ~100-kyr cyclicity in the center (nodes in Myr-scale modulation) were excluded, because such a configuration contradicts the well-defined eccentricity signature in the middle part of the study interval. The excluded segments are marked with X. Red crosses = maxima in precessional index; the ages of individual precessional maxima were identified with EPNOSE (Laurin et al. 2017). Filter setup (Taner, roll-off rate 4 × 104), short eccentricity = 10±3 cycle/Myr, long eccentricity = 2.47±0.5 cycle/Myr. See also Figure S14. 11 Figure S16. Spectral estimate (MTM 3 2p) for amplitude modulation of obliquity, solution La2010d (Laskar et al. 2011a), interval 89-99 Ma. Amplitude envelope was obtained using the Hilbert transform in the EPNOSE (Laurin et al. 2017). 12 Figure S17. Comparison of the astrochronology inferred in this study with the eccentricity cycles interpreted for the Contessa section (Batenburg et al. 2016). (a) Chronology of the Early Turonian (Tab. 2) anchored to the C/T boundary, 93.9 ±0.15 Myr ago (Meyers et al. 2012a). (b) The nearest segment of 13 the astronomical solution La2010d (Laskar et al. 2011a) whose eccentricity phasing is compatible with eccentricity signatures in the study interval (Figs. 5 and 7). Filter setup as in Figure 7. (c) Timing of 405-kyr eccentricity maxima (ochre shading) and minima inferred in this study. Numbers refer to the sequence of cycles in the 405-kyr metronome (Laskar 2020). (d) Age-calibrated carbon-isotope curves. The Early Turonian interval of 4523-A is calibrated in high resolution using the La2010d precessional and eccentricity tuning targets (see text for explanation). A linear sedimentation rate of 1.55 cm/kyr is applied to the Cenomanian segment of 4523-A, beneath marker 1a (grey part of d13C curve; Fig. S13). Local isotope excursions are indicated (“se-6”, etc.). Wunstorf astrochronology after Voigt et al. (2008). The age model for English Chalk (Jarvis et al. 2006; Pearce et al. 2020) has been updated by adjusting the duration of the Early Turonian to 885 kyr; option 1 = Eastbourne and Culver data are interpolated to the GTS2012 age of FO M.n. (details in Pearce et al. 2020); option 2 = linear interpolation between C/T boundary and FO C.w., ignoring the GTS age of FO M.n. (e) Contessa d13C data (Stoll and Schrag 2000) and 405-kyr eccentricity maxima (Batenburg et al. 2016); plotted in the depth domain; the vertical scale is adjusted linearly to align 405-kyr maxima of the Contessa section with 405-kyr maxima interpreted in this study (ochre shading). Numbers refer to the sequence of cycles in the solution La2011 (Laskar et al. 2011b). The 405-kyr cyclicity interpreted for the Contessa section apparently differs from the 405-kyr framework interpreted here. Namely, the C/T boundary is located in the falling phase of 405-kyr cycle in the Contessa section, whereas the BCB data place the C/T boundary into the rising phase of 405-kyr eccentricity. However, the two interpretations can be aligned with each other when considering a 150-kyr uncertainty for the Contessa astrochronology (Batenburg et al. 2016) and delineating the Contessa C/T boundary as in Wendler (2013). 14 Figure S18. Selected calcareous nannofossil taxa in the core 4523-A, interval 175.75-188.75 m. Cross polarized light, scale bar represents 10 µm. See Text S2 and Table S4. (A) Ahmuellerella octoradiata (Górka, 1957) Reinhardt, 1966; 175.75 m. (B) Broinsonia enormis (Shumenko, 1968) Manivit, 1971; 175.75 m. (C) Broinsonia signata (Noël, 1969) Noël, 1970; 178.75 m. (D) Cylindralithus biarcus Bukry, 1969; 175.75 m. (E) Corollithion signum Stradner, 1963; 178.75 m. (F) Chiastozygus litterarius (Górka, 1957) Manivit, 1971; 178.75 m. (G) Eprolithus floralis 15 (Stradner, 1962) Stover, 1966; 188.75 m. (H) Eprolithus moratus (Stover, 1966) Burnett 1998; 175.75 m. (I) Eprolithus octopetalus Varol, 1992; 178.75 m. (J) Eiffellithus gorkae Reinhardt, 1965; 175.75 m. (K) Eiffellithus turriseiffelii (Deflandre in Deflandre & Fert, 1954) Reinhardt, 1965; 178.75 m. (L) Grantarhabdus coronadventis (Reinhardt, 1966) Grün in Grün and Allemann, 1975; 178.75 m. (M) Gartnerago obliquum (Stradner, 1963) Noël, 1970; 178.75 m. (N) Helicolithus compactus (Bukry, 1969) Varol & Girgis, 1994; 175.75 m. (O) Helicolithus trabeculatus (Górka, 1957) Verbeek, 1977; 181.75 m. (P) Lithraphidites carniolensis Deflandre, 1963; 181.75 m. (Q) Lucianorhabdus maleformis Reinhardt, 1966; 175.75 m. (R) Lucianorhabdus maleformis Reinhardt, 1966; 178.75 m. (S) ? Lucianorhabdus maleformis; 181.75 m. (T) Manivitella pemmatoidea (Deflandre in Manivit, 1965) Thierstein, 1971; 175.75 m. (U) Prediscosphaera columnata (Stover, 1966) Perch-Nielsen, 1984; 178.75 m. (V) Prediscosphaera cretacea (Arkhangelsky, 1912) Gartner, 1968; 175.75 m. (W) Prediscosphaera ponticula (Bukry, 1969) Perch-Nielsen, 1984; 175.75 m. (X) Tranolithus orionatus (Reinhardt, 1966a) Reinhardt, 1966b; 178.75 m. (Y) Quadrum gartneri Prins & PerchNielsen in Manivit et al., 1977; 175.75 m. (Z) Quadrum intermedium Varol, 1992; 188.75 m. (AA) Quadrum intermedium Varol, 1992; 183.75 m. (AB) Retecapsa octofenestrata (Bralower in Bralower et al., 1989) Bown in Bown & Cooper, 1998; 181.75 m. (AC) Watznaueria barnesiae (Black in Black & Barnes, 1959) Perch-Nielsen, 1968; 175.75 m. (AD) Watznaueria britannica (Stradner, 1963) Reinhardt, 1964; 183.75 m. (AE) Watznaueria ovata Bukry, 1969; 181.75 m. (AF) Zeugrhabdotus bicrescenticus (Stover, 1966) Burnett in Gale et al., 1996; 183.75 m. (AG) Zeugrhabdotus diplogrammus (Deflandre in Deflandre & Fert, 1954) Burnett in Gale et al., 1996; 181.75 m. (AH) Zeugrhabdotus embergeri (Noël, 1959) Perch-Nielsen, 1984; 175.75 m. (AI) Zeugrhabdotus scutula (Bergen, 1994) Rutledge & Bown, 1996; 175.75 m. (AJ) Zeugrhabdotus noeliae Rood et al., 1971; 181.75 m. 16 Text S1. Carbon-isotope analysis Core 4523-A Samples from the core 4523-A were analyzed in the Stable Isotope Laboratory of the Geological Survey, Prague. Inorganic carbon was removed before analysis by acid washing with HCl followed by rinsing with water, drying at 60 °C and homogenisation. Carbon-isotope measurements were performed by flash combustion in Fisons 1108 elemental analyzer coupled with isotope ratio mass spectrometer Delta V Advantage (ThermoFisher, Bremen, Germany) in continuous flow regime. Sample size was adjusted to contain a sufficient amount of carbon. Isotope ratios are reported as delta (δ) values and expressed relative to VPDB. International standards NBS 22 (-30,031‰), IAEACH-7 (-32,151‰) and in-house standard Soil (-27,82 ‰) were used to verify proper instrument function, and to conduct a normalization procedure. The long-term reproducibility is better than ±0.15‰. Core 4530-A Samples from the core 4530-A were analyzed in the Institute of Geochemistry, Mineralogy and Mineral Resources, Charles University, Prague. Stable isotopic composition of carbon was determined using a Thermo Flash 2000 elemental analyzer connected to a Thermo Delta V Advantage isotope ratio mass spectrometer in a Continuous Flow IV system. Minimal weight of samples depends on the wt% amount of carbon element. Samples wrapped in tin capsules were combusted. Released gases (CO2) separated in a GC column was transferred to MS source through a capillary. Isotope ratios are reported as delta (δ) values and expressed relative to VPDB. Delta values are normalized to a calibration curve based on international standards IAEA-CH-6, IAEA-CH3 and IAEA 600. 17 Text S2. Nannofossils Nannofossil assemblages were examined in the lower part of the 4523-A core in order to confirm the correlation of ammonite Zone M. nodosoides. The results are listed in Table S4, and the key taxa are depicted in Figure S18. Methodology: Calcareous nannofossils were analysed in smear slides prepared by decantation method described in Švábenická (2012) and mounted in Entellan. To obtain the semi-quantitative information about hte calcareous nannofossil assemblage, 500 specimens were counted in each slide. Smear slides were examined under and an Olympus BX53 light microscope at 1000× magnification using an oilimmersion objective. Biostratigraphic data were interpreted with respect to standard UC zones sensu Burnett (1998). Interpretation: In this core, nannofossil taxa Lucianorhabdus maleformis and Quadrum gartneri show their first occurrences at 178.75 and 175.75 m depths, respectively. These taxa are indicative of the nannofossil Zone UC 7 the base of which correlates above the base of the M. nodosoides ammonite zone (Burnett 1998). Together with an uncertain occurrence of L. maleiformis at 181.75m and Eprolithus moratus, indicative of the UC 6b Zone, below this level, these data indicate the base of the UC 7 Zone at approximately 178.75-181.75 m depth of this core. References: Burnett, J.A. 1998. Upper Cretaceous. In: Calcareous Nannofossil Biostratigraphy (P.R. Bown): 132– 199. British Micropalaeontological Society, London. Švábenická, L. 2012. Nannofossil record across the Cenomanian-Coniacian interval in the Bohemian Cretaceous Basin and Tethyan foreland basins (Outer Western Carpathians), Czech Republic. Geologica Carpathica, 63, 3, 201–217. 18 Text S3. Bchron scripts and input parameters. Ages in kyr, depths in meters. The floating ages (Tab. S3) were anchored arbitrarily to 10000 kyr ago, in order to comply with the Bchron setup and maintain computational stability: (1) the original floating ages, extending down to -1104 kyr, are out of the definition range of “normal” calibration, and (2) numerical ages linked to the C/T boundary (93900 kyr ago) result in a failure of the computation when combined with the low standard deviation (1 kyr) of markers 1b, 1c1 and 1c2. J-719670 input parameters: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 id 42 40 38 37 36a 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 8 7 6 5 4 3 2b2 2a 1c2 1c1 1b 1a ages 8927 8966 9043 9064 9108 9133 9153 9173 9194 9231 9251 9271 9285 9299 9317 9337 9357 9376 9396 9416 9437 9458 9483 9507 9528 9548 9569 9597 9618 9638 9658 9687 9733 9762 9785 9804 9825 9846 9903 9947 10000 10020 10040 10085 ageSds 19 19 16 16 10 20 20 20 20 18 17 18 17 16 16 16 15 15 13 14 14 14 11 12 12 12 12 10 10 11 11 15 15 14 12 12 13 13 12 12 1 1 1 10 position 338.3 342.8 353.8 356.8 361.3 363.3 366.9 369.6 373.1 377.1 379.8 382.2 384.1 386.7 388.6 390.7 392.2 394.3 396.7 398.2 399.4 400.5 402.1 403 404.2 405.2 406.1 407.1 408 408.9 410.2 411.2 412.1 413 414 415 416.3 417.3 419.9 422.2 424 424.8 426 428.2 thickness 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 calCurves normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal 19 J-719670 script: J719670 = read.table(file='J-719670_anch10000.txt',header=TRUE) J719670Out = Bchronology(ages=J719670$ages,# ageSds=J719670$ageSds, # calCurves=J719670$calCurves,# positions=J719670$position, # positionThicknesses=J719670$thickness,# ids=J719670$id, # predictPositions=seq(330,430,by=0.1)) plot(J719670Out,# main="J-718670",# xlab='Floating Age (kyr, arbitrary anchor at 10000 kyr ago)',# ylab='Depth (m)',# las=1) summary(J719670Out) J-650704 input parameters: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 id 43 40 38 37 36b 36a 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2b2 ages 8896 8966 9043 9064 9084 9108 9133 9153 9173 9194 9231 9251 9271 9285 9299 9317 9337 9357 9376 9396 9416 9437 9458 9483 9507 9528 9548 9569 9597 9618 9638 9658 9687 9713 9733 9762 9785 9804 9825 9846 9903 ageSds 23 19 16 16 10 10 20 20 20 20 18 17 18 17 16 16 16 15 15 13 14 14 14 11 12 12 12 12 10 10 11 11 15 15 15 14 12 12 13 13 12 position 359.2 367.7 376.9 379.8 383 386.3 389 393.9 395 396.6 399.3 402 404.5 407.4 409.5 411 412.7 413.8 415.3 417 418.2 419.4 420.7 422.2 423.3 424.8 425.7 426.7 427.7 428.5 429.8 431.8 433.2 434.2 436 437 438 439 440.1 441.4 443.8 thickness 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 calCurves normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal 20 42 43 44 45 46 2a 1c2 1c1 1b 1a 9947 10000 10020 10040 10085 12 1 1 1 10 445.3 447.2 447.6 448.2 450 0.1 0.1 0.1 0.1 0.1 normal normal normal normal normal J-650704 script: J650704 = read.table(file='J-650704_anch10000.txt',header=TRUE) J650704Out = Bchronology(ages=J650704$ages,# ageSds=J650704$ageSds, # calCurves=J650704$calCurves,# positions=J650704$position, # positionThicknesses=J650704$thickness,# ids=J650704$id, # predictPositions=seq(350,450,by=0.1)) plot(J650704Out,# main="J-650704",# xlab='Floating Age (kyr, arbitrary anchor at 10000 kyr ago)',# ylab='Depth (m)',# las=1) summary(J650704Out) 4523-A input parameters: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 id 43 40 38 37 36 35 34 33 32 31 29 27 25 24 23 21 18 17 16 13 11 10 9 8 7 6 5 4 3 2b3 2b2 2b1 2a 1c2 1c1 1b ages 8896 8966 9043 9064 9133 9153 9173 9194 9231 9251 9285 9317 9357 9376 9396 9437 9507 9528 9548 9618 9658 9687 9713 9733 9762 9785 9804 9825 9846 9883 9903 9924 9947 10000 10020 10040 ageSds 23 19 16 16 20 20 20 20 18 17 17 16 15 15 13 14 12 12 12 10 11 15 15 15 14 12 12 13 13 12 12 13 12 1 1 1 position 125 127 139.84 143.3 147.34 150.44 154.54 157.84 161.34 163.34 166.14 169.64 172.34 174.54 176.24 177.64 179.34 180.34 181.34 183.04 184.44 185.7 186.8 188.2 189.45 190.5 191.7 192.45 193.1 194.6 195.5 196.5 197.6 199.4 200.15 201.2 thickness 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 calCurves normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal 21 37 1a 10085 10 202.4 0.1 normal 4523-A script: Sedlec4523a = read.table(file='4523a_anch10000.txt',header=TRUE) Sedlec4523aOut = Bchronology(ages=Sedlec4523a$ages,# ageSds=Sedlec4523a$ageSds, # calCurves=Sedlec4523a$calCurves,# positions=Sedlec4523a$position, # positionThicknesses=Sedlec4523a$thickness,# ids=Sedlec4523a$id, # predictPositions=seq(120,203,by=0.1)) plot(Sedlec4523aOut,# main="Sedlec 4523a",# xlab='Floating Age (kyr, arbitrary anchor at 10000 kyr ago)',# ylab='Depth (m)',# las=1) summary(Sedlec4523aOut) 22 Table S1. Localities, their geographic coordinates and types of data used in this study. Site/borehole 4523-A Sedlec Location (WGS 84) N 50o 32' 26'' E 14o 13' 46'' Data d 13Corg greyscale biostratigraphy Reference this study this study this study 4530-A Horní Beřkovice N 50o 21' 19'' E 14o 21' 45'' d13Corg this study J-719 670 Kotelice N 50o 35' 23'' E 14o 13' 58'' resitivity log this study J-650 704 Srdov N 50o 35' 36'' E 14o 17' resitivity log this study Nm-1 Nemyslovice N 50o 21' 43'' E 14o 45' biostratigraphy S. Čech, this study Bch-1 Běchary N 50°18′54.2′′ E 15°17′42.03′′ d13Corg Uličný et al. (2014) Si/Al this study Biostratigraphy CaCO3, gamma log Košťák et al. (2018) this study Pecínov quarry N 50° 7′45.6′′ E 13° 55′1.8′′ 23 Table S2a. Astronomical frequencies used in ASM analysis; k refers to Earth’s precession rate; g2 through g5 and s3 through s6 are secular frequencies of the Solar System (Laskar et al. 2004). Term (abbrev.) Origin g2-g5 Frequency [cycle/kyr] 1/405.47 Uncertainty [%] 2.3 Eccentricity (E1) Eccentricity (E2) g4-g2 1/126.98 4.6 Eccentricity (E3) g4-g5 1/96.91 4.2 Obliquity (O1) k+s6 1/48.54 1.6 Obliquity (O2) Precession (P1) Precession (P2) Precession (P3) Precession (P4) k+s3, k+s4 k+g5 k+g2 k+g4 k+g3 1/39.10 1/23.05 1/21.81 1/18.54 1/18.69 2.8 1.6 1.5 1.6 1.6 References Laskar et al. (2011a); Meyers et al. (2012b) Laskar et al. (2011a); Meyers et al. (2012b) Laskar et al. (2011a); Meyers et al. (2012b) Laskar et al. (2004); Meyers et al. (2012b) Waltham (2015) Waltham (2015) Waltham (2015) Waltham (2015) Waltham (2015) Table S2b. Parameters of the Average Spectral Misfit (ASM) analyses. Astronomical frequencies are listed in Table S2a. Data, interval F-test threshold Nyquist freq. Rayleigh freq. Number of simulations Number of terms evaluated J-719670, RES 395-436 m 0.95 5 0.02439024 100 000 9 J-719670, RES 428-450 m 0.95 5 0.04545455 100 000 9 J-719670, RES 380-418 m (detrended) 0.90 5 0.02631579 100 000 9 4523-A, greyscale 190-203 m 0.95 50 0.07686395 100 000 8 24 Table S3. Age calibration of correlation markers 1 through 43, and eccentricity maxima and minima. 0 Myr = marker 1c2 (~C/T boundary). Number of measurements, n = 21. See text for explanation. Marker ID Floating age mean [Myr] Floating age st.dev. [Myr] Shorteccentricity max(+)/min(-) Floating age mean [Myr] Floating age st.dev. [Myr] Longeccentricity max(+)/min(-) Floating age mean [Myr] Floating age st.dev. [Myr] 43 42 41 40 39 38 37 36b 36a 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2b3 2b2 2b1 2a 1c2 1c1 1b 1a -1.104 -1.073 -1.054 -1.034 -0.997 -0.957 -0.936 -0.916 -0.892 -0.867 -0.847 -0.827 -0.806 -0.769 -0.749 -0.729 -0.715 -0.701 -0.683 -0.663 -0.643 -0.624 -0.604 -0.584 -0.563 -0.542 -0.517 -0.493 -0.472 -0.452 -0.431 -0.403 -0.382 -0.362 -0.342 -0.313 -0.287 -0.267 -0.238 -0.215 -0.196 -0.175 -0.154 -0.117 -0.097 -0.076 -0.053 0.000 0.020 0.040 0.085 0.023 0.019 0.019 0.019 0.016 0.016 0.016 0.010 0.010 0.020 0.020 0.020 0.020 0.018 0.017 0.018 0.017 0.016 0.016 0.016 0.015 0.015 0.013 0.014 0.014 0.014 0.011 0.012 0.012 0.012 0.012 0.010 0.010 0.011 0.011 0.015 0.015 0.015 0.014 0.012 0.012 0.013 0.013 0.012 0.012 0.013 0.012 0.000 0.001 0.001 0.010 (-1) (+1) (-1) (+1) (-1) (+1) (-1) (+1) (-1) (+1) (-1) (+1) (-1) (+1) (-1) (+1) (-1) (+1) (-1) (+1) (-1) (+1) (-1) (+1) (-1) (+1) -1.089 -1.048 -1.003 -0.953 -0.900 -0.847 -0.797 -0.749 -0.707 -0.666 -0.622 -0.574 -0.525 -0.472 -0.419 -0.369 -0.323 -0.281 -0.239 -0.194 -0.144 -0.092 -0.041 0.011 0.059 0.103 0.021 0.020 0.021 0.022 0.023 0.025 0.029 0.029 0.028 0.027 0.027 0.027 0.027 0.027 0.027 0.026 0.025 0.024 0.021 0.020 0.022 0.023 0.023 0.022 0.021 0.020 (-1) (+1) (-1) (+1) (-1) (+1) (-1) -1.092 -0.890 -0.688 -0.486 -0.284 -0.082 0.120 0.034 0.033 0.032 0.031 0.032 0.033 0.034 25 Table S4. Occurrence of nannofossil taxa in the core 4523-A, interval 175.75-188.75 m. 26