关于Smarandache问题
研究的新进展
郭晓艳
西北大学数学系
袁 霞
西北大学数学系
High American Press
2010
This book can be ordered in a paper bound reprint from:
Books on Demand
ProQuest Information & Learning
(University of Microfilm International)
300 N. Zeeb Road
P.O. Box 1346, Ann Arbor
MI 48106-1346, USA
Tel.: 1-800-521-0600 (Customer Service)
http://wwwlib.umi.com/bod/basic
Peer Reviewers:
Wenpeng Zhang, Department of Mathematics, Northwest University, Xi’an, Shannxi ,
P.R.China.
Wenguang Zhai, Department of Mathematics, Shangdong Teachers’ University, Jinan,
Shandong , P.R.China.
Guodong Liu, Department of Mathematics, Huizhou University, Huizhou,Guangdong,
P.R.China.
Copyright 2010 by High Am. Press, translators, editors, and authors for their papers
Many books can be downloaded from the following Digital Library of Science:
http://www.gallup.unm.edu/~smarandache/eBooks-otherformats.htm
ISBN: 978-1-59973-096-7
Standard Address Number : 297-5092
Printed in the United States of America
ó
êØ´ïÄê5Æ, AO´ê5Æ. l§)F
å, Ò±ó{', Vgß, Øä²(kOuÙÆ. êÆ
fpdQ²`L “êÆ´Æå, êØK´êÆå”. êØ
´PêÆÆ, P§±J<(-P¯!
, êØqé , ·y3, {(½êNõ{ü5.
Ǒ,kNõPêدK®²)û, ´qkõ#¯KØä
Ñy.
duNõêدKïĪþ=zǑ, êؼê5?Ø, Ï
déêؼêïÄ´êØ¥ÄǑ´ïÄK.
1993 , 35Only Problem, Not Solutions!6Ö¥, {7ÛêZæͶ
êØ;[ F. Smarandache ÇJÑ 105 'uAÏê!â¼ê
)ûêƯK9ß. Xù ¯KJÑ, NõÆöéd?1
\ïÄ, ¿¼ ØäknØdïĤJ.
Ö´ö3ÜÆÖÆ Ïm, âÜ©+ÇïÆ,
ò8 ISÆö'u Smarandache ¯KïÄÜ©¤J®?¤þ, ÙÌ
83uÖö0 'u Smarandache ¯K #ïĤJ,
Ì) Smarandache ¼êk.5O!þO, AÏê, AÏ
¼ê§)X¯K. F"k,Öö±éù (ØÚ#¯
K?1ïÄ, l mÿÖöÀ, ÚÚ-uÖöéù +ïÄ,
.
, é Ü©+Çå|±Ú9y, ["Ö¿J
ÑNõB¿±¿!
?ö
2010
12
I
'uSmarandache¯KïÄ#?
8¹
1Ù 'u Smarandache ¼ê
1.1
'u Smarandache ¼êe.O . . . . . . . . . .
Úó9(Ø . . . . . . . . . . . . . . . . . .
1.1.1
1.1.2
½n 1.1 y² . . . . . . . . . . . . . . . .
1.2
Smarandache ¼ê3ê a + b þe.O . . . .
1.2.1
Úó9ïĵ . . . . . . . . . . . . . . . .
1.2.2
½n 1.2 y² . . . . . . . . . . . . . . . .
1.3
Smarandahce ¼ê3¤êêþe.O . . . . . .
1.3.1
¤êêÌ(Ø . . . . . . . . . . . . . .
1.3.2
½n 1.3 y² . . . . . . . . . . . . . . . .
1.4
Smarandache ¼ê3 £þe.O . . . . . .
1.4.1
£0 . . . . . . . . . . . . . . . . .
½nÚüíØy² . . . . . . . . . . . . .
1.4.2
1Ù 'u Smarandache LCM ¼ê ¯K
Úó . . . . . . . . . . . . . . . . . . . . . . .
2.1
2.2
'u Smarandache LCM ¼ê9Ùéó¼ê . . . . . .
2.3
Smarandache LCM ¼êéó¼êÏfþ
........................
2.4
¹ Smarandache LCM ¼êéó¼ê§ . .
2.5
Smarandache ¼ê Smarandache LCM ¼ê·Üþ
2.6
¹ Smarandache ¼ê Smarandache LCM ¼ê
§ . . . . . . . . . . . . . . . . . . . . . .
1nÙ 'u Smarandache Ú¼ê ¯K
3.1
'u Smarandache Ú¼êþ . . . . . . . . . . .
3.1.1
Úó9(Ø . . . . . . . . . . . . . . . . . .
3.1.2
½n 3.1 9½n 3.2 y² . . . . . . . . . . .
a¹ Smarandache Ú¼ê S(n, k) Dirichlet ?ê .
3.2
3.2.1
Dirichlet ?êÌ(Ø . . . . . . . . . . . .
3.2.2
A½ny² . . . . . . . . . . . . . . . .
p
II
p
1
1
1
3
5
5
5
9
9
10
13
13
14
18
18
18
22
24
30
33
37
37
37
38
42
42
43
8¹
3.3
a¹ Smarandache Ú¼ê AS(n, k) Dirichlet ?ê 46
3.3.1
Ì(Ø . . . . . . . . . . . . . . . . . . . 46
½ny² . . . . . . . . . . . . . . . . . . 48
3.3.2
3.4
'u Smarandache Úþ . . . . . . . . . . . . 51
3.4.1
ïĵ9Ì(Ø . . . . . . . . . . . . . . 51
3.4.2
½n 3.13 9½n 3.14 y² . . . . . . . . . . 53
1oÙ 'u\¼ê ¯K
56
4.1
#\¼ê Smarandache ê . . . . . . . . 56
4.1.1
Úó9(Ø . . . . . . . . . . . . . . . . . . 56
4.1.2
ü{üÚn . . . . . . . . . . . . . . . . 57
½n 4.1 9½n 4.2 y² . . . . . . . . . . . 59
4.1.3
4.2
'u\¼êþ . . . . . . . . . . . . . . . 61
4.2.1
Ì(Ø . . . . . . . . . . . . . . . . . . . 61
4.2.2
½n 4.3 y² . . . . . . . . . . . . . . . . 61
1ÊÙ 'u Smarandache ê9Ùk'¯K
66
5.1
Smarandache ²ê SP (n) Ú IP (n) þ
. . . 66
5.2
Smarandache 3n-digital ê . . . . . . . . . . . . . 69
18Ù ¹ Smarandache ¼ê§
76
¹ Smarandache ¼êÚ Smarandache LCM ¼ê
6.1
§ . . . . . . . . . . . . . . . . . . . . . . . 76
6.2
¹ Smarandache ¼ê Smarandache ¼ê
§ . . . . . . . . . . . . . . . . . . . . . . . . 85
6.3
'u Smarandache ¼êüß . . . . . . . . . . 88
¹¼ê S (n) § . . . . . . . . . . . . . 93
6.4
6.5
'u Smarandache ¯Kí2 . . . . . . . . . . 100
1ÔÙ Smarandache ¼ê'¯K
105
7.1
Smarandache ¼ê·Üþ¯K . . . . . . . . . . 105
7.2
'u²Öê SSC(n) ü¯K . . . . . . . . . . 109
7.3
'u Smarandache ¼êþ¯K . . . . . . . 113
7.4
'u Smarandache {ü¼ê . . . . . . . . . . . . . 120
7.5
Smarandache k gÖê¼ê . . . . . . . . . . . . . 123
7.6
¹ Gauss ¼ê§9Ù¢ê) . . . . . . . . 127
k
III
7.7
ë©z
IV
'uSmarandache¯KïÄ#?
n ?¥"êiê²Ú¼êþ . . .
. . . . . 131
135
1Ù 'u Smarandache ¼ê
1Ù 'u Smarandache ¼ê
êØ¥¤¹SNÒ´ïÄêؼê«5,
Ͷ Smarandache ¼ê S(n) ´êؼê, éuù¼
êéõÆö®² ïÄÚ&¢, ¿ X(J, ù nØ
¤JéêØuÑk¿Â. C 5, 'u Smarandache ¼êk.
5O¯K¤Ǒ Smarandache #,K, éõÆöéùK
Ǒ&¢, Ùò0 CÏISÆö'u Smarandache ¼êk
.5O¯K¤Ñ#¤J.
1.1
1.1.1
'u Smarandache ¼êe.O
Úó9(Ø
½Â 1.1. éu?¿ê n, Ͷ Smarandache ¼ê S(n) ½Â
Ǒê m n | m!. =Ò´
S(n) = min{m : m ∈ N, n|m!}.
l S(n) ½ÂéN´íÑXJ n = p p · · · p L« n IO
©)ª, o S(n) = max {S(p )}. dd·ǑØJOÑ S(1) = 1,
α1 α2
1 2
1≤i≤r
αr
r
αi
i
S(2) = 2, S(3) = 3, S(4) = 4, S(5) = 5, S(6) = 3, S(7) = 7, S(8) = 4,
S(9) = 6, S(10) = 5, S(11) = 11, S(12) = 4, S(13) = 13, S(14) = 7,
S(15) = 5, S(16) = 6, S(17) = 17, S(18) = 6, S(19) = 19, S(20) = 5, · · · .
S(n)
,
.
S(n)
,
,
,
[2-6].
,
[2]
w,¼ê QØ´4O¼ê ǑØ´4~¼ê 'u ?Ú
5 NõÆöǑ?1 ïÄ ¼ Øk(J ë©z
~X ºæ² ¥ïÄ §
S (m1 + m2 + · · · + mk ) =
k
X
S (mi )
i=1
)5, |^)ÛêإͶnê½ny² é?¿ê k ≥
3, T§k ¡õ|ê) (m , m , · · · , m ).
1
2
k
1
'uSmarandache¯KïÄ#?
Mó¸ [3] ïÄ S(n) ©Ù¯K, y² ìCúª
3
2ζ 32 x 2
2
+O
(S(n) − P (n)) =
3
ln
x
n≤x
X
3
x2
ln2 x
!
,
Ù¥ P (n) L« n Ïf, ζ(s) L« Riemann zeta- ¼ê.
WjuÇ3©z [4] ¥ïÄ S 2 (2 − 1) e.O¯K,
¿Ñ Oª:
p−1
p
S 2p−1 (2p − 1) ≥ 2p + 1,
Ù¥ p Ǒ?¿Ûê.
ïw [5] ¥U? ©z [4] (Ø, Ñ re.O. =Ò
´y² é?¿ê p ≥ 7, ·k
S 2p−1 (2p − 1) ≥ 6p + 1.
ïw [6] ¥ïÄ S (2
ê p ≥ 7, ÓOª
p
+ 1)
e.O¯K, y² é?¿
S (2p + 1) ≥ 6p + 1.
±þ©z¥¤9ê 2 (2 − 1) kXêص, ¯¢
þê M = 2 − 1 ¡ǑrÜZê. rÜZQßÿé¤kê p, M Ǒ
ê. , ùßÿ 5y´Ø, ÏǑ M = 2 − 1 = 23 × 89
´Üê. ê 2 (2 − 1) PêØJK — óê
'. ¤¢ n ´ê´ n ¤kÏêÚu 2n. ~
X n = 6 ´ê, ÏǑ 12 = 2 × 6 = 1 + 2 + 3 + 6. <®y²
óê n ´ê = n = 2 (2 − 1), Ù¥ 2 − 1 Ǒê. ´
Ä3Ûê8´)ûêØJK. k'SNë©z [8]
9 [9].
éu Smarandache ¼ê3Ù§êþe.O, ÆöǑ?1
ïÄ, ~X, <a [7] ?Ø Smarandache ¼ê3¤êêþe.
O¯K, y² é?¿ê n ≥ 3 kOª:
p−1
p
p
p
p
11
p−1
p
p−1
2
11
p
n
S(Fn ) = S 22 + 1 ≥ 8 · 2n + 1,
p
1Ù 'u Smarandache ¼ê
Ù¥ F = 2 + 1 ǑͶ¤êê.
C, É©z [5]![6] 9 [7] éu§§X¶ [10] ïÄ k'¯K,
¼ re.O. äN/`ǑÒ´y² e¡:
½n 1.1. éu?¿ê p ≥ 17, ·kOª
2n
n
(A). S (2p − 1) ≥ 10p + 1;
(B). S (2p + 1) ≥ 10p + 1.
w,½n 1.1 ¥e.O`u©z [4]![5]![6] 9 [7] ¥(Ø,
§y²L§äkE|5.
½n 1.1 y²
1.1.2
ù!·|^{9|ÜE|ѽn 1.1 y².
·y²½n 1.1 ¥ (A) ª, Óníѽn 1.1 ¥ (B) ª.
d Smarandache ¼ê5éu?¿ê p | n, ·k S(n) ≥ p
p | S (p ) é¤kê α ¤á. y3, éu?¿ê p ≥ 17, q
Ǒ (2 − 1) ?Ïf, w, q ≥ 5. u´d S(n) 5
α
p
S (2p − 1) ≥ q.
(1-1)
q = 2kp + 1, k = 1, 2, 3, · · · · · · .
(1-2)
qdu q | 2 − 1, ¤± 2 ≡ 1 (mod q). Ïd p ´ 2 q I. ¤±
d©z [8] 9 [9] ¥I5 p | φ(q) = q − 1, ½ö q = mp + 1. d
u q ǑÛê, ¤± m ½Ǒóê, Ïd
p
p
w, 2 − 1 ØU´²ê. ÄKk 2 − 1 = u , ½ö 2 =
u + 1, ddíÑ 0 ≡ 2 ≡ u + 1 ≡ 2 (mod 4), gñ. u´ 2 − 1 ke
Ê«U:
(a). 2 − 1 Ǒê, d5¿ p ≥ 17, ·k S (2 − 1) ≥ 2 − 1 ≥
10p + 1.
(b). 2 − 1 TǑê q m g, m ≥ 3. du 2 − 1 Ø
UǑ², ¤± m = 3, 5, · · · . e m ≥ 5, Kd(Ü (1-1) 9 (1-2)
ªk
p
p
2
p
p
2
2
p
p
p
p
p
p
S (2p − 1) ≥ S(q m ) ≥ mq > 5(2p + 1) > 10p + 1.
3
'uSmarandache¯KïÄ#?
e m = 3, K q = 2kp + 1 k ≥ 2 Ek
S (2p − 1) ≥ S(q 3 ) ≥ 3q > 3(4p + 1) > 10p + 1.
w, 2 − 1 6= (2p + 1) , ÏǑ p ≥ 17 ª 2 − 1 = (2p + 1) Ø
U¤á, ÏǑ 2 − 1 > (2p + 1) , XJ p ≥ 17.
(c). 2 − 1 ¹koØÓÏf. dd (1-2) ªk
ê÷v q = 2kp + 1 k ≥ 5, ÏǑ 2p + 1 Ú 4p + 1 ØUÓ
Ǒê. dÒk S (2 − 1) ≥ q ≥ 10p + 1.
(d). 2 − 1 T¹knØÓÏf, XJÙ¥kÏ
f÷v q = 2kp + 1 k ≥ 5, oÒk S (2 − 1) ≥ q ≥ 10p + 1. XJ¤
kÏf¥ k ≤ 4, K5¿ 2p + 1 Ú 4p + 1 ØUÓǑê, 4p + 1
Ú 8p+1 ØUÓǑê, ¤± 2 −1 = (2p+1) ·(6p+1) ·(8p+1) .
d β ≥ 2 ½ö γ ≥ 2 ½ö α ≥ 5 ½nw,¤á. ¤±Ø5
b½ 2 −1 = (2p+1) ·(6p+1)·(8p+1), 1 ≤ α ≤ 4. ù«¹Ǒ´Ø
U. ÏǑXJ 2 −1 = (2p+1) ·(6p+1)·(8p+1), Kdg{5
2 ´ê 2p+1
9 6p+1 g{. , p ≡ 3 (mod 4) , p =
= (−1)
= (−1)
= (−1)
= −1, ù
4k + 3, d
2 ´ê
6p + 1 g{gñ. p ≡ 1 (mod 4) , p = 4k + 1,
d
= (−1)
= (−1)
= −1§ù 2 ´
= (−1)
ê 2p + 1 g{gñ. ¤± 2 − 1 T¹knØÓÏf
, ½k S (2 − 1) ≥ 10p + 1.
(e). 2 − 1 T¹küØÓÏf. d5¿ (1-2) ª±
9 (d) ¥y²L§ 2 − 1 ØUÓ¹kÏf 2p + 1 9 6p + 1.
Ó 2 − 1 ǑØUÓ¹kÏf 2p + 1 Ú 4p + 1, ÏǑê p > 3
, üê 2p + 1 9 4p + 1 ¥k 3 Ø, Ïd§ØU
ÓǑê. ¤±d (1-2) ª 2 − 1 T¹küØÓÏf
: 2 − 1 = (2p + 1) · (8p + 1) ½ö 2 − 1 = (4p + 1) · (6p + 1) ,
ÏǑ 4p + 1 Ú 8p + 1 ØUÓǑê, Ù¥k 3 Ø.
w, β ≥ 2 ½ö α ≥ 5 k S (2 − 1) ≥ β · (6p + 1) ≥ 10p + 1
½ö S (2 − 1) ≥ α · (2p + 1) ≥ 10p + 1. β = 1, 1 ≤ α ≤ 4
k 2 − 1 = (2p + 1) · (8p + 1) ½ö 2 − 1 = (4p + 1) · (6p + 1).
e 2 −1 = (2p+1) ·(8p+1), w, α 6= 4. ÄKd 2 −1 = (2p+1) ·(8p+1)
áǑíÑÓ{ª: 2 − 1 ≡ −1 ≡ (2p + 1) · (8p + 1) ≡ 1 (mod 8), g
ñ. 3 2 − 1 = (4p + 1) · (6p + 1) ¤á, E,k S (2 − 1) ≥
p
3
p
p
3
3
p
p
p
p
p
p
α
β
γ
α
p
α
(6p+1)2 −1
8
2
6p+1
(2p+1)2 −1
8
2
2p+1
3p(3p+1)
2
p(p+1)
2
6k+5
2k+1
p
p
p
p
p
p
p
α
β
p
α
β
p
p
p
α
p
p
α
p
p
p
4
α
4
4
3
p
1Ù 'u Smarandache ¼ê
3 · (4p + 1) > 10p + 1. ¤±Ø 1 ≤ α ≤ 3. d p ≥ 17 ,
ª 2 − 1 = (2p + 1) · (8p + 1) ½ö 2 − 1 = (4p + 1) · (6p + 1) ØU
¤á, ÏǑ 2 − 1 > (2p + 1) · (8p + 1) 9 2 − 1 > (4p + 1) · (6p + 1).
nÜ«U·ØJíÑ 2 − 1 T¹küØÓÏf,
S (2 − 1) ≥ 10p + 1.
(ܱþÊ«¹·áǑ¤½n 1.1 ¥ (A) ªy². aq/,
·±íѽn 1.1 ¥ (B) ª.
p
3
p
p
2
3
p
2
p
p
1.2
1.2.1
Smarandache
O
¼ê3ê a + b þe.
p
p
Úó9ïĵ
Ǒþ!¯Kí2Úò, <g,¬ Smarandache ¼êé
?¿g,êe.O. , ù´©(J¯K, ÏǑ n = p Ǒ
ê, S(p) = p; n = p α ≤ p , S (p ) = α · p. ¤± S(n)
©ÙéØþ!. !ò0 o®ÚÜ©+Ç3ù¡ï
Ä(J, ǑÒ´Ǒ©z [6] 9 [7] 5º, |^9|Ü{ïÄ
Smarandache ¼ê S(n) 3AÏê a + b þe.O¯K, ¿
5(Ø. äN/`ǑÒ´y² e¡:
½n 1.2. p ≥ 17 Ǒê, Ké?¿ØÓê a 9 b, ·
kOª
α
α
p
p
S (ap + bp ) ≥ 8p + 1.
w,ù½n¥e.´©z [5] 9 [6] í2Úò, AO a =
2, b = 1 , ·áǑíÑOª S (2 + 1) ≥ 8p + 1. Ïd·Ǒ|
^ù!{±U?©z [4]![5] ¥e..
p
1.2.2
½n 1.2 y²
ù!·|^{ѽn 1.2 y². ǑQãB, ·Äk
Ñe¡:
5
Ún 1.2.1.
·k
y²:
K (h, k) = 1
2
'uSmarandache¯KïÄ#?
p ǑÛê, Ké?¿pê a 9 b
ap + bp
, a+b
a+b
ap + bp
, a+b
a+b
p
p
=1
½ö p.
= d, a + b = dh,
p
p
d hk = a + b = a + (dh − a) =
= pdhap−1 +
p−2
X
a+b 6= 0,
p−1
X
ap + bp
= dk,
a+b
Cpi (dh)p−i (−1)i ai
i=0
Cpi (dh)p−i (−1)i ai .
(1-3)
i=0
5¿ (a, b) = 1, d Ø a + b, ¤± (d, a) = 1. l d (1-3) ªáǑí
Ñ d | p, ¤± d = 1 ½ö p. u´¤ Úny².
y3·/ÏuùÚn5¤½n 1.2 y². ÏǑ a Ú b
ǑØÓê, ¤±· a = d · a , b = d · b , (a , b ) = 1,
a + b = d · (a + b ). d Smarandache ¼ê S(n) 5
1
p
p
p
1
p
1
1
1
p
1
S (ap + bp ) = S (dp · (ap1 + bp1 )) ≥ S (ap1 + bp1 ) .
(1-4)
u´Ǒy²½n 1.2, 5¿ (1-4) ª, Ø5·b½ (a, b) = 1,
a · b > 1.
éu?¿ê q | n, ·k S(n) ≥ q q | S (q ) é¤k
ê α ¤á. y3, ·ky² a + b ØUǑ p . eØ,, K
k a + b = p . du p ǑÛê, α = 2 , du a + b > 2 > p , ¤
± α ≥ 3, d ¡ÚnØJíÑ a + b = p u, 1 ≤ k ≤ α − 2, (u, p) = 1.
2d
α
p
p
p
p
α
p
p
p
k
α
p
p
p
p
k
= a + b = a + (up − a) =
= pk+1 uap−1 +
p−2
X
i=0
6
p
p−1
X
Cpi up−i pk(p−i) (−1)i ai
i=0
Cpi up−i pk(p−i) (−1)i ai
2
1Ù 'u Smarandache ¼ê
½ö
p−2
X
α
p −
Cpi up−i pk(p−i) (−1)i ai = pk+1 uap−1 .
i=0
þª>U p Ø, ´m>ØUa, gñ
! ¤± a + b ØUǑ p
+b
. u´3ê q 6= p q Ø a + b . =Ò´
a + b ≡ 0 (mod q) ½ö (a · b) ≡ −1 (mod q).
l k
k+2
p
p
p
p
p
p
p
(a · b)2p ≡ 1 (mod q).
(1-5)
m ´ (a · b) q I, Kd (1-5) 9I5 (ë©z [8]
9 [9]) m | 2p. u´ m õko«U: m = 1, 2, p, 2p. w, m 6=
1, 2, p. ÏǑe m = 1, K a ≡ b (mod q), (a, b) = 1
q Ø a + b
gñ. e m = 2, K a · b ≡ −1 (mod q) ½ö a + b ≡ 0 (mod q). Ún
9 q Ø aa ++ bb gñ. 2d ¡Ó{ª (a · b) ≡ −1 (mod q) m Ø
Uu p, ¤±k m = 2p. 2dI5 m | φ(q) = q − 1, =
Ò´
p
p
p
p
p
q − 1 = h · m = h · 2p,
½ö
q = h · 2p + 1.
(1-6)
u´d (1-6) ª a + b Ø p , ¹k 4 ØÓÏf,
½kÏf q
p
p
q = h · 2p + 1 ≥ 4 · 2 · p + 1 = 8p + 1.
a + b ¹knØu p Ïf q , q 9 q , d (1-6) ª
· q = 2h p + 1, q = 2h p + 1, q = 2h p + 1 h < h < h .
d h Ú h ØUÓǑ 1 Ú 2. eØ,, 5¿ p ≥ 11, K3 p,
p = 2p + 1 Ú p = 4p + 1 nê¥, kU 3 Ø, ù p,
q Ú q ÓǑêgñ. Ïd h , h 9 h ¥kØ h
u½u 4, d·k q = 2h p + 1 ≥ 8p + 1.
e¡·?Ø a + b ¹küØu p Ïf q ¹. d
d¼ê S(n) 5·õIÄe¡ü«/ª:
p
p
1
1
1
1
1
1
2
2
3
2
3
3
1
2
3
2
2
2
1
p
3
p
2
3
3
3
7
'uSmarandache¯KïÄ#?
a + b = p · (2p + 1) · (6p + 1) ½ö a + b = p · (4p + 1) · (6p + 1) .
e a + b = p · (2p + 1) · (6p + 1) ¤á, K β ≥ 4 ½ö γ ≥ 2 ,
d S(n) 5:
p
p
α
p
β
p
γ
α
β
p
p
α
β
γ
γ
S(ap + bp ) ≥ S (2p + 1)β = β · (2p + 1) ≥ 4 · (2p + 1) = 8p + 3 ≥ 8p + 1,
½ö
S(ap + bp ) ≥ S ((6p + 1)γ ) = γ · (6p + 1) ≥ 2 · (6p + 1) = 12p + 2 ≥ 8p + 1.
u´·b½ 1 ≤ β ≤ 3, γ = 1. y3·y²3ù«¹e
p ≥ 17 , a + b ØU¹k p . eØ,, α ≥ 2 , du p
Ø a + b, a + b = p · u, (p, u) = 1. Kd ¡Ún k = α ½
ö α − 1. w,d a + b = p · (2p + 1) · (6p + 1) k = α ØU¤á,
ÏǑd p Ø a + b . u´ k = α − 1. l d a + b = p · u
p
p
k
p
p
α+1
2·
pα−1
2
α
p
p
≤2·
β
γ
p
α−1
a+b
2
p
≤ ap + bp = pα · (2p + 1)β · (6p + 1)γ .
5¿, α ≥ 2, 1 ≤ β ≤ 3, γ = 1, ¤± p ≥ 17 N´yþªw
,ؤá.
α = 1 , du a + b ≡ a + b (mod p), ¤± k = α = 1, d ¡
nd p | a + b , ù´ØU. ¤± a + b ØU¹kÏf p.
ù·áǑ
p
2
p
p
p
p
p
2p + 1 ≤ ap + bp = (2p + 1)β · (6p + 1),
Ù¥ 1 ≤ β ≤ 3. p ≥ 17 , ²LOþªØª´ØU¤á.
Ón±y² p ≥ 17 , a + b = p · (4p + 1) · (6p + 1)
β = γ = 1 ´ØU.
β ≥ 2 ½ö γ ≥ 2 , d S(n) 5
S(a + b ) ≥ 8p + 1 ´w,.
y3·?Ø a + b =¹kØu p Ïf q ¹. ·
I?Ø:
a + b = p · (2p + 1) , ½ö a + b = p · (4p + 1) , ½ö
p
p
α
p
α
p
β
p
p
α
ap + bp = pα · (6p + 1)β .
8
β
p
p
p
p
β
γ
ea
p
+ bp = pα
1Ù 'u Smarandache ¼ê
· (2p + 1) ¤á, K β ≥ 4 , w,kOª:
β
S (ap + bp ) ≥ S (2p + 1)4 = 4 · (2p + 1) ≥ 8p + 1.
β ≤ 3 , d ¡y²L§ p ≥ 17 , e α ≥ 1, K a + b =
p ·(2p+1) ØU¤á: Óe α = 0, K a +b = (2p+1)
1≤β≤3
Ǒؤá.
Óny²1Ú1n«¹ a + b = p · (4p + 1) 9 a + b =
p · (6p + 1) .
u´¤ ½ny².
α
β
p
p
α
p
p
p
p
p
p
β
α
β
β
1.3
Smarandahce
1.3.1
¼ê3¤êêþe.O
¤êêÌ(Ø
é?¿Kê n, Ͷ¤êê F ½ÂǑ F = 2 + 1. ~
X F = 3, F = 5, F = 17, F = 257, F = 65537, · · · . w, 5 ¤
êêÑ´ê, u´¤êÒßÿé¤kKê n, F Ǒê.
a¬êÆ[î.u 1732 ÞÑ ~: F = 641 × 6700417. Ïd¤
êß´. ¯¢þ n = 6, 7, 8, 9, 11, 12, 18, 23, 36, 38, 73 ,
F ÑØ´ê. XJ F Ǒê, ·r§¡Ǒ¤êê. ´Ä3
¡õ¤êê´)ûêØJK. IêÆ[pdQy²:
e F ´ê, K F >/^ 59ºÑ. ¤±¤êêǑk
XAÛµ. 'u Smarandache ¼ê3¤êêþe.
O, <a3©z [7] ¥?1 ïÄ, ¼ re.O. C,
Á¯ [11] |^{!5±9|ÜE|U? ©z [7] ¥
(Ø, ¼ e.O. äN/`ǑÒ´y² e¡:
½n 1.3. é?¿ê n ≥ 3, ·kOª
n
0
1
2
3
2n
n
4
n
5
n
n
n
n
S (Fn ) ≥ 12 · 2n + 1.
9
'uSmarandache¯KïÄ#?
½n 1.3 y²
1.3.2
ù!·^{!5±9|ÜE|ѽn 1.3
y². Äk5¿ F = 257, F = 65537, §Ñ´ê. Ïdé n = 3,
4, ·k S (F ) = 257 ≥ 12 · 2 + 1, S (F ) = 65537 > 12 · 2 + 1. Ïd
Ø5·b½ n ≥ 5. XJ F = p, ê, od S(n) 5
·k S (F ) = S(p) = p = F = 2 + 1 ≥ 12 · 2 + 1; XJ F ´
EÜê, o p ´ F ?¿Ïf, w, (2, p) = 1. m L« 2
mod p I. =Ò´, m L«ê r
3
4
3
3
4
4
n
n
2n
n
n
n
n
2r ≡ 1 (mod p).
ÏǑ p | F , ·k F = 2 + 1 ≡ 0 (mod p) ½ö 2 ≡ −1 (mod p),
9 2 ≡ 1 (mod p). ddÓ{ª9I5 (ë©z [8] ¥½
n 10.1) ·k m | 2 , Ïd m ´ 2 Ïf. m = 2 , Ù
¥ 1 ≤ d ≤ n + 1. w, p ∤ 2 − 1, XJ d ≤ n. Ïd m = 2 ±
9 m | φ(p) = p − 1. u´ 2 | p − 1 ½ö
n
2n
n
2n
2n+1
n+1
n+1
d
2d
n+1
n+1
p = h · 2n+1 + 1.
(1-7)
y3·©en«¹?Ø:
(A). XJ F knØÓÏf, â (1-7) ªØǑ p =
h ·2
+ 1, i = 1, 2, 3. ÏǑ 2
+1 Ú 2·2
+ 1 ØUÓǑ
ê (kU 3 Ø), 2 + 1 Ú 5 · 2 + 1 ØUÓǑ
ê (kU 3 Ø), 2 · 2 + 1 Ú 4 · 2 + 1 ØUÓǑ
ê (kU 3 Ø), 2 + 1 Ú 4 · 2 + 1 ØUÓǑ
ê (kU 3 ½ö 5 Ø), 2 · 2 + 1 Ú 3 · 2 + 1 ØUÓ
Ǒê (kU 3 ½ö 5 Ø), 4 · 2 + 1 Ú 5 · 2 + 1 Ø
UÓǑê (kU 3 Ø), ù5, 3 F ¤¹ 3
ØÓÏf¥, k p = h · 2 + 1 ¥ h ≥ 6. Ø h ≥ 6,
Kd S(n) 5:
n
i
i
n+1
n+1
n+1
n+1
n+1
n+1
n+1
n+1
n+1
n+1
n+1
n+1
n+1
n
i
i
n+1
i
3
S(Fn ) ≥ p3 ≥ 6 · 2n+1 + 1 = 12 · 2n + 1.
XJ F T¹üØÓÏf, Ø5
+1 · 5·2
2
+1 · 3·2
+ 1 , ½ö 2 · 2
½ö 3 · 2 + 1 · 4 · 2 + 1 .
(B).
Fn =
n+1
n
α
β
n+1
n+1
10
α
n+1
α
n+1
β
n+1
β
+1 ,
1Ù 'u Smarandache ¼ê
XJ F = 2 + 1 · 3 · 2 + 1 α ≥ 6 ½ö β ≥ 2, od S(n)
5·áǑíÑOª
α
n+1
n
n+1
β
n
α
β o
S(Fn ) ≥ max S 2n+1 + 1
, S 3 · 2n+1 + 1
= max α · 2n+1 + 1 , β · 3 · 2n+1 + 1
≥ 12 · 2n + 1.
XJ F = 2 + 1 = 2 + 1 ·
o5¿ n ≥ 5, ·kÓ{ª
2n
n
n+1
3 · 2n+1 + 1 = 3 · 22n+2 + 2n+3 + 1,
n
0 ≡ 22 + 1 − 1 = 3 · 22n+2 + 2n+3 ≡ 2n+3 (mod 2n+4 ).
n
.
, Fn = 22 + 1 6= 2n+1 + 1 · 3 · 2n+1 + 1 .
2
Fn = 2n+1 + 1 · 3 · 2n+1 + 1 = 3 · 23n+3 + 3 · 22n+3 + 3 ·
2n+1 + 22n+2 + 2n+2 + 1,
gñ Ïd
XJ
o·E,k
n
0 ≡ 22 + 1 − 1 = 3 · 23n+3 + 3 · 22n+3 + 3 · 2n+1 + 22n+2 + 2n+2 ≡
3 · 2n+1 (mod 2n+2 ).
2
n
.
, Fn = 22 + 1 6= 2n+1 + 1 · 3 · 2n+1 + 1 .
3
n
Fn = 22 + 1 = 2n+1 + 1 · 3 · 2n+1 + 1 ,
2
n
22 + 1 ≡ 3 · 2n+1 + 1 ≡ 3 · 2n+2 + 1 (mod 2n+4 ),
gñ Ïd
XJ
o
½ö
2
n
0 ≡ 22 ≡ 3 · 2n+1 + 1 − 1 ≡ 3 · 2n+2 (mod 2n+4 ).
ù 2 ∤ 3 · 2 gñ.
XJ F = 2 + 1 =
n+4
n+2
o
4
2n+1 + 1 · 3 · 2n+1 + 1 ,
4
≡ 2n+1 + 1 · 3 · 2n+1 + 1 − 1 ≡ 3 · 2n+1 (mod 2n+3 ).
n
n
0 ≡ 22
2n
ù 2 ∤ 3 · 2 gñ.
XJ F = 2 + 1 = 2
n+3
n+1
n
n
0 ≡ 22
n+1
ù 2 ∤ 2 gñ, ÏǑ n ≥ 5.
XJ F = 2 · 2 + 1 · 5 · 2
od S(n) 5k
2n+2
o
5
+ 1 · 3 · 2n+1 + 1 ,
5
≡ 2n+1 + 1 · 3 · 2n+1 + 1 − 1 ≡ 2n+4 (mod 22n+2 ).
2n
n+4
n
n+1
n
S(Fn ) ≥ max S
α
n+1
β
+1
α≥3
½ö β ≥ 2,
α
β o
2 · 2n+1 + 1
, S 5 · 2n+1 + 1
11
'uSmarandache¯KïÄ#?
= max α · 2 · 2n+1 + 1 , β · 5 · 2n+1 + 1
≥ 12 · 2n + 1.
XJ F
o·k
n
= 22 + 1 = 2 · 2n+1 + 1 · 5 · 2n+1 + 1 ,
n
n
Fn = 22 + 1 = 5 · 22n+3 + 7 · 2n+1 + 1.
l íÑÓ{ª
n
0 ≡ 22 = 5 · 22n+3 + 7 · 2n+1 ≡ 7 · 2n+1 (mod 22n+3 ).
ù´ØU, ÏǑ 2
XJ F = 2 + 1 =
ª
2n+3
2n
n
∤ 7 · 2n+1 .
2
2 · 2n+1 + 1 · 5 · 2n+1 + 1 ,
o·kÓ{
2
n
0 ≡ 22 = 2 · 2n+1 + 1 · 5 · 2n+1 + 1 − 1 ≡ 5 · 2n+1 (mod 2n+3 ).
ù´ØU, ÏǑ 2 ∤ 5 · 2 .
(C). XJ F TkÏf, ù F Ǒê, ½n 1.3 w
,¤á. u´·b½
F = 2
+1
½ö F = 2 · 2 + 1 , α ≥ 2.
XJ F = 2 + 1 , o α ≥ 6 ½n 1.3 w,¤á. XJ α =1,
2, 3, 4 ½ö 5, odÓ{ªØJíÑgñ. Ïd F 6= 2
+1 ,
1 ≤ α ≤ 5.
XJ F = 2 · 2 + 1 , o α ≥ 3 d S(n) 5
½n 1.3 w,¤á. XJ α = 1, o F Ǒê, ½n 1.3 Ǒ¤á.
F = 2 · 2 + 1 , dÓ{ª
n+3
n+1
n
n
α
n+1
n
α
α
n+1
n
n+1
n
n
n+1
n
n
α
n
2
n+1
n
0 ≡ 22 = (2n+2 + 1)2 − 1 ≡ 2n+3 (mod 22n+2 ).
áǑíÑgñ. ÏǑ n ≥ 5 , 2 ∤ 2 .
(ܱþn«¹, ·áǑ¤ ½n 1.3 y².
2n+2
12
n+3
n+1
α
1Ù 'u Smarandache ¼ê
1.4
Smarandache
1.4.1
¼ê3 £þe.O
£0
½Â 1.2. éuê n, /X n!±1 ê¡Ǒ £ (shifted
factorial).
C, J. Sándor Ú F. Luca [12] â C. L. Stewart [13] k'
£ n! + 1 Ïê¡(Jy² :
lim sup
n→∞
S(n! + 1)
≥ 5.5.
n
(1-8)
S(n! + 1)
= ∞.
n
(1-9)
Ó, ©z [12] â M. Murthy Ú S. Wong [14] k' abc− ßb
5(Jy² : XJ abc− ߤá, K
lim inf
n→∞
ùp abc− ß´d J. Oesterlé [15] Ú D. W. Masser [16] JÑ
Ͷß: pê a, b, c ·Ü a + b = c , éu?¿ê ǫ,
È abc ØÓÏêÈ rad(abc) ÷v c < C(ǫ)(rad(abc)) , Ù
¥ C(ǫ) ´= ǫ k'kO~ê. ù´î8)û
JK (ë©z [17] ¯K B19). C, HýS$^{y² ±
e ^(J:
½n 1.4. n > 10 ,
1+ǫ
3
log n
S(n! ± 1)
,
≥
n
log log n
Ù¥ [α] L«¢ê α êÜ©.
âþã½n±eíØ:
ín 1.4.1.
S(n! ± 1)
lim
n→∞
n
= ∞.
w,, íØ 1.4.1 Ø3þU? (J (1-8),
¹ey² (J (1-9).
(1-10)
(1-11)
3 ^
13
'uSmarandache¯KïÄ#?
, , $^þ¡½n±Ñk' £Ïêe..
P ´ n! + 1 Ïê. éd, P. Erdös Ú C. L. Stewart [18] y
² : 3 ¡õê n P > 2n. d , ©z [13] ?Úy²
: éu?Ûê ǫ, P > (5.5 − ǫ)n ¤áê n äkÇ.
d , ©z [14] 3b½ abc− ߤá^ey² :
n
n
n
lim inf
n→∞
Pn
= ∞.
n
â!½n±e(J:
ín 1.4.2. n > 10 , n! ± 1 7kÏê p ÷v
3
pr
log n
,
≥
n
log log n
(1-12)
Ù¥ r ´ p 3 n! ± 1 IO©)ª¥gê.
1.4.2
½nÚüíØy²
Äk·0 A½ny²IÚn:
Ún 1.4.1. XJ a = p · · · p ´ a IO©)ª, K S(a) =
rk
k
r1
1
max{S(pr11 ), · · · , S(prkk }.
Ún 1.4.2. éuê p Úê r, 7k p ≤ S(p ) ≤ pr.
Ún 1.4.1 ÚÚn 1.4.2 y²ëì©z [19].
Ún 1.4.3. x , x , · · · , x ´ k (k > 1) ½. éu
r
ê m,
1
2
(x1 + x2 + · · · + xk )m =
Ù¥ “P” L«é§
k
X
m
n1 , n2 , · · · , nk
!
xn1 1 xn2 2 · · · xnk k ,
n1 + n2 + · · · + nk = m, ni ∈ Z, ni ≥ 0, i = 1, 2, · · · , k
14
1Ù 'u Smarandache ¼ê
¤k) (n , n , · · · , n ) Ú,
1
2
k
m
n1 , n2 , · · · , nk
!
=
m!
n1 !n2 ! · · · nk !
Ñ´ê, ¡ǑõªXê.
y²: ë©z [20] 1 1.2.2 !½n B.
Ún 1.4.4. x Ú y ´·Ü
(x + 1)x+1 >
ê. y > 10 , 7k
y
e
(1-13)
3
(x + 1) >
log y
.
log log y
(1-14)
y²: XJ x + 1 ≤ (log y)/ log log y, K3 (1-13) ü>éê
log y
(log log y − log log log y) > log y − 1.
log log y
(1-15)
log log y > (log y)(log log log y).
(1-16)
y > 10 , ÏǑ log log y > 0, ¤±l (1-15)
3
z = log log y, l (1-16)
z
z
1
log log y
= z <
=
.
2
log y
e
z + z /2
1 + z/2
(1-17)
Ïdl (1-16) Ú (1-17)
z
1 > (1 + ) log z.
2
(1-18)
, , du y > 10 , ¤± z > 1.93 log z > 0.65, l (1-18)
1 > 1.27 ùgñ. dd: y > 10 , ت (1-14) ¤á. Ú
ny.
±e·é½nÚíØ?1y².
3
3
15
'uSmarandache¯KïÄ#?
½n 1.4 y²: m = S(n! ± 1). â Smarandache ¼ê½
Â: S(n) = min{k : k ∈ N, n | k!},
m! = (n! ± 1)a, a ∈ N.
(1-19)
l (1-19) m > n. q = [m/n]. d q 7Ǒê,
Ø{
|^{
m = nq + s, s ∈ Z, 0 ≤ s < n.
(1-20)
b = s!(n!)q .
(1-21)
ÏǑl (1-20) Ú (1-21)
!
m
s, n, · · · , n
m!
m!
=
=
b
s!n! · · · n!
(1-22)
´õªXê, ¤±lÚn 1.4.3 m!/b ´ê. Ó, 3Ún 1.4.3
¥ x = x = · · · = x ±9 k = q + 1, KâÚn 1.4.3, l (1-20)
Ú (1-22)
1
2
,¡, ÏǑl
1) = 1. du®²y²
k
m!
< (q + 1)m .
b
(1-20)
s < n,
b | m!,
(1-19)
l
(1-23)
¤±l (1-21) gcd(b, n! ±
b | a. Ïdl (1-19)
m!
a
= (n! ± 1) ≥ n! ± 1.
b
b
(1-24)
(q + 1)m ≥ n!.
(1-25)
(Ü (1-23) Ú (1-24) á
â Stirling úª n! > (n/e) , ¤±l (1-25)
n
n
(q + 1)m > ( )n .
e
(1-26)
n
.
e
(1-27)
dul (1-20) m < n(q + 1), ¤±l (1-26)
(q + 1)q+1 >
16
n > 10
3
1Ù 'u Smarandache ¼ê
, âÚn 1.4.4, l (1-27)
log n
.
log log n
(1-28)
log n
.
q≥
log log n
(1-29)
n! ± 1 = pr11 · · · prkk
(1-30)
q+1>
qÏ q ´ê, l (1-28) á
ÏǑl (1-20) m ≥ nq, l (1-29) (1-10). ½ny.
íØ 1.4.1 y²:
´ n! ± 1 IO©)ª, q p ´ (1-30) ¥ S(p ) ê
, = S(p ) = max{S(p ), · · · , S(p )}. âÚn 1.4.1
r
r
r1
1
r
rk
k
S(n! ± 1) = S(pr ).
(1-31)
S(n! ± 1) < pr.
(1-32)
qlÚn 1.4.2 S(p ) < pr, l (1-31)
r
u´, ⩽n¤(Ø (1-10), l (1-32) (1-12) ¤á. íØ
y.
17
'uSmarandache¯KïÄ#?
1Ù 'u Smarandache LCM ¼ê
¯K
Úó
2.1
Ùò0 X'u Smarandache LCM ¼ê9§éó¼ê
#ïĤJ, Äk·5wü½Â:
½Â 2.1. é?¿ê n, Ͷ Smarandache LCM ¼ê SL(n)
½ÂǑê k, n | [1, 2, · · · , k], =
SL(n) = min{k : k ∈ N, n | [1, 2, · · · , k]},
ùp [1, 2, · · · , k] L« 1, 2, · · · , k úê. ~X, SL(6) = 3,
SL(10) = 5, SL(12) = 4, SL(20) = 5, · · · . AO n IO©)ª
Ǒ n = p p · · · p , ØJy
α1 α2
1 2
αk
k
SL(n) = max{pα1 1 , pα2 2 , · · · , pαk k }.
½Â 2.2. ·½Â¼ê SL(n) éó¼ê SL(n) Xeµ
SL(n) = min{pα1 1 , pα2 2 , · · · , pαk k }.
~X, ù¼ê AǑ SL(1) = 1, SL(6) = 2, SL(12) = 3, SL(20) =
4, · · · .
2.2
'u Smarandache LCM ¼ê9Ùéó¼ê
'u SL(n) ù¼ê5, NõÆö?1 ïÄ, ¿ Ø
(J, ë©z [21-25]. ~X, èR [21] ïÄ SL(n) ©
Ù¯K, y² ìCúª:
2
(SL(n) − P (n))2 = · ζ
5
n≤x
X
18
5
x2
5
·
+O
2
ln x
5
x2
ln2 x
!
,
1Ù 'u Smarandache LCM ¼ê ¯K
Ù¥ P (n) L« n Ïf.
Le Maohua [22] ?Ø § SL(n) = S(n) )5, ¿)û
T¯K. =Ò´y² : ?Û÷vT§êL«Ǒ n = 12 ½
ö n = p p · · · p p, Ù¥ p , p , · · · , p , p ´ØÓê α , α ,
· · · , α ´÷v p > p , i = 1, 2, · · · , r ê.
ë [23] ïÄ þ SL(n) − Ω(n) ìC5, Ñ ì
Cúªµ
α1 α2
1 2
αr
r
αi
i
r
1
2
r
1
2
2
X
n≤x
2 4
SL(n) − Ω(n) = ζ
5
5
5
k
X
x2
5
ci · x 2
+O
·
+
4
ln x i=2 lni x
5
x2
lnk+1 x
!
,
Ù¥ ζ(n) Ǒ Riemann zeta- ¼ê, c ǑO~ê, Ω(n) Ǒ\¼ê,
½ÂǑ: Ω(n) = X α p , XJ n IO©)ªǑ n = p p · · · p .
i
k
α1 α2
1 2
j j
αk
k
j=1
'u SL(n) ù#¼ê5, ·8$, $
اþ©Ù5. !Ì8´0 A¡_ [26] ó, =
|^9|Ü{ïÄ·Üþ
X SL(n)
n≤x
(2-1)
SL(n)
ìC5, ¿y² e¡(Ø:
½n 2.1. é?¿¢ê x > 1, ·kìCúªµ
X SL(n)
n≤x
x
=
+O
SL(n)
ln x
x(ln ln x)2
ln2 x
.
w,ù½n¥Ø ´~f, ǑÒ´`Ø Ì=
(lnlnlnxx) Ïf, ´Ä3 (2-1) ªrìCúªǑ´
k¯K, ïÆk,Öö?ÚïÄ.
y²: ±e·Ñ½n 2.1 y². ¯¢þ·ò¤ku½
u x ê n ©Ǒ±en«¹?Ø: A = {n : ω(n) = 1, n ≤ x};
B = {n : ω(n) = 2, n ≤ x}; C = {n : ω(n) ≥ 3, n ≤ x}, Ù¥ ω(n) L
2
19
'uSmarandache¯KïÄ#?
« n ¤kØÓÏfê. y3·©OO¼ê SL(n)
3ùn
SL(n)
8Üþþ. 5¿ê½n
[27]
π(x) =
X
p≤x
·k
X SL(n)
=
SL(n)
n∈A
=
x
+O
1=
ln x
x
,
ln2 x
X SL(pα ) X SL(p) X SL(pα )
=
+
SL(pα )
SL(p)
SL(pα )
α
α
p ≤x
X
p≤x
1+
p≤x
X
1=
pα ≤x
α≥2
x
+O
=
ln x
x
ln2 x
p ≤x
α≥2
x
+O
ln x
x
ln2 x
X
+O
X
1
1
2≤α≤ln x p≤x α
.
(2-2)
y3·OÌØ . n ∈ B , ·k n = p q , Ù¥ p 9 q
ǑØÓê. Ø p < q , 5¿ìCúª (ë©z [8])
α β
α
X1
p≤x
·k
X SL(n)
SL(n)
=
n∈B
p
β
= ln ln x + C1 + O
X
p
+
qβ
√
α
X
pα
qβ
p ≤ x pα <q β ≤ pxα
X
X
p ≤ x pα <q β ≤ pxα
α≥2
X
X X p
X 1
p 2 ln x + O
pα ln ln x
+O
q
√
√
√
x
α
X
√
√
x
<p≤ x
ln x
20
,
pα
qβ
p≤ x p<q≤ p
=
X
√
p≤ x p<q β ≤ xp
=
1
ln x
X SL(pα )
X
=
SL(q β )
√
α β
α
p q ≤x
pα <q β
=
p≤ x
p ≤ x
α≥2
X Xp
X p
x
+
+O
ln2 x
√
x q
x q
x
p<q≤ p
p≤ ln x q≤ p
1Ù 'u Smarandache LCM ¼ê ¯K
=
X
x ln ln x
1
x
+O
p ln ln − ln ln p + O
p
ln x
ln2 x
X
ln x − ln p
p ln
+O
ln p
√
√
x
<p≤ x
ln x
=
√
√
x
<p≤ x
ln x
x ln ln x
ln2 x
ln x − 21 ln x + ln ln x x ln ln x
≪
+
p ln
1
ln2 x
√
√
2 ln x − ln ln x
x
<p≤
x
ln x
X
x ln ln x
4 ln ln x
+
≪
p ln 1 +
ln x − 2 ln ln x
ln2 x
√
√
x
X
ln x
<p≤ x
X
≪
√
√
x
<p≤ x
ln x
x ln ln x
p ln ln x
x ln ln x
+
≪
.
2
ln x − 2 ln ln x
ln x
ln2 x
(2-3)
n ∈ C , ·± ω(n) = 3 Ǒ~y². Ø n = p p p
p < p < p . u´dþªO{·k
β
2
α
1
X
β γ
pα
1 p2 p3 ≤x
α β γ
1 2 3
γ
3
SL(pα1 )
SL(pγ3 )
X
=
1
3
pα
1 ≤x
β
γ
pα
1 <p2 <p3
X
pα1
pβ2 pγ3 ≤ pxα
1
pβ2 <pγ3
X
p1
= O
1
p1 ≤x 3
≪
1
pγ3
X
√
X
x
p1 <p2 ≤ √px p2 <p3 ≤ p1 p2
1
X √xp1
x ln ln x
ln ln x ≪
.
ln x
ln2 x
1
1
p3
(2-4)
p1 ≤x 3
5¿ê n ¤kØÓÏfê ω(n) ≪ ln ln n, u´EA
^ (2-4) ª·ØJíÑOª
X SL(n)
SL(n)
=
X
n≤x
3≤ω(n)≤ln ln x
n∈C
≪
x(ln ln x)2
.
ln2 x
SL(n)
=
SL(n)
X
3≤k≤ln ln x
X SL(n)
SL(n)
n≤x
ω(n)=k
(2-5)
21
'uSmarandache¯KïÄ#?
y3(Ü (2-2)!(2-3) 9 (2-5) ª·íÑOª
X SL(n)
x
=
+O
SL(n)
ln x
n≤x
u´¤ ½n 2.1 y².
2.3
Smarandache LCM
Ïfþ
x(ln ln x)2
ln2 x
.
¼êéó¼ê
þ!·?Ø Smarandache LCM ¼êÙéó¼ê'Ç'X,
¼ fþúª. !UY?Ø Smarandache LCM ¼ê
éó¼êÙ§5, ǑÒ´|^9)Û{ïÄþ
X
n≤x
2
SL(n) − p(n)
(2-6)
ìC5§Ù¥ p(n) L« n Ïf. ~X p(20) = 2, p(21) = 3.
'u (2-6) ªþ5, 8qvk<ïÄ, ·vk3yk
©z¥w. , , ù¯K´k¿Â, ÏǑ (2-6) ªìC5N
ùü¼ê©Ù5Æ5. !éù¯K?1 ïÄ, ¿Ñ
kþúª. äN/`ǑÒ´y² e¡(Ø:
½n 2.2. k Ǒ½ê. oé?¿¢ê x > 1, ·k
ìCúª:
[28]
X
n≤x
k
2 X
ci · x 2
SL(n) − p(n) =
+O
i
ln
x
i=1
5
5
x2
lnk+1 x
!
,
Ù¥ c (i = 1, 2, · · · , k) ´O~ê c = 54 .
w,½n
2.2 ¥Ø ´~f, ǑÒ´`Ø Ì=
1
ln x Ïf, ´Ä3 (2-6) ªrìCúªǑ´k
¯K. ïÆk,Öö?ÚïÄ.
i
22
1
1Ù 'u Smarandache LCM ¼ê ¯K
y²: e¡·(Ü9)Û{ѽn 2.2 y².
¯¢þ·ò¤ku½u x ê n ©Ǒ±eü8Ü?Ø:
A = {n : ω(n) = 1, n ≤ x}; B = {n : ω(n) ≥ 2, n ≤ x}, Ù¥ ω(n) L
« n ¤kØÓÏfê. y3·©OO¼ê SL(n) − p(n)
3ùü8Üþþ. 5¿é?¿ê k, d©z [27] ¥½n 3.2
2
π(x) =
X
1=
p≤x
Ù¥ a ǑO~ê
z [8] ¥½n 4.2)
p4
=
√
p≤ x
=
=
i
ln x
i=1
a1 = 1.
i
X
k
X
ai · x
√
x2 · π x − 3
+O
Z
√
x
x
,
2
y 3 · π(y)dy
√ !
√
k
X
x
x
a
·
i
+O
x2
i√
k+1
ln x
ln
x
i=1
!
Z √x
k
X
a
·
y
y
i
dy
−3
+O
y3 ·
i
k+1
ln
y
ln
y
2
i=1
!
5
5
k
X ci · x 2
x2
+O
,
(2-7)
lni x
lnk+1 x
i=1
4
c1 = .
5
i
n∈A
ln
u´A^ Abel Úúª (ë©
Ù¥ c (i = 1, 2, · · · , k) ǑO~ê
u´A^ (2-7) ª·k
X
x
k+1
2
SL(n) − p(n)
=
=
X
pα ≤x
X
p≤x
=
2
SL(pα ) − p
(p − p)2 +
X
X
pα ≤x
α≥2
(p2 − p)2 +
√
p≤ x
=
X
√
p≤ x
p4 + O
(pα − p)2
X
pα ≤x
α≥3
X
√
p≤ x
(pα − p)2
X 6
p3 + O
p
1
p≤x 3
23
'uSmarandache¯KïÄ#?
=
5
k
X
ci · x 2
5
+O
lni x
i=1
x2
lnk+1 x
!
.
(2-8)
y3·OÌØ . n ∈ B , du ω(n) ≥ 2, ·Ø
SL(n) = q , n = q n , Ù¥ SL(n
) > q . XJ α = 1, o SL(n) −
p(n) = 0. u´ SL(n) − p(n) 6= 0 k α ≥ 2 kت q <
√
n < n , l A^ Abel Ú·ØJ:
α
α
1
α
1
2
α
1
X
n∈B
2
SL(n) − p(n)
=
≪
X
√
qα ≤ x
X
√
(q α − p(qn1 ))2
n1 ≤ qxα
SL(n1 )>q α
X
n1 ≤ xq
q≤ x
≪ x
X
(q − q)2 +
SL(n1 )>q
X
1
q≤x 4
X X
q6
x
1
q≤x 4 n1 ≤ q 2
5
4
9
4
q ≪x ≪
x2
lnk+1 x
.
(2-9)
y3(Ü (2-8) 9 (2-9) ª·áǑíÑìCúª
X
n≤x
X
2
2 X
2
SL(n) − p(n)
=
SL(n) − p(n) +
SL(n) − p(n)
n∈A
=
n∈B
k
X
ci · x
i=1
5
2
lni x
+O
Ù¥ c (i = 1, 2, · · · , k) ǑO~ê
².
i
2.4
x
5
2
lnk+1 x
!
4
c1 = .
5
,
u´¤(Øy
¹ Smarandache LCM ¼êéó¼
ê§
ü!·ÌïÄ Smarandache LCM ¼êéó¼
ê SL(n) k'þ5, ù!·?ع SL(n) §,
?Ú&¢ Smarandache LCM ¼êéó¼êê5.
24
1Ù 'u Smarandache LCM ¼ê ¯K
ïÄuy¼ê SL(n) ¼ê SL(n) kNõq5, ~X, n
Ǒê, SL(n) = SL(n). éu SL(n)
¼ê9î.¼ê ϕ(n), ²
P
u·uy3 õê n SL(d) > ϕ(n). ¯¢þ, ´
íÑ n = p Ǒê, ·k
d|n
α
X
SL(d) =
X
d|pα
d|n
SL(d) = 1 + p + · · · + pα > pα − pα−1 = ϕ(n),
Óq3 õê n, P SL(d) < ϕ(n). ~X, n Ǒü
ØÓÛêÈ, = n = p · q, e 5 ≤ p < q Ǒê, o
d|n
X
SL(d) =
X
d|p·q
d|n
SL(d) = 1 + 2p + q < (p − 1) · (q − 1) = ϕ(n).
u´·g,, éu= ê n ¬k§
X
SL(d) = ϕ(n).
(2-10)
d|n
¤á, Ù¥ X L«é n ¤kÏêÚ, ϕ(n) Ǒî.¼ê.
d|n
!Ì8Ò´0 I [29] ¤J, =|^{ïÄ
§ (2-10) )5, ¿¼ T§¤kê). äN/`Ò´
y² e¡:
½n 2.3. § X SL(d) = ϕ(n) k =kÊê) n =
d|n
1, 75, 88, 102, 132.
Ǒ ¤½ny², ÄkIü{üÚn.
Ún 2.4.1. ت ϕ(n) < 4d(m) ¤á = m = 1, 2, 3, 4,
5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 28, 30, 32, 36, 40, 42, 48, 56, 60, 72,
80, 84, 96, 120, 144, 168, 288. ùp d(m) Ǒ Dirichlet Øê¼ê.
y²: - m = p p · · · p L« m IO©)ª. ·©±eA
«¹5?1?Ø:
α1 α2
1 2
αk
k
25
'uSmarandache¯KïÄ#?
i) XJ©)ª¥3Ïf 2
α ≥ 6, Kk
α
αi
1
k
k
ϕ(m) Y pi (1 − pi ) Y piαi −1 (pi − 1)
2α−1
=
=
≥
> 4,
d(m)
α
+
1
α
+
1
α
+
1
i
i
i=1
i=1
= ϕ(m) ≥ 4d(m).
ii) XJ©)ª¥3Ïf 3
α
α ≥ 3,
Kk
ϕ(m)
3α−1 · 2
≥
> 4,
d(m)
α+1
= ϕ(m) ≥ 4d(m).
iii) XJ©)ª¥3Ïf 5
α
α ≥ 2,
Kk
ϕ(m)
5α−1 · 4
≥
> 4,
d(m)
α+1
= ϕ(m) ≥ 4d(m).
iv) XJ©)ª¥3Ïf 7
α
α ≥ 2,
Kk
7α−1 · 6
ϕ(m)
≥
> 4,
d(m)
α+1
= ϕ(m) ≥ 4d(m).
v) XJ©)ª¥3Ïf p
α
p ≥ 11,
Kk
ϕ(m)
pα−1 · (p − 1)
≥
> 4,
d(m)
α+1
= ϕ(m) ≥ 4d(m).
Ïd·I3 m = 2 · 3 · 5 · 7 (0 ≤ α ≤ 5, 0 ≤
β ≤ 2, γ = δ = 0 ½ 1) ¥Ïé÷v^ ϕ(m) < 4d(m)
ê m =, ²Ly, ѱe 35 ÷v^ m : m =
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 28, 30, 32, 36, 40, 42, 48,
56, 60,72, 80, 84, 96, 120, 144, 168, 288. u´¤ Ún 2.4.1 y².
Ún 2.4.2. m عkÏf 2 , ت ϕ(m) < 6d(m) ¤á
= m = 1, 3, 5, 7, 9, 11, 15, 21, 27, 33, 35, 45, 63, 105.
y²: - m = p p · · · p L« m IO©)Ϫ, Ù¥ p ≥
3 (i = 1, 2, · · · , k). ·©±eA«¹5?1?Ø:
α
α1 α2
1 2
26
αk
k
β
γ
δ
i
1Ù 'u Smarandache LCM ¼ê ¯K
i) XJ©)ª¥3Ïf 3
α ≥ 4, Kk
α
ϕ(m)
3α−1 · 2
≥
> 6,
d(m)
α+1
= ϕ(m) ≥ 6d(m).
ii) XJ©)ª¥3Ïf 5
α
α ≥ 2,
Kk
ϕ(m)
5α−1 · 4
≥
> 6,
d(m)
α+1
= ϕ(m) ≥ 6d(m).
iii) XJ©)ª¥3Ïf 7
α
α ≥ 2,
Kk
ϕ(m)
7α−1 · 6
≥
> 6,
d(m)
α+1
= ϕ(m) ≥ 6d(m).
iv) XJ©)ª¥3Ïf 11
α
α ≥ 2,
Kk
ϕ(m)
11α−1 · (p − 1)
≥
> 6,
d(m)
α+1
= ϕ(m) ≥ 6d(m).
v) XJ©)ª¥3Ïf p
α
p ≥ 13,
Kk
pα−1 · (p − 1)
ϕ(m)
≥
≥ 6,
d(m)
α+1
= ϕ(m) ≥ 6d(m).
Ïd·I3 m = 2 · 3 · 5 · 7 (0 ≤ α ≤ 5, 0 ≤
β ≤ 2, γ = δ = 0 ½ 1) ¥Ïé÷v^ ϕ(m) < 6d(m)
ê m =, ²Ly, ѱe 14 ÷v^ m : m =
1, 3, 5, 7, 9, 11, 15, 21, 27, 33, 35, 45, 63, 105.
u´¤ Ún 2.4.2 y².
½ny²: y3·|^ùüÚn5ѽny². N´
y n = 1 ´§). n > 1 n = p p · · · p ´ n IO©)
ª, ÏǑ n = p Ø÷v§, ¤± n ÷v§k k ≥ 2. y3
α
β
γ
α1 α2
1 2
δ
αk
k
α
SL(n) = max{pα1 1 , pα2 2 , · · · , pαk k } = pα .
27
'uSmarandache¯KïÄ#?
ǑBå n = mp ÷v§, dAk:
α
X
SL(d) =
α X
X
i
SL(dp ) =
i=0 d|m
d|n
X
SL(d) +
SL(dpi )
i=1 d|m
d|m
= pα−1 (p − 1)ϕ(m).
α X
X
ÏǑ d | m , SL(dp ) ≤ p , ¤±
i
pα−1 (p − 1)ϕ(m) ≤
=
X
i
SL(d) +
i=1 d|m
α
d|m
X
α X
X
SL(d) +
d|m
þªü>Óر p
α−1
ϕ(m) ≤
≤
X
d|m
(p − 1),
pi =
X
d|m
SL(d) + d(m) ·
p(p − 1)
d(m).
p−1
α
X
pi
i=1
¿5¿ d | m SL(d) ≤ p , ¤±k
i
p(pα − 1)
SL(d)
+
d(m)
pα−1 (p − 1) pα−1 (p − 1)2
p
p 2
p(p − 1) + p2
· d(m) + (
) · d(m) =
· d(m).
p−1
p−1
(p − 1)2
p > 2 , þªCǑ ϕ(m) < 4ϕ(m), p = 2 , þªCǑ ϕ(m) ≤
6d(m). =e n = mp ÷v§, p > 2 , Ak ϕ(m) < 4d(m), Ǒ
Ò´ ϕ(m) ≥ 4d(m) , n = mp Ø´§); ½ p = 2 , A
k ϕ(m) ≤ 6d(m), ǑÒ´ ϕ(m) > 6d(m) , n = m · 2 Ø´§
).
dÚn 2.4.1 , ϕ(m) < 4d(m) = m = 1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 28, 30, 32, 36, 40, 42, 48, 56,60, 72, 80,
84, 96, 120, 144, 168, 288. dÚn 2.4.2 , p = 2 , ϕ(m) ≤ 6d(m)
= m = 1, 3, 5, 7, 9, 11, 15, 21, 27, 33, 35, 45, 63, 105. e¡I?Ø
3þãÞ m ¥, n = mp ÷v§=.
1) m = 1 , n = p , ùp p ´?¿ê.
α
α
α
α
α
X
d|pα
SL(d) = 1 + p + p2 + · · · + pα > pα − pα−1 = ϕ(pα ),
= n = p Ø´§ (2-10) ).
α
28
1Ù 'u Smarandache LCM ¼ê ¯K
2) m = 2 , n = 2p , ùp p ≥ 3.
α
X
SL(d) =
d|2pα
SL(d) +
d|pα
d|2pα
X
X
X
SL(2d) =
d|pα
X
SL(d) + 2(α + 1)
d|pα
= 1 + p + p2 + · · · + pα + 2(α + 1),
SL(d) > ϕ(2pα ) = ϕ(2)ϕ(pα ) = pα − pα−1 .
¤± n = 2p (p ≥ 3) Ø´§ (2-10) ).
3) m = 3 , n = 3p , ùp p 6= 3, e p = 2,
α
α
X
SL(d) =
X
SL(d) +
d|2α
d|3·2α
é α ^êÆ8B{y 2
X
d|3·2α
X
SL(3d) = 2α+1 + 3α + 1.
d|2α
α+1
+ 3α + 1 > 3 · 2α−1 ,
=
SL(d) > ϕ(3 · 2α ).
e p = 5, α = 1 , n = 15 Ø´§ (2-10) ); α = 2 ,
n = 75 ÷v§ (2-10), Ï ´§ (2-10) ); α ≥ 3 ^êÆ8B
{y
X
d|3·5α
SL(d) = 1 + 5 + 52 + · · · + 5α + 3(α + 1) < 2(5α − 5α−1 ) = ϕ(3 · 5α ).
d n = 3 · 5 Ø´§ (2-10) ).
e p ≥ 5 , Óþy n = 3 · p Ø´§ (2-10) ).
4) m = 4 , n = 4p , K p ≥ 3, © p = 3, p = 5, p = 7, p =
11, p = 13 9 p > 13 8«¹^þ¡{?Ø n = 4p ÑØ´
§ (2-10) ).
5) m = 5 , © p = 2, p = 3, p > 5 ?Ø n = 5p ÑØ´
§ (2-10) ).
6) m = 6 , n = 6p , K p ≥ 5. ²Ly p = 17, α = 1
, n = 102 ´§ (2-10) ), Ù¹ÑØ´§ (2-10) ).
7) m = 7, 8, 9, 10 , Óþy n = m · p ÑØ´§ (2-10)
).
8) m = 11 , dÚn 2.4.2 , p = 2, d n = 11 · 2 , N´
y α = 3 n = 88 ´§ (2-10) ), é α Ù n ÑØ´
§ (2-10) ).
α
α
α
α
α
α
α
α
29
'uSmarandache¯KïÄ#?
9) m = 12 , K n = 12·p , d p ≥ 5. N´y p = 11, α = 1
, n = 132 ´§ (2-10) ), é p 9 α Ù n ÑØ´
§ (2-10) ).
10) m = 27, 33, 35, 45, 63, 105 , p = 2, ±yù n =
m · 2 ÑØ´§ (2-10) ).
11) m = 14, 15, 16, 18, 20, 21, 24, 28, 30, 32, 36, 40, 42, 48, 56, 60, 72,
80, 84, 96, 120, 144, 168, 288, Óþ±yù n = m · p ÑØ´
§ (2-10) ).
nþ¤ã, § P SL(d) = ϕ(n) k =kÊê) n =
1, 75, 88, 102, 132. ùÒ¤ ½ny².
α
α
α
d|n
2.5
Smarandache
ê·Üþ
¼ê Smarandache LCM ¼
'u Smarandache ¼ê9 Smarandache LCM ¼ê 5, 3
¡®² ØïÄ. , , k'ùü¼ê'ǯKlk<J
. ǑÒ´þ
X S(n)
SL(n)
(2-11)
n≤x
ìC5. ù¯K´k¿Â, ÏǑ (2-11) ªìC5N ùü
¼ê©Ù5Æ5, XJìCúª
X S(n)
∼x
SL(n)
n≤x
¤á, o·Ò±ä½¼ê S(n) SL(n) A??. !
ò0 ²^ [30] (J, ǑÒ´éù¯K?1 ïÄ, ¿y²
§(5. äN/`ǑÒ´y² e¡ü(Ø:
½n 2.4. é?¿¢ê x > 1, ·kìCúª:
X S(n)
x ln ln x
.
=x+O
SL(n)
ln
x
n≤x
30
1Ù 'u Smarandache LCM ¼ê ¯K
½n 2.5. é?¿¢ê x > 1, ·kìCúª:
X P (n)
x ln ln x
,
=x+O
SL(n)
ln x
n≤x
Ù¥ P (n) L« n Ïf.
,ùü½n¥Ø Ǒ´~f, ´Ä3rì
CúªǑ´k¯K.
y²: ±e·òѽny². ·y²½n 2.4, aq
, ·Ǒ±íѽn 2.5. ¯¢þ²L{üC/·áǑ:
X S(n)
X S(n) − SL(n) X
=
+
1
SL(n)
SL(n)
n≤x
n≤x
= x+O
n≤x
X |SL(n) − S(n)|
SL(n)
n≤x
!
.
(2-12)
y3·|^¼ê S(n) 9 SL(n) 5±9|Ü{5O (212) ª¥Ø . d SL(n) 5 n IO©)ªǑ p p · · · p
k:
α1 α2
1 2
αk
k
SL(n) = max{pα1 1 , pα2 2 , · · · , pαk k }.
e SL(n) Ǒê p, o S(n) ǑǑê p. Ïd, 3ù«¹e
k SL(n) − S(n) = 0. ¤±3 (2-12) ªØ ¥, ¤k"7
Ñy3 SL(n) Øuêê n ¥. ǑÒ´`µ
SL(n) = max{pα1 1 , pα2 2 , · · · , pαk k } ≡ pα , α ≥ 2.
A Ǒ«m [1, x] ¥¤k÷vþª^ n 8Ü, é?¿ n ∈ A,
n = p p · · · p = p · n , Ù¥ (p, n ) = 1. y3·©ü«¹?
Ø: A = B + C, Ù¥ n ∈ B XJ SL(n) = p ≥ 9(lnlnlnxx) ; n ∈ C X
J SL(n) = p < 9(lnlnlnxx) . u´·k
α1 α2
1 2
αk
k
α
1
1
2
α
2
2
α
2
X |SL(n) − S(n)|
n≤x
SL(n)
=
X |SL(n) − S(n)| X |SL(n) − S(n)|
+
SL(n)
SL(n)
n∈B
n∈C
31
'uSmarandache¯KïÄ#?
≤
X
X
1+
X
1
n∈C
x
9x(ln ln x)2
ln2 x
≤pα ≤ n
n≤ ln2 x
9(ln ln x)2
α≥2
≡ R1 + R2 .
y3·©OO (2-13) ª¥. ÄkO R . 5¿ p
k α ≤ 4 ln ln x. u´dê½n·k
α
1
X X
R1 ≤
x
n≤ lnx4 x pα ≤ n
α≥2
X
≪
n≤ lnx4 x
X
≪
n≤ lnx4 x
p≤
X
√ x α≤ln x
n
1
X
1+
X
ln x)2
x
≤n≤ 9x(ln
ln4 x
ln2 x
X
X
ln x)2
x
≤n≤ 9x(ln
ln4 x
ln2 x
x ln x
+
n ln ln x
≤ ln4 x
x
pα ≤ n
α≥2
ln x)2
x
≤n≤ 9x(ln
ln4 x
ln2 x
X
r
X
X
1+
(2-13)
p≤
r
√ x α≤4 ln ln x
n
1
x
x ln ln x
≪
. (2-14)
n
ln x
y3·O R , 5¿8Ü C ¥¹êجL
ê p p · · · p ê, Ù¥ α ≤ 2 ln ln x, p ≤ 3 lnlnlnx x , i = 1, 2, · · · .
u´5¿ê©Ùúª
2
αk
k
α1 α2
1 2
·k
X
i
y
ln y
ln p = y + O
p≤y
R2 =
X
n∈C
≪
1≤
Y
ln x
p≤ 3 ln
ln x
Y
ln x
p≤ 3 ln
ln x
i
− ln 1 −
X
−1
X
ln x
p≤ 3 ln
ln x
α
p
0≤α≤2 ln ln x
1
1−
ln p
3
≪ exp ln x +
4
,
1
ln p
≤
exp 2 ln ln x
∼
1
,
ln p
Y
ln x
p≤ 3 ln
ln x
X
ln x
p≤ 3 ln
ln x
1
x
≪
,
ln p
ln x
p2 ln ln x
1 − ln1p
ln p
(2-15)
Ù¥ exp(y) = e .
(Ü (2-13)!(2-14) 9 (2-15) ª·íÑOª
y
X |SL(n) − S(n)|
n≤x
32
SL(n)
≪
x ln ln x
.
ln x
(2-16)
1Ù 'u Smarandache LCM ¼ê ¯K
|^ (2-12) 9 (2-16) ªáǑíÑìCúª:
X S(n)
x ln ln x
.
=x+O
SL(n)
ln
x
n≤x
u´¤ ½n 2.4 y².
5¿ SL(n) = p Ǒê, S(n) = P (n) = p; SL(n) ØǑ
ê, P (n) ≤ S(n) ≤ SL(n), u´dy²½n 2.4 {áǑíѽ
n 2.5.
2.6
¹ Smarandache ¼ê Smarandache
LCM ¼ê§
LCM
þ!·0 Smarandache ¼ê S(n) 9 Smarandache
X S(n)
¼ê SL(n) ùü¼ê'ǯK, ǑÒ´þ SL(n) ìC
5, l(J±ä½¼ê S(n) SL(n) A??. S(n)
SL(n) Ø kù5 , ¬koéXQ? !ò0
I [31] ïĤJ, äN`Ò´|^9|Ü{ïħ
n≤x
X
d|n
S(d) =
X
SL(d)
(2-17)
d|n
)5, ¿¼§¤kê). =y² e¡½n:
½n 2.6. ª (2-17) k ¡õ ê), = n = 1,
2 p p · · · p , Ù¥ k ´?¿ê, α = 0, 1 ½ö 2,
p , p , · · · , p ´ØÓê ÷v 2 < p < p < · · · < p .
A L«÷v§ (2-17) ¤kê n 8Ü, o±
e¡½n.
½n 2.7. éu?¿Eê s Re(s) > 1, k
αk
k
α α1 α2
1 2
1
2
k
1
2
k
X 1
ζ(s) 4s + 2s + 1
=
,
ns
ζ(2s) 4s + 2s
n∈A
33
'uSmarandache¯KïÄ#?
Ù¥ ζ(s) ´ Riemann zeta- ¼ê.
½n 2.8. éu?¿¢ê x ≥ 1, kìCúª
X
1=
n≤x
n∈A
√
7
x
+
O(
x).
π2
5¿
Ú
u´d½n 2.7 ±Ñ
e¡íØ
íØ 2.6.1. 3½n 2.7 ¥, - s = 2, 4, Kkðª
X 1
X 1
63
28665
=
=
.
9
n
4π
n
272π
π4
π2
ζ(2) = , ζ(4) =
6
90
.
2
π8
,
ζ(8) =
9450
2
4
n∈A
4
n∈A
½ny²: ±e·5¤½ny². Äk, y²½n 2.6. ¯
¢þ, d¼ê S(n) Ú SL(n) ½Â, n = 1 ´§ (2-17)
). n IO©)ªǑ n = p p · · · p , d S(n) Ú SL(n) ½ÂÚ
5± S(n) = max{S(p ), S(p ), · · · , S(p )} = S(p ) ≤ α p ,
SL(n) = max{p , p , · · · , p } = p , w, p ≥ p ≥ α p . ¤±, é
?¿ê n > 1, - n = 2 p p · · · p (2 < p < · · · < p ), ±ò n
©¤n«¹?1?Ø:
1) é α = 0, 1, k
(a) XJ α = α = · · · = α = 1, = n = p p · · · p ½ö n =
2p p · · · p , éu n ?¿Ïf d, k S(d) = SL(d), §´§ (217) ).
(b) XJk α (i ≥ 2), k S(p ) ≤ α p , SL(p ) = p ,
§Ø÷v§ (2-17).
2) é α = 2, α = α = · · · = α = 1, k
(c) XJ p = 3, = n = 4 × 3n (12 ∤ n ), Kk
α1 α2
1 2
α1
1
α1
1
1
1 2
αj
αk
j
k
α α1 α2
1 2
α2
2
2
α2
2
1
i i
i i
k
k
1 2
αi
i
2
S(d) =
1
X
S(d) +
d|n1
+
X
d|n1
X
S(2d) +
1
X
d|n1
d|n1
S(6d) +
i i
k
1
34
αi
i
αi
i
k
k
1
d|n
αk
k
αj
j
αk
k
i
X
αk
k
X
d|n1
S(12d)
S(4d) +
X
d|n1
S(3d)
αi
i
αi
i
1Ù 'u Smarandache LCM ¼ê ¯K
X
=
d|n1
S(d) + (2 − 1 +
(3 − 1 +
= 11 + 6
X
d|n1
X
X
d|n1
S(d)) + (4 − 1 +
S(d)) + (3 − 1 +
X
d|n1
X
S(d)) +
d|n1
S(d)) + (4 − 1 +
X
S(d))
d|n1
S(d),
d|n1
Ók SL(d) = 11 + 6 X SL(d). Ä X S(d) = X SL(d), §
´§ (2-17) ).
X
(d) XJ p > 3, = n = 4 × n (4 ∤ n ), ±
S(d) =
X
X
X
S(d) Ú
SL(d), §´§ (2-17)
SL(d) = 4 + 3
4+3
).
3) XJ α ≥ 3, ±3gê α ≥ 2, S(2 ) ≤ 2α,
SL(2 ) = 2 > 2α, u´§Ø´§ (2-17) ).
(ܱþA«?ع, ±§ (2-17) 3 êõ
ê), §´ n = 1, 2 p p · · · p ( α = 0, 1 ½ 2 ), Ù¥ 2 < p < · · · <
p L«ØÓê, d·¤ ½n 2.6 y².
y3·5y²½n 2.7. lî.Èúª (©z [8] ½n 11.7)
Ú$'¿d¼ê5±9 Riemann zeta- ¼ê½Â, ·±
X
d|n
d|n1
d|n1
d|n1
1
1
1
d|n
d|n1
d|n
d|n1
α
α
α
α
1 2
k
1
k
X 1
ns
n∈A
Y
1
1+ s
∞
∞
p
X
|µ(n)|
1 X |µ(n)| Y
1
1 p
=
+
=
1
+
+
ns
4s n=1 ns
ps
4s
1 + 21s
p
n=1
2†n
=
1+
Y
1
1
ζ(s) 4s + 2s + 1
1
+
=
.
4s + 2s p
ps
ζ(2s) 4s + 2s
ùÒ¤ ½n 2.7 y².
y3y²½n 2.8. l$'¿d¼ê5±:
X
n≤x
n∈A
1 =
X
n≤x
|µ(n)| +
X
n≤ x4
2†n
|µ(n)| =
XX
n≤x d2 |n
µ(d) +
XX
n≤ x4
2†n
µ(d)
d2 |n
35
'uSmarandache¯KïÄ#?
X
=
µ(d) +
=
=
µ(d)
1≤l≤ dx2
X
x
= x
µ(d)
X
X
µ(d)
d2 ≤ x4 1≤l≤ 4dx2
2†d
2†l
1
1≤l≤ 4dx2
d2 ≤ x4
2†d
2†l
d ≤4
2†d
d ≤x
X µ(n)
n2
6
= 2 +O
π
n∈A
=
d ≤4
2†d
d≤ 2
2†d
X
8
1
1
µ(n)
,
= 2 +O √ ,
x
n2
π
x
√
x
6
+O
1 = x
π2
n≤x
X
d ≤4
2†d
X µ(d) x X µ(d)
√
+
+ O( x),
2
2
d
8 √x d
√
d≤ x
u´k
n≤ 2
2†n
√
x 8
1
1
√
+
+
O(
+
O
x)
x
8 π2
x
√
7
x + O( x).
2
π
ùÒ¤ ½n 2.8 y².
36
X
X
x
X
µ(d) 2 + O(1) +
µ(d)
+
O(1)
d
8d2
2 x
d ≤x
n≤x
µ(d) +
X
X µ(d)
X
X µ(d)
+
O(
|µ(d)|)
+
x
+
O(
|µ(d)|)
d2
8d2
2
2 x
2 x
2
= x
Ù¥
1+
X X
d2 ≤x 1≤l≤ dx2
2†d2 l
X
d2 ≤x
d2 ≤x
µ(d) =
d2 l≤ x4
d2 l≤x
X
X
1nÙ 'u Smarandache Ú¼ê ¯K
1nÙ 'u Smarandache Ú¼ê ¯
K
3.1
3.1.1
'u Smarandache Ú¼êþ
Úó9(Ø
é?¿ê n 9½ê k > 1, M. Bencze Q½Â ü
Smarandache Ú¼ê S(n, k) 9 AS(n, k) Xe:
S(n, k) =
9
X
(n − ik)
|n−ki|≤n
i=0, 1, 2, ···
AS(n, k) =
X
|n−ki|≤n
i=0, 1, 2, ···
|n − ik|.
~X, S(9, 4) = 9 + (9 − 4) + (9 − 8) + (9 − 12) + (9 − 16) = 5; S(11, 5) =
11 + (11 − 5) + (11 − 10) + (11 − 15) + (11 − 20) = 5; AS(9, 4) = 9 +
|9 − 4| + |9 − 8| + |9 − 12| + |9 − 16| = 25; AS(11, 5) = 11 + |11 − 5| +
|11 − 10| + |11 − 15| + |11 − 20| = 31.
M. Bencze
S(n, k)
AS(n, k)
,
[32]
[33].
,
,
.
,
,
n
k
.
,
{S(n, k)} ,
n
k
, S(n, k) = 0?
?
.
,
,
.
.
,
[8]
[9].
S(n, k)
AS(n, k)
,
.
:
Ó
ïÆ<ïÄ
¼ê
9
ê5 ë©z 9 'uù
¯K 8qvk<ïÄ ·vk3yk©z¥ ,
öǑùü¼ê´k¿Â ±NÑê 3
¥ ê Ú ÷v
êꥩÙ5 d 3ê
o^
UÄǑxÑùaêAÆ ù Ñ´k¿
ÂïÄSN C ëïÄ ù¯K ¼ ? !ò
0 ù #ó ©¥¤9pd¼ê5 ë©z
9 !Ì8´|^{±9pd¼ê5ïļ
9
þ5 Ñükþúª äN/`
ê
ǑÒ´y²e¡ü(Ø
37
½n 3.1.
ìCúª
'uSmarandache¯KïÄ#?
k > 1 Ǒ½ê, oé?¿¢ê x > 1, ·k
1
S(n, k) =
4
n≤x
X
3 + (−1)k
1−
2k
x2 + R(x, k),
Ù¥ |R(x, k)| ≤ 87 k + 5k8 x.
½n 3.2. k > 1 Ǒ½ê, oé?¿¢ê x > 1, ·k
ìCúª
2
7 + (−1)k
1 3 1
1+
x2 + R1 (x, k),
x +
AS(n, k) =
3k
4
2k
n≤x
X
Ù¥ |R (x, k)| ≤ 87 k + 87 kx + 6kx + x2 .
w,ùüìCúª´'o÷, |^Ǒ)ÛêØ{k
U°(ìCúª.
2
1
3.1.2
½n 3.1 9½n 3.2 y²
ù!·|^{±9pd¼ê5ѽny
². Äk·^pd¼êò¼ê S(n, k) ?1{z, L«¤{ü
/ª. 5¿ |n − ki| ≤ n = −n ≤ n − ki ≤ n ½ö 0 ≤ i ≤ ,
Ù¥ [x] Ǒpd¼ê, =Ò´ [x] L«Øu x ê. u´¼
ê S(n, k) L«Ǒ:
2n
k
S(n, k)
=
2n
[X
k ]
(n − ik) =
(n − ki)
X
|n−ki|≤n
i=0, 1, 2, ···
=
=
38
i=0
2n
k 2n
2n
n+n·
−
+1
k
2 k
k
2
!
2
2n
k 4n
2n
4n 2n
2n
2n
+
−
+
−
−
−n
k
2
k
k
k
k
k
k
1nÙ 'u Smarandache Ú¼ê ¯K
=
2n2
+n
+
k
2n
k
n
−
k
2
2n
k
2
−
2n
k
!
,
(3-1)
Ù¥ {x} = x − [x] L« x ©êÜ©, 0 ≤ {x} < 1.
y3é?¿ê x > 1, x = k + r, ùp 0 ≤ r < k. u´
é (3-1) ªÚ:
x
k
X
n≤k [
=
x
k
X
n≤k [
x
k
S(n, k)
]
n
]
[ ]
X
x
k
=
2n
k
X
=
2n
k
k
−
2
2n
k
(n + (i − 1)k)
i=1 1≤n≤k
=
k
−
2
n
i=1 (i−1)k<n≤ik
[ xk ] X
X
2
2n
k
−
2n
k
2n
k
!!
2
2n
k
2n
k
2
−
k
−
2
!!
−
2n
k
!!
[ xk ] X
X
2n k 4n2 2n
(n + (i − 1)k) −
−
k
2 k2
k
k
i=1
1≤n< 2
[ ] X
X
2n − k k (2n − k)2 2n − k
+
(n + (i − 1)k)
−
−
k
2
k2
k
i=1 k
x
k
2
<n<k
[ ] X
X
x
k
=
i=1 1≤n<k
=
[ xk ]
X
k(k − 1)
2
i=1
=
(n + (i − 1)k)
(2i − 1) −
k(k − 1) h x i2
2
k
2n k
−
k
2
2
4n
2n
−
2
k
k
−
[ kx ] X
X
i=1
k
≤n<k
2
(ik − n)
hxi X
X
k h x i h x i
1+
n
+1
2 k
k
k
k
k
2
≤n<k
2
≤n<k
hxi X
k hxi X
k h x i2 X
1−
1+
n. (3-2)
−
2 k k
2 k k
k k
2
≤n<k
2
≤n<k
2
≤n<k
39
'uSmarandache¯KïÄ#?
u´d (3-2) ª 2|k kðª:
X
S(n, k) =
n≤k [ kx ]
k 2 − 2k h x i2 k 2 − 2k h x i
+
.
4
k
8
k
(3-3)
k 2 − k h x i2 (k − 1)2 h x i
+
.
4
k
8
k
(3-4)
k ǑÛêkðª:
X
n≤k [
x
k
S(n, k) =
]
0 ≤ r ≤ k − 1 k
0≤
=
k[
X
1≤n≤r
=
X
1≤n≤r
2
5¿:
≤
(Üúª
x
k
X
S(n, k)
]<n≤k[ ]+r
h x i 2n
n+k
−
k
k
h x i 2n
+
n+k
k
k
x
k
!!
2n 2
2n
−
k
k
2 !
k k
1
2n
−
−
8 2
k
2
k
2
5k
k
+ x.
8
2
(3-5)
x2 2x n x o n x o2
,
+
−
k
k2
k k
k
(3-2), (3-3)
(3-5)
k
h x i2
9
X
S(n, k) =
n≤x
=
·áǑ ǑóêkìCúª:
X
n≤k [
=
1
4
x
k
S(n, k) +
]
k[
1−
2
k
x
k
X
S(n, k)
]<n≤k[ ]+r
x
k
x2 + R(x, k),
Ù¥ |R(x, k)| ≤ 87 k + 5k8 x.
(Üúª (3-2), (3-4) 9 (3-5) k ǑÛêkìCúª:
2
X
n≤x
40
S(n, k) =
X
n≤k [
x
k
S(n, k) +
]
k[
x
k
X
S(n, k)
]<n≤k[ ]+r
x
k
1nÙ 'u Smarandache Ú¼ê ¯K
1
=
4
1
1−
k
x2 + R(x, k),
Ù¥ |R(x, k)| ≤ 87 k + 5k8 x. u´y² ½n 3.1.
y3·y²½n 3.2. d ¡O S(n, k) y²{·k
2
AS(n, k)
X
=
|n−ki|≤n
i=0, 1, 2, ···
=
[ nk ]
X
i=0
=
=
|n − ik| =
|n − ki| +
[ 2n
k ]
X
2n
[X
k ]
i=0
|n − ki|
|n − ki|
]+1
h i
h
i
k n h n i
2n
n
n+n
−
+1 −n
−
+
k
2 k
k
k
k
k 2n
2n
k h n i h n i
+
+1 −
+1
2 k
k
2 k
k
n n o2
2n
n2
−k
+n−n
k
k
k
n n o k 2n 2 k 2n
+k
−
+
.
(3-6)
k
2 k
2 k
i=[
n
k
hni
¤±d½n 3.1 (Ø:
X
AS(n, k)
n≤x
=
=
!
n n o k 2n 2 k 2n
n n o2
2n
n2
+k
−
−k
+
+n−n
k
k
k
k
2 k
2 k
n≤x
!
2
X
X n2
2n
k 2n
k 2n
n
+
−
−
+n −
k
k
2
k
2
k
n≤x
n≤x
n n o
X n n o2
−
k
−k
.
k
k
n≤x
X
5¿Oªµ
0 ≤ −k
n n o2
k
+k
nno
k
≤
k
,
4
41
'uSmarandache¯KïÄ#?
u´é?¿ê x, k > 1 ǑêkìCúªµ
7 + (−1)k
1 3 1
1+
x2 + R1 (x, k),
x +
AS(n, k) =
3k
4
2k
n≤x
X
Ù¥ |R (x, k)| ≤ 87 k
1
3.2
3.2.1
2
7
x
x
+ kx +
+ .
8
6k 2
u´¤ ½n 3.2 y².
a ¹ Smarandache Ú ¼ ê
Dirichlet ?ê
Dirichlet
S(n, k)
?êÌ(Ø
!Ì8´|^{±9¼ê5ïļ
ê S(n, k) â5±9a¹ S(n, k) Dirichlet ?êO
¯K. ¤¢ Dirichlet ?êÒ´/X X an , Ù¥ a ǑEê, s ǑEC
þ. ù?ê3)ÛêØïÄ¥Ók©/ , NõͶêØ
JKXxnâß!ê©Ù!iùbÑ', Ïdk
' Dirichlet ?ê5ïÄäknØ¿Â9Æâµ. !X
0 ï² [34] (J, ǑÒ´é, AÏê k > 1, Ñ?
ê X S(n,n k) äNOúª. äN/`ǑÒ´y²e¡A(
Ø:
½n 3.3. é?¿Eê s Re(s) > 2, ·kðª
∞
n
s
n
n=1
∞
s
n=1
∞
X
S(n, 4)
n=1
ns
1
1
1
1
1 − s−1 ζ(s − 1) +
1 − s ζ(s),
=
2
2
2
2
Ù¥ ζ(s) Ǒ Riemann zeta- ¼ê.
½n 3.4. é?¿Eê s Re(s) > 3, ·kðª
∞
X
S(n2 , 8)
n=1
42
ns
1
=
4
1
1
3
1 − s−2 ζ(s − 2) +
1 − s ζ(s).
2
4
2
1nÙ 'u Smarandache Ú¼ê ¯K
AO s = 4 , 5¿ ζ(2) = π6 , ζ(4) = π90 , ·kðª
4
2
∞
X
S(n2 , 8)
n4
n=1
=
π 2 5π 4
+
.
32 604
½n 3.5. é?¿Eê s
·kðª
Re(s) > 3,
∞
X
1
1
7
1
1
S(n2 , 16)
= 1 + s−1
1 − s−2 ζ(s−2)+
+ s−1
1 − s ζ(s).
s
n
2
2
8
2
2
n=1
AO s = 4 ·kðª
∞
X
S(n2 , 14)
n4
n=1
=
9π 2 17π 4
+
.
64
1440
½n 3.6. é?¿Eê s
·kðª
Re(s) > 3,
∞
X
S(n2 , 6)
1
1
1
2
1 − s−2 ζ(s − 2) +
1 − s ζ(s).
=
s
n
3
3
3
3
n=1
AO s = 4 ·kðª
∞
X
S(n2 , 6)
n4
n=1
=
4π 2 16π 4
+
.
81
2187
½n 3.7. p > 2 Ǒê, Ké?¿Eê s
ðª
Re(s) > p,
·k
∞
X
S np−1 , p
1
1
2
2
1 − s−p+1 ζ(s − p + 1) + 1 −
1 − s ζ(s).
=
ns
p
p
p
p
n=1
3.2.2
A½ny²
ù!·|^{±9pd¼ê5Ñù ½n
y². Äk·^pd¼êò¼ê S(n, k) ?1{z, 5¿ (3-1)
ªµ
S(n, k) = n
2n
k
k k
+ −
8 2
2n
k
1
−
2
2
.
(3-7)
43
'uSmarandache¯KïÄ#?
Ù¥ {x} = x −[x] L« x ©êÜ©, 0 ≤ {x} < 1.
ÏǑ 2nk = 2nk , XJ k > 2n. ¤± k > 2n d (3-7) ªkð
ªµ
2n2 k 4n2 2n
−
−
k
2 k2
k
2 !
2n
2n
−
≥ 0,
k
k
S(n, k) =
= n.
qdu
¤±5¿ 0 ≤
k−1
, â (3-7) ª·áǑíÑ k < 2n kOª:
k
k
−
2
0 ≤ S(n, k) ≤ n −
n k
+ .
k 8
2n
k
≤
(3-8)
d (3-8) ªØJíÑ Re(s) > 2 , Dirichlet ?ê F (s) = X S(n,n k)
ýéÂñ, AOé k = 4, 5¿ k|2n k S(n, k) = 0; n ǑÛ
êk S(n, 4) = n +2 1 ; ζ(s) = X n1 = X (2n)1 + X (2n −1 1) =
∞
k
s
n=1
∞
∞
s
n=1
½ö
∞
s
n=1
s
n=1
¤±·k
∞
∞
X
X
1
1
1
1
ζ(s) +
= 1 − s ζ(s),
2s
(2n − 1)s
(2n − 1)s
2
n=1
n=1
:
∞
∞
∞
X
S(n, 4) X S(2n, 4) X S(2n − 1, 4)
=
+
F4 (s) =
ns
2s ns
(2n − 1)s
n=1
n=1
n=1
ðª
=
∞
X
S(2n − 1, 4)
n=1
∞
X
(2n −
1)s
=
∞
X
n
(2n − 1)s
n=1
∞
1
1
1X
1
+
=
s−1
2 n=1 (2n − 1)
2 n=1 (2n − 1)s
1
1
1
1
=
1 − s−1 ζ(s − 1) +
1 − s ζ(s),
2
2
2
2
(3-9)
Ù¥ ζ(s) Ǒ Riemann zeta- ¼ê. u´y² ½n 3.3.
y3·y²½n 3.5. aq/±íѽn 3.4. Re(s) > 3 ,
d (3-7) ª·k
∞
X
S(n2 , 16)
n=1
44
ns
1nÙ 'u Smarandache Ú¼ê ¯K
2
∞ n
X
=
n 2o
n
8
−
16
2
∞
X
=
n=1
+
=
∞
X
=
1
8
1
8
n
(2n−1)2
8
o
2s−2 (2n − 1)s−2
n 2 o
n
8
−
o
−
∞ 8
X
n
(2n−1)2
2
o2
−
n
(2n−1)2
2
o
2s (2n − 1)s
n
o2 n
o
(2n−1)2
(2n−1)2
−
∞ 8
8
8
X
n=1
−
(2n − 1)s−2 n=1
(2n − 1)s
X
X
∞
∞
1
1
1
7
1
+ s−1
+
+ s−1
s−2
2
(2n − 1)
8 2
(2n − 1)s
n=1
n=1
1
1
7
1
1
+ s−1
1 − s−2 ζ(s − 2) +
+
1 − s ζ(s).
2
2
8 2s−1
2
n=1
(2n−1)2
2
n
8
ns
n=1
n
n o
2
2
u´¤ ½n 3.5 y².
k = 6 , 5¿ 3 ØØ
n k n ≡ 1 (mod 3), ¤
1
n
± 3 = 3 . 3 Ø n k n3 = 0. ¤±d (3-7) ª·
k
2
2
2
∞
X
S(n2 , 6)
n=1
2
=
∞ n
X
ns
n 2o
n
3
−
=
=
=
n
(3n−1)2
3
n o
2
2
n
3
−
ns
n=1
∞
X
6
2
o
∞
X
n
n 2 o
n
3
(3n−1)2
3
o2
−
n
(3n−1)2
3
o
−3
s−2
(3n
−
1)
(3n − 1)s
n=1
n=1
n
n
o
o2 n
o
(3n−2)2
(3n−2)2
(3n−2)2
∞
∞
−
X
X
3
3
3
+
−3
s−2
s
(3n − 2)
(3n − 2)
n=1
n=1
!
!
∞
∞
∞
∞
2 X 1
1 X 1
1 X 1
1 X 1
+
−
−
3 n=1 ns−2 3s−2 n=1 ns−2
3 n=1 ns 3s n=1 ns
1
1
2
1
1 − s−2 ζ(s − 2) +
1 − s ζ(s).
3
3
3
3
45
'uSmarandache¯KïÄ#?
u´y² ½n 3.6.
Ǒy²½n 3.7, ·5¿é?¿ê p ≥ 3 ±9ê n
(n,p) = 1,dͶ Euler(½ Fermat) ½n n
≡ 1 (mod p). u
´k 2np = 2p . u´dúª (3-7)
p−1
p−1
=
∞
X
S np−1 , p
ns
n=1
n
o
o2 n p−1 o
n
p
2np−1
p−1 2np−1
− 2np
−2
∞ n
p
p
X
ns
n=1
X
∞
∞
1
1
2
2 X
+ 1−
.
=
s−p+1
p n=1 n
p
ns
n=1
(n, p)=1
du
∞
X
n=1
(n, p)=1
1
=
ns
1
1− s
p
(n, p)=1
ζ(s),
dþª·áǑíÑðªµ
∞
X
S np−1 , p
1
1
2
2
1 − s−p+1 ζ(s − p + 1) + 1 −
1 − s ζ(s).
=
ns
p
p
p
p
n=1
u´¤ ¤k½ny².
3.3
3.3.1
a ¹ Smarandache Ú ¼ ê
Dirichlet ?ê
AS(n, k)
Ì(Ø
þ!0 a¹ S(n, k) Dirichlet ?êO¯K, !
òUY0 'u AS(n, k) Dirichlet ?êO¯KïĤJ,
d©Ù®ÜHÆƹ^. |^{±9¼ê5
ïÄ a¹ AS(n, k) Dirichlet ?êO¯K, ¿é, AÏ
46
1nÙ 'u Smarandache Ú¼ê ¯K
ê k > 1, ÑT?êäNOúª. äN/`ǑÒ´y²
e¡A(Ø:
½n 3.8. é?¿Eê s Re(s) > 3, ·kðª
∞
X
AS(n, 2)
n=1
ns
1
= 2ζ(s − 2) +
2s−1
ζ(s − 1),
Ù¥ ζ(s) Ǒ Riemann zeta– ¼ê.
½n 3.9. é?¿Eê s Re(s) > 5, ·kðª
∞
X
AS(n2 , 8)
ns
n=1
1
3
1
1
1
1
= ζ(s−4)+
+
ζ(s−2)+
+
1 − s ζ(s).
8
4 2s
8 2s−1
2
π
AO s = 6 , 5¿ ζ(2) = π6 , ζ(4) = π90 , ζ(6) = 945
, ·kð
ª
X
2
4
6
∞
π 2 49π 4
7π 6
AS(n2 , 8)
=
+
+
.
4
n
48
5760
43008
n=1
½n 3.10. é?¿Eê s
∞
X
AS(n2 , 4)
n=1
ns
1
= ζ(s − 4) +
4
AO s = 6 ·kðª
Re(s) > 5,
∞
X
AS(n2 , 4)
n4
n=1
1
1
+ s−1
2 2
=
½n 3.11. é?¿Eê s
∞
X
AS(2n2 , 6)
n=1
ns
2
= ζ(s − 4) +
3
AO s = 6 ·kðª
∞
X
AS(2n2 , 6)
n=1
n4
1
1
1 − s ζ(s).
ζ(s − 2) +
4
2
π 2 17π 4
π6
+
+
.
24 2880 3840
Re(s) > 5,
·kðª
4
2
+ s−1
3 3
·kðª
1
2
1 − s ζ(s).
ζ(s − 2) +
3
3
π2
83π 4
1456π 6
=
+
+
.
9
10935 2066751
47
½n 3.12.
ðª
'uSmarandache¯KïÄ#?
p > 2 Ǒê. Ké?¿Eê s Re(s) > p, ·k
∞
X
AS(np−1 , p)
ns
n=1
1
1
=
1 − s−2p+2 ζ(s − 2p + 2)
p
p
1
1
1
2
1 − s−p+1 ζ(s − p + 1) +
1 − s ζ(s).
+ 1−
p
p
p
p
3.3.2
½ny²
·|^{±9pd¼ê5ÑA½n
y². Äk·^pd¼êò¼ê AS(n, k) ?1{z, L«¤
{ü/ª
. 5¿ |n − ki| ≤ n = −n ≤ n − ki ≤ n ½
ö 0 ≤ i ≤ , Ù¥ [x] Ǒpd¼ê, =Ò´ [x] L«Øu x
ê. u´¼ê AS(n, k) L«Ǒ:
2n
k
AS(n, k)
=
X
|n−ki|≤n
i=0, 1, 2, ···
|n − ik| =
[ 2n
k ]
X
i=0
|n − ki| =
[ nk ]
X
i=0
|n − ki| +
2n
[X
k ]
]+1
i=[ n
k
|n − ki|
h i
k h n i h n i
2n
n
= n+n·
−
+1 −n
−
k
2 k
k
k
k
h
i
h
i
2n
k n
n
k 2n
+1 −
+1
+
2 k
k
2 k
k
n n o k 2n 2 k 2n
n n o2
n2
2n
=
+k
−
−k
+
,
+n−n
k
k
k
k
2 k
2 k
(3-10)
hni
Ù¥ {x} = x −[x] L« x ©êÜ©, 0 ≤ {x} < 1.
ÏǑ 2nk = 2nk , XJ k > 2n. ¤± k > 2n d (3-10) ªkð
ª:
AS(n, k) =
48
n2
2n2 n2
2n2
+n−
−
+n+
− n = n.
k
k
k
k
1nÙ 'u Smarandache Ú¼ê ¯K
!
−
≥ 0, ¤±5¿ 0 ≤
qdu
k−1
, â (3-10) ª·áǑíÑ k < 2n kOª:
k
k
−
2
2n
k
2
2n
k
2n
k
n2
+ n.
0 ≤ AS(n, k) ≤
k
d
≤
(3-11)
ªØJ íÑ Re(s) > 3 §Dirichlet ?ê F (s) =
ýéÂñ, AOé k = 2, 5¿ 2|n k AS(n, 2) =
X 1
1
n
n
+ n; n ǑÛêk AS(n, 2) =
+ n + ; ζ(s) =
=
2
2
2
n
X 1
X
X
X
1
1
1
1
½ö
+
= ζ(s) +
=
(2n)
(2n − 1)
2
(2n − 1)
(2n − 1)
1
ζ(s), ¤±·kðª:
1−
2
(3-11)
AS(n, k)
ns
n=1
k
∞
X
∞
2
2
s
∞
∞
s
n=1
∞
∞
s
s
n=1
s
n=1
s
n=1
n=1
s
F2 (s) =
=
∞
X
AS(n, 2)
ns
n=1
∞ (2n)2
X
2
n=1
=
(2n)s
n=1
∞ (2n−1)2
X
2
+ 2n
+
(2n)s
n=1
∞
X
2n2
n=1
=
∞
X
AS(2n, 2)
ns
+
∞
X
+
∞
X
AS(2n − 1, 2)
n=1
(2n − 1)s
+ 2n − 1 +
(2n − 1)s
1
2
1
(2n)s−1
n=1
= 2ζ(s − 2) +
1
2s−1
ζ(s − 1),
Ù¥ ζ(s) Ǒ Riemann zeta- ¼ê. u´y² ½n 3.8.
y3·y²½n 3.10. aq/±íѽn 3.9. Re(s) > 3 ,
d (3-10) ª·k
∞
X
AS(n2 , 4)
n=1
=
4
∞ n
X
4
n=1
ns
2
2
+n −n
n
n2
2
o
−4
n 2 o2
n
4
+4
ns
n 2o
n
4
+2
n 2 o2
n
2
−2
n 2o
n
2
49
'uSmarandache¯KïÄ#?
=
∞
1
1X
1
ζ(s − 4) + ζ(s − 2) −
4
2 n=1 (2n − 1)s−2
n
n
o2 n
o
o2 n
o
(2n−1)2
(2n−1)2
(2n−1)2
(2n−1)2
∞
∞
−
−
X
X
4
4
2
2
−4
+2
s
s
(2n − 1)
(2n − 1)
n=1
n=1
∞
∞
1
1
1X
1X
1
ζ(s − 4) + ζ(s − 2) −
+
=
s−2
4
2 n=1 (2n − 1)
4 n=1 (2n − 1)s
1
1
1
1
1
1 − s ζ(s).
ζ(s − 4) +
+
ζ(s − 2) +
=
4
2 2s−1
4
2
u´¤ ½n 3.10 y².
k = 6 , 5¿ 3 ØØ
n k n ≡ 1 (mod 3), ¤
± n3 = 31 . 3 Ø n k n3 = 0. ¤±d (3-10) ª·
k
2
2
2
∞
X
AS(2n2 , 6)
n=1
=
ns
2 2
∞ (2n )
X
6
n=1
2
2
+ 2n − 2n
n
2n2
3
o
∞
X
−6
2
n
n
n2
3
o2
+6
ns
2(3n−1)2
3
o
n 2o
n
3
∞
X
+3
n
n
o2
−3
o2
n
2n2
3
(3n−1)2
3
−
n
50
o
(3n−1)2
3
2
ζ(s − 4) + 2ζ(s − 2) −
−6
3
(3n − 1)s−2
(3n − 1)s
n=1
n=1
o2 n
o
o
n
n
2(3n−1)2
2(3n−1)2
2(3n−2)2
∞
∞
−
2
X
X
3
3
3
+3
−
(3n − 1)s
(3n − 2)s−2
n=1
n=1
o2 n
o
o2 n
o
n
n
(3n−2)2
2(3n−2)2
(3n−2)2
2(3n−2)2
∞
∞
−
−
X
X
3
3
3
3
−6
+
3
(3n − 2)s
(3n − 2)s
n=1
n=1
!
∞
∞
4 X 1
1 X 1
2
ζ(s − 4) + 2ζ(s − 2) −
−
=
3
3 n=1 ns−2 3s−2 n=1 ns−2
!
∞
∞
1 X 1
2 X 1
−
+
3 n=1 ns 3s n=1 ns
1
2
4
2
2
1 − s ζ(s).
ζ(s − 4) +
+
ζ(s − 2) +
=
3
3 3s−1
3
3
=
2n2
3
o
1nÙ 'u Smarandache Ú¼ê ¯K
u´y² ½n 3.11.
Ǒy²½n 3.12, ·5¿é?¿ê p ≥ 3 ±9ê n
(n,p) = 1,dͶ Euler(½ Fermat) ½n n
≡ 1 (mod p). u
´k 2np = 2p . u´dúª (3-10)
p−1
p−1
∞
X
AS(np−1 , p)
n=1
=
∞
X
n=1
p
2
+
ns
n2p−2
p
n
2np−1
p
+ np−1 − np−1
o2
−
p
2
ns
n
2np−1
p
n
2np−1
p
o
ns
−p
n
np−1
p
o2
+p
n
np−1
p
o
o
X
∞
∞
∞
1
1
2
1 X 1
1 X
+
1
−
+
.
=
s−p+1
s
p n=1 ns−2p+2
p
n
p
n
n=1
n=1
(n,p)=1
du
∞
X
n=1
(n, p)=1
1
=
ns
(n,p)=1
(n,p)=1
1
1− s
p
ζ(s),
dþª·áǑíÑðª:
∞
X
AS(np−1 , p)
ns
1
1
1 − s−2p+2 ζ(s − 2p + 2)
=
p
p
2
1
1
1
+ 1−
1 − s−p+1 ζ(s − p + 1) +
1 − s ζ(s).
p
p
p
p
n=1
u´¤ ܽny².
'u Smarandache Úþ
3.4
3.4.1
ïĵ9Ì(Ø
3 A!¥, ·0
Smarandache
Ú¼ê S(n, k) 9 AS(n, k),
51
'uSmarandache¯KïÄ#?
¿Ñ Aþúª±9¹ S(n, k) Dirichlet ?ê. !¥·
½Âü# Smarandache ¼ê, ¡Ǒ Smarandache Ú¼ê P (n, k)
9 AP (n, k) Xe:
P (n, k) =
X
(n − k i )
|n−k i |≤n
i=0, 1, 2, ···
9
AP (n, k) =
X
|n−k i |≤n
i=0, 1, 2, ···
|n − k i |.
~X, P (12, 2) = (12 − 1) + (12 − 2) + (12 − 4) + (12 − 8) + (12 − 16) = 29,
P (9, 4) = (9−1)+(9−4)+(9−16) = 6; P (11, 5) = (11−1)+(11−5) = 16;
AP (12, 2) = |12−1|+|12−2|+|12−4|+|12−8|+|12−16| = 37; AP (9, 4) =
|9 − 1| + |9 − 4| + |9 − 16| = 20; AP (11, 5) = |11 − 1| + |11 − 5| = 16.
,
,
.
,
,
n
k
.
,
P (n, k)
AP (n, k)
,
.
:
'
uùü¼ê«ê5 ·q ¤ vk3yk©
z¥ , ·Ǒùü¼ê´k¿Â ±NÑ
ê 3 ꥩÙ5 !ÄuÜ>ó |^
{±9pd¼ê5ïļê
9
þ5
Ñükþúª äN/`ǑÒ´y²e¡ü(Ø
½n 3.13. k > 1 Ǒ½ê, oé?¿¢ê x > 1, ·kì
Cúª
X
P (n, k) =
n≤x
x2
· ln x + R(x, k),
2 ln k
+ 2x
.
Ù¥ |R(x, k)| ≤ x4 + x2 lnlnk2 + k −1 1 ·x− k x− 1 + 2x ln(2x)2+lnln(2x)
k
2
2
2
½n 3.14. k > 1 Ǒ½ê, oé?¿¢ê x > 1, ·kì
Cúª
X
AP (n, k) =
n≤x
Ù¥ |R (x, k)| ≤ 2x
1
52
2
+
x2
· ln x + R1(x, k),
2 ln k
x
x2 (1 + ln 4)
−
.
k−1
4 ln k
1nÙ 'u Smarandache Ú¼ê ¯K
le¡y²L§ǑØJwÑùü½nO¢Sþ´éo÷
, ´Ä3°(ìCúªǑ´k¯K.
½n 3.13 9½n 3.14 y²
3.4.2
ù!·|^{±9pd¼ê5ѽn
y². Äk·^pd¼êò¼ê P (n, k) ?1{z, L«¤
|n − k | ≤ n = −n ≤ n − k ≤ n ½
{ü/ª
h . 5¿
i
ö0≤i≤
, Ù¥ [x] Ǒpd¼ê, =Ò´ [x] L«Øu x
ê. u´¼ê P (n, k) L«Ǒ:
i
i
ln(2n)
ln k
P (n, k)
[ ln(2n)
ln k ]
X
i
(n − k ) =
(n − k i )
X
=
i=0
|n−k i |≤n
i=0, 1, 2, ···
ln(2n)
k [ ln k ]+1 − 1
ln(2n)
−
= n+n·
ln k
k−1
ln(2n)
n · ln(2n)
2nk · k −{ ln k } − 1
ln(2n)
=
−
+n−n
ln k
ln k
k−1
ln(2n)
n · ln(2n)
2nk · k −{ ln k }
1
ln(2n)
−
=
+n+
−n
,(3-12)
ln k
k−1
ln k
k−1
Ù¥ {x} = x − [x] L« x ©êÜ©, 0 ≤ {x} < 1.
y3é?¿ê x > 1, d Euler Úúª (ë©z [8] ¥½n 4.9)
:
½ö
Z
x
1
X n · ln(2n)
y · ln(2y)
dy ≤
≤
ln k
ln k
n≤x
Z
x+1
1
y · ln(2y)
dy,
ln k
X n · ln(2n)
x2
x2
· ln(2x) −
≤
2 ln k
4
ln k
n≤x
≤
(x + 1)2
(x + 1)2
· ln(2x + 2) −
. (3-13)
2 ln k
4
53
'uSmarandache¯KïÄ#?
u´d (3-13) ªáǑOª:
X n · ln(2n)
ln k
n≤x
−
2x ln(2x) + ln(2x) + 2x
x2
x2
≤
· ln(2x) +
.(3-14)
2 ln k
4
2 ln k
u´(Ü (3-12) 9 (3-14) ª
X
P (n, k)
n≤x
=
X
n≤x
=
X n · ln(2n)
n≤x
2
=
!
ln(2n)
2nk · k −{ ln k }
ln(2n)
−
ln k
k−1
!
ln(2n)
2nk · k −{ ln k }
ln(2n)
1
−
+n−n
k−1
ln k
k−1
n · ln(2n)
1
+n+
−n
ln k
k−1
+
ln k
X
n≤x
x
· ln(2x) + R(x, k),
2 ln k
+ 2x
. u´
Ù¥ |R(x, k)| ≤ x4 + k −1 1 · x − k x− 1 + 2x ln(2x)2+lnln(2x)
k
y² ½n 3.13.
y3·y²½n 3.14. y²½n 3.13 aq, ·ké AP (n, k)
?1{z. d AP (n, k) ½Â·k
2
2
AP (n, k) =
X
|n−k i |≤n
i=0, 1, 2, ···
=
ln n
[X
ln k ]
i=0
n − ki =
(n − k i ) +
[ ln(2n)
ln k ]
X
i=0
n − ki
[ ln(2n)
ln k ]
X
(k i − n)
n
i=1+[ ln
ln k ]
ln n
[X
[ ln(2n)
ln k ]
ln k ]
X
i
= 2
(n − k ) +
(k i − n)
i=0
i=0
ln n
k [ ln k ]+1 − 1
ln(2n)
ln n
−2·
−n−n·
= 2n + 2n ·
ln k
k−1
ln k
ln(2n)
+1
k [ ln k ] − 1
+
k−1
54
1nÙ 'u Smarandache Ú¼ê ¯K
ln n
1
ln(2n)
n · ln(n/2)
− 2n
+n+
+n
=
ln k
k−1
ln k
ln k
ln(2n)
ln n
2nk
(3-15)
+
· k −{ ln k } − k −{ ln k } .
k−1
u´d (3-15) ª9 Euler ÚúªáǑOª
X
AP (n, k)
n≤x
=
X n · ln(n/2)
n≤x
+
=
Ù¥
².
ln k
1
+n+
+n
k−1
X 2nk
ln(2n)
ln n
· k −{ ln k } − k −{ ln k }
k−1
n≤x
x2
· ln x + R1 (x, k),
2 ln k
ln(2n)
ln k
x2 (1 + ln 4)
x
−
.
|R1 (x, k)| ≤ 2x +
k−1
4 ln k
2
− 2n
ln n
ln k
u´¤ ½n 3.14 y
55
'uSmarandache¯KïÄ#?
1oÙ 'u\¼ê ¯K
#\¼ê Smarandache ê
4.1
4.1.1
Úó9(Ø
é?¿ê n, ·¡â¼ê f (n) ´\, XJé?¿
ê m, n (m, n) = 1 k f (mn) = f (m) + f (n). ¡ f (n) ´\,
XJé?¿ê r 9 s Ñk f (rs) = f (r) + f (s).
½Â 4.1. ·½Â#ê¼ê F (n) Xe: F (0) = 0,
n > 1 n IO©)ªǑ n = p p · · · p , ½Â F (n) =
α1 α2
1 2
α1 p1 + α2 p2 + · · · + αk pk .
¯¢þ m = p
9
αk
k
·k
l d ½Âk
¤± ´
\¼ê 3êØ¥ ÷v\5â¼êéõ ~X I
O©)ªǑ
¼ê
9é
ê¼ê
Ñ´\¼ê d ê ¤kØÓÏ
êê
´\¼ê Ø´\¼ê 'u\¼
ê5ïÄ 3êر9ê©Ù¯K¥Ók© N
õͶêØJKÑ' Ï ÙïÄó´ék¿Â k
'¼ê 9 5 ë©z 9
!Ì8´ïÄ\¼ê 3, AÏêþþ
©Ù¯K ¿|^{ürìCúª Ǒd ·k0
ê
9
3©z 9 ¥ {7
a
ÛêZæêØ;[
ÇÚ\ Nõêؼê9ê ¿
JÑ Ø)û¯K
9
Ò´Ù¥ük
ê
L« ¤kÏêÈ
L« ¤ku
êÏfÈ =Ò´
· · · pαk k
n = pβ1 1 pβ2 2 · · · pβk k ,
mn =
F (n)
F (mn) = (α1 + β1 )p1 +
(α2 + β2 )p2 + · · · + (αk + βk )pk = F (m) + F (n).
F (n)
.
,
,
n
αk
α1 α2
n = p1 p2 · · · pk
,
Ω(n) = α1 + α2 + · · · + αk
f (n) = ln n
.
,
n
ω(n) = k
,
.
,
,
,
.
Ω(n)
ω(n)
,
[35]
[36].
F (n)
,
.
,
Smarandache
{Pd (n)}
{qd (n)}.
[1]
[37] ,
F. Smarandache
,
,
{Pd (n)}
{qd (n)}
, Pd (n)
n
, qd (n)
n
n
.
Y
Y
d(n)
d(n)
Pd (n) =
d=n 2 ;
qd (n) =
d = n 2 −1 ,
α1 α2
1 p2
α1 +β1 α2 +β2
αk +βk
,
p1
p2
· · · pk
d|n
56
d|n,d<n
1oÙ 'u\¼ê ¯K
Ù¥ d(n) Ǒ Dirichlet Øê¼ê, = n ¤kÏêê.
3©z [1] ¥, F. Smarandache ÇïÆ·ïÄê {P (n)}
9 {q (n)} 5. 'uù¯K, NõÆö?1LïÄ, ¼ X
k(Ø, ë©z [38] 9 [39]. !|^9)Û{ïÄ ¼
ê F (n) 3ê {P (n)} 9 {q (n)} þþ¯K, ¿Ñ ür
þúª. äN/`ǑÒ´y² e¡:
½n 4.1. N Ǒ½ê, Ké?¿½¢ê x > 1, ·
kìCúª
d
d
d
d
N
X
x2
di · i + O
F (Pd (n)) =
ln x
i=1
n≤x
X
x2
lnN+1 x
,
Ù¥ d (i = 1, 2, · · · , N) ǑO~ê d = π72 .
½n 4.2. N Ǒ½ê, Ké?¿½¢ê x > 1, ·
kìCúª
4
i
1
N
X
x2
hi · i + O
F (qd (n)) =
ln x
i=1
n≤x
X
Ù¥ h
i
(i = 1, 2, · · · , N)
ǑO~ê
x2
lnN+1 x
,
π4 π2
h1 =
− .
72 12
ü{üÚn
4.1.2
Ǒ ¤½ny², ·IXe{üÚn:
Ún 4.1.1. é?¿¢ê x > 1, π(x) L«¤kØu x ê
ê, Ké?¿ê k, ·kìCúª:
k
X
x
π(x) =
1=
ci · i + O
ln x
i=1
p≤x
X
Ù¥ c (i = 1, 2, · · · , k) ǑO~ê c
y²: ë©z [27] ¥1nÙ½n 2©
i
x
lnk+1 x
1
,
= 1.
57
'uSmarandache¯KïÄ#?
N Ǒ½ê, Ké?¿½¢ê x > 1, ·
Ún 4.1.2.
kìCúª
N
X
x2
F (n) =
di · i + O
ln x
i=1
n≤x
X
x2
lnN+1 x
,
Ù¥ d (i = 1, 2, · · · , N) ǑO~ê d = π12 .
y²: é?¿ê n, P (n) L« n Ïf. y3·½
ÂXeü8Ü:
2
i
1
A = {n : n ≤ x, P (n) ≤
√
n};
B = {n : n ≤ x, P (n) >
√
n}.
n ∈ A , d F (n) ½ÂN´íÑ F (n) ≪ √n ln n. u´
â Abel ð (ë©z [8] ½n 4.2) ·:
X
n≤x
n∈A
·k
F (n) ≪
X√
n≤x
3
n ln n ≪ x 2 ln x.
éu8Ü B, 5¿ F (n) \5, dÚn 4.1.1 9 Abel ð
N
x x Z xk
X
x2
p=π
· −
π(y)dy =
ri · 2 i
k
k
k ln
1
i=1
p≤ x
X
k
Ù¥ r (i = 1, 2, · · · , N) ǑO~ê
u´|^þª·ØJíÑ
X
F (n) =
X X
√
x
k≤ x k<p≤ k
58
"N
X X
√
k≤ x
p+O
x2
ri · 2 i
k ln
i=1
X
F (n) =
n≤x
√
p|n, p> n
n∈B
=
X
F (pk) =
√
x
k≤ x k<p≤ k
+O
k =
x2
k 2 lnN+1
+O
x
k
!
,
X X
(F (k) + p)
√
x
k≤ x k<p≤ k
pk≤x
p>k
X X
x
k
x
k
x2
k 2 lnN+1
1
r1 = .
2
i
=
(4-1)
X X
√
k≤ x
x
k
!#
k<p≤ kx
3
p+O
x2
ln x
!
1oÙ 'u\¼ê ¯K
N
X
x2
=
di · i + O
ln x
i=1
x2
lnN+1 x
,
(4-2)
Ù¥ d (i = 1, 2, · · · , N) ǑO~ê
(Ü (4-1) 9 (4-2) áǑìCúª:
1
π2
d1 = ζ(2) = .
2
12
i
N
X
x2
di · i + O
F (n) =
F (n)) +
F (n) =
ln x
i=1
n≤x
n≤x
n≤x
X
X
X
n∈B
n∈A
u´y² Ún 4.1.2.
x2
lnN+1 x
.
½n 4.1 9½n 4.2 y²
4.1.3
ù!·|^{±9© nØѽn 4.1 9½n 4.2 y
². ·Äky²½n 4.1. dê {P (n)} ½Â¿5¿© ð (ë
©z [8] ¥½n 3.17) ·k
d
X
F (Pd (n))
n≤x
=
X
F n
d(n)
2
=
X1
d(n)F (n)
2
X
1 X
1 X
F (mn) =
(F (m) + F (n)) =
F (n)
=
2
2
nm≤x
nm≤x
mn≤x
X
X X
X
X X
F (m) ·
1 .
F (n) +
F (n) −
=
n≤x
n≤x
√
x
n≤ x m≤ n
√
x
m≤ x n≤ m
√
n≤ x
√
m≤ x
(4-3)
dÚn 4.1.2 ·k
X X
√
m≤ x
x
n≤ m
F (n) =
X
√
m≤ x
N
X
"N
X
x2
di · 2 i
m ln
i=1
x2
ui · i + O
=
ln x
i=1
x
m
+O
x2
lnN+1 x
,
x2
m2 lnN+1 x
#
(4-4)
59
'uSmarandache¯KïÄ#?
Ù¥ u (i = 1, 2, · · · , N) ǑO~ê u
A^ Abel ð9Ún 4.1.2 ·kOª
i
1
= d1 · ζ(2) =
X
X F (n)
+O
F (n)
n
√
√
n≤ x
n≤ x
!
3
x2
.
= O
ln x
X X
F (n) = x ·
√
x
n≤ x m≤ n
π4
.
72
(4-5)
Ów,ǑkOª
X
√
m≤ x
F (n) ·
X
√
n≤ x
3
x2
1 ≪
.
ln x
(4-6)
(Ü (4-3), (4-4), (4-5) 9 (4-6) áǑíÑìCúª:
N
X
x2
F (Pd (n)) =
ui · i + O
ln x
i=1
n≤x
X
x2
lnN+1 x
,
Ù¥ u (i = 1, 2, · · · , N) ǑO~ê u = π72 . u´y² ½
n 4.1.
5¿½n 4.1 ¿A^Ó{·Ǒ±
4
i
X
1
X d(n)
X
1X
d(n)F (n) −
F (n)
2
2 n≤x
n≤x
n≤x
N
N
X
X
x2
x2
x2
di · i + O
ui · i −
=
ln
x
ln x
lnN+1 x
i=1
i=1
N
X
x2
x2
,
=
hi · i + O
ln x
lnN+1 x
i=1
F (qd (n)) =
n≤x
− 1 F (n) =
Ù¥ h = u − d (i = 1, 2, · · · , N) ǑO~ê
u´¤ ½n 4.2 y².
i
60
i
i
h1 =
π4 π2
− .
72 12
1oÙ 'u\¼ê ¯K
4.2
'u\¼êþ
4.2.1
Ì(Ø
þ!·ïÄ ¼ê F (n) 3 AÏêþþ5, ¼
ürìCúª. Ǒùóò, !·Ä¼ê F (n)
©Ù5. =Ò´ïÄþ (F (n) − P (n)) þ5, ¿|^
{±9ê©ÙnØÑ (F (n) − P (n)) rþú
ª. äN/`ǑÒ´y²e¡:
½n 4.3. N Ǒ½ê, Ké?¿½¢ê x > 1, ·
kìCúª
2
2
X
n≤x
2
(F (n) − P (n)) =
N
X
i=1
ci ·
x2
lni+1 x
+O
x2
lnN+2
√
x
,
Ù¥ c (i = 1, 2, · · · , N) ǑO~ê c = π6 .
½n 4.3 ¿Â3u§U `²¼ê F (n) Ì8¥3
ê n Ïfþ. Ïdù &E·Jø ¼ê F (n)
å».
2
i
1
½n 4.3 y²
4.2.2
ù!·|^{±9ê©ÙnØѽn 4.3 y
². ·æ^©z [3] ¥g. Äk½Âo8Ü A, B, C, D Xe:
A = {n, n ∈ N, n TkÏf p ÷v n = kp, p > n , k ¤k
Ïf q ÷v q < n }; B = {n, n ∈ N, n kÏf p ÷v n = p · k,
p > n > k}; C = {n, n ∈ N, n küÏf p 9 p ÷v n = p p k,
p > p > n > k}; D = {n, n ∈ N, n ¤kÏf p ÷v p ≤ n }, Ù
¥ N L«¤kê8. u´d8Ü A, B, C 9 D ½Â
1
3
1
3
2
1
3
2
X
n≤x
1
1
(F (n) − P (n))2 =
2
1 2
1
3
1
3
X
n≤x
n∈A
(F (n) − P (n))2 +
X
n≤x
n∈B
(F (n) − P (n))2
61
'uSmarandache¯KïÄ#?
+
X
n≤x
n∈C
(F (n) − P (n))2 +
X
n≤x
n∈D
(F (n) − P (n))2
≡ W1 + W2 + W3 + W4 .
(4-7)
y3·|^{±9ê©ÙnØ5O (4-7) ¥. Äk
·O W . 5¿ F (n) Ǒ\¼ê n ∈ A n = pk, k
¤kÏf q ÷v q ≤ n , F (k) ≤ n ln n ±9ê©Ù½n (ë
©z [27] ¥1nÙ½n 2)
1
1
3
Ù¥ c
k
X
x
π(x) =
1=
ci · i + O
ln x
i=1
p≤x
X
ǑO~ê
x
lnk+1 x
(i = 1, 2, · · · , k)
c1 = 1.
X
X
=
(F (n) − P (n))2 =
(F (pk) − p)2
i
W1
1
3
n≤x
n∈A
=
,
(4-8)
·kOª:
pk≤x
(pk)∈A
X
pk≤x
(pk)∈A
F 2 (k) ≪
2
≪ (ln x)
√
x
k≤ x k<p≤ k
k≤ x
X
n≤x
n∈B
(F (n) − P (n))2 =
X
1
X
k≤x 3 k<p≤
≪
W4 =
X
2
k3
√
k≤ x
X
X
1
k≤x 3
X
n≤x
n∈D
x
3
2
√x
k ln x
≪
2
F (p2 k) − p
p2 k≤x
p>k
k
3
2
(4-9)
X
(F (k) + p)2 ≪
X
1
X
k≤x 3 k<p≤
√x
p2
k
3
2
x
.
ln x
(F (n) − P (n))2 ≪
(4-10)
X
n≤x
2
5
n 3 ln2 n ≪ x 3 ln2 x.
(4-11)
·OÌ W . 5¿ n ∈ C , n = p p k, Ù¥ p > p
n > k. XJ k < p < n , ù«¹áu W O. XJ k < p
3
1
3
62
1
1 2
1
3
2
p3
k<p≤ xk
2
3
√
=
2
(pk) 3 ln2 (pk) ≤ (ln x)2
x5 1
5
3
2
3
k
x ≪ x ln x.
k
ln k
X
W2 =
X X
1
2
1
1
>
<
p2
1oÙ 'u\¼ê ¯K
< n , ù«¹áu W O. u´A^ (4-8) ª·k
W3
1
3
4
=
X
(F (n) − P (n)) =
n≤x
n∈C
=
X
X
X
X
1
k≤x 3 k<p1 ≤
=
1
k≤x 3 k<p1 ≤
√x p
X
√x p
X
1
k≤x 3 k<p1 ≤
X
X
p1 p2 k≤x
p2 >p1 >k
X
√x p
k
x
1 <p2 ≤ p k
1
N
X
√
k<p1 ≤ xk
5
X
2
3
+O x ln x −
1
k≤x 3
X
1
k≤x 3 k<p1 ≤
X
+O
1
k≤x 3
5¿
·k
π2
ζ(2) = ,
6
X
1
k≤x 3
=
X
1
k<p1 ≤
=
=
X
√x p
k
2
kp1
x
p1 k
X
√ x p2 ≤p1
k
x
1 <p2 ≤ p k
1
+O
x
p1 k lnN+1 x
!
p21
kp1 .
(4-12)
A^ Abel ð (ë©z [8] ¥½n 4.2) 9 (4-8) ª
X
k<p1 ≤
√x
p21
√x
X
1
p≤p1
k
X
k≤x 3 k<p1 ≤
N
X
X
5
3
(F (p1 p2 k) − p2 ) + O x ln x
x
ci ·
p1 k lni
i=1
p21
5
p21 + O x 3 ln2 x
x
1 <p2 ≤ p k
1
k
2
5
F 2 (k) + 2p1 F (k) + p21 + O x 3 ln2 x
X
x
2≤ p k
1
k
X
+O
=
X
2
p21
N
X
ci · p1
i
i=1
k
ln p1
+O
ln
p1
N+1
p1
!
X
ci · p31
p31
X
+
O
i
N+1
ln
p
ln
p
√
√
1
1
1
1
x
x
i=1
k≤x 3 k<p1 ≤ k
k≤x 3 k<p1 ≤ k
N
X X X ci · p3
p31
X X
1
+
O
√ x lni p1
√ x lnN+1 p1
1
1
i=1
X
X
k≤x 3 p1 ≤
k
k≤x 3 p1 ≤
k
63
'uSmarandache¯KïÄ#?
N X
X
=
i=1
3
ci x 2
p π
3
k 2 lni xk
1
k≤x 3
X
+O
1
X
k≤x 3 p1 ≤
i
p31
√ x ln
N+1
p1
k
N 2
N
X
di · x 2
2 ·x
+O
,
i+1
N+2
ln
x
ln
x
i=1
=
Ù¥ d
3 !
r Z √ x
k
ci y
x
−
π(y)d
k
lni y
2
ǑO~ê
(i = 1, 2, · · · , N)
X
1
X
k≤x 3 k<p1 ≤
√x p
k
X
x
1 <p2 ≤ p k
1
kp1 ≪
1
k≤x 3
X
X
k
1
p1 ≤
x
X
1
k≤x 3
π2
.
6
√x
p1 ·
x
p1 k ln x
k
3
2
5
x3
√
.
≪
ln2 x
k ln2 x
X
x2
p1 x
x2
≪
≪
.
√ x k lnN+1 x
k 2 lnN+2 x
lnN+2 x
1
X
k<p1 ≤
d1 =
k≤x 3
≪
X
(4-13)
(4-14)
(4-15)
k≤x 3
k
ÓnA^ Abel ð, (4-8) ª±9 (4-13) y²{·Ǒ±ì
Cª
X
1
X
k≤x 3 k<p1 ≤
=
X 1
k
1
k≤x 3
=
N
X
i=1
ai ·
√x
p21
x
p1 k ln px1 k
k
xp1
x
√ x ln kp1
X
k<p1 ≤
x2
lni+1 x
k
+O
x2
lnN+2 x
,
(4-16)
Ù¥ a (i = 1, 2, · · · , N) ´O~ê a = π3 .
u´(Ü (4-7), (4-9), (4-10), (4-11), (4-12), (4-13), (4-14), (4-15)
9 (4-16) ·áǑíÑìCúª:
2
i
X
n≤x
64
1
2
(F (n) − P (n))
N
X
x2
di · x 2
+O
=
ai · i+1 −
i+1
N+2 √
ln
x
ln
x
ln
x
i=1
i=1
N
X
x2
1oÙ 'u\¼ê ¯K
=
N
X
i=1
hi ·
x2
lni+1 x
+O
x2
lnN+2
√
x
Ù¥ h = a − d (i = 1, 2, · · · , N) ǑO~ê
π
π
π
−
= . u´¤ ½n 4.3 y².
3
6
6
2
i
2
i
2
i
,
h1 = a1 − d1 =
65
'uSmarandache¯KïÄ#?
1ÊÙ 'u Smarandache ê9Ùk'¯
K
5.1
Smarandache
²ê SP (n) Ú IP (n) þ
½Â 5.1. é?¿Kê n, ·^ SP (n) L« n Smarandache
²ê, =Ò´u½u n ²ê. ~XTê
AǑ: 0, 1, 4, 4, 4, 9, 9, 9, 9, 9, 16, 16, 16, 16, 16, 16, 16, 25, · · · .
½Â 5.2. ^ IP (n) L« n Smarandache ²ê, =Ò´Ø
L n ²ê. ùê AǑµ0, 1, 1, 1, 4, 4, 4, 4, 4,
9, 9, 9, 9, 9, 9, 9, 16, 16, 16, 16, 16, 16, 16, 16, 16, 25, · · · . Sn = (SP (1) + SP (2) + · · · + SP (n)) /n;
In = (IP (1) + IP (2) + · · · + IP (n)) /n;
p
Kn = n SP (1) + SP (2) + · · · SP (n);
p
Ln = n IP (1) + IP (2) + · · · IP (n).
3©z [1] ¥, F. Smarandache ÇJÑ ùüê, ¿ïÆ<
ïħ«5, k'ù SNÚk'µë©z [1]![37]![40]
9 [41]. 3©z [40] ¥, F Kenichiro Kashihara Ƭ2géùüê
) ,, ÓJÑ ïÄ4 SI !(S − I )! KL 9 (K − L )
ñÑ5¯K, XJÂñ, ¿Ù4. 3©z [41] ¥, ÄgïÄ
ùAþìC5¯K, ¿|^9)Û{y² e¡A(Ø:
½n A. éu?¿¢ê x > 2, kìCúª
n
n
X
n6x
X
n6x
66
n
3
x2
SP (n) =
+ O x2 ;
2
IP (n) =
3
x2
+ O x2 .
2
n
n
n
n
n
1ÊÙ 'u Smarandache ê9Ùk'¯K
dd½náǑíÑe¡íØ:
íØ 1. é?¿ê n, kìCª
S
S
=1+O n
= 1.
94ª
lim
I
I
− 12
n
n
n→∞
n
íØ 2. é?¿ê n, kìCª
K
K
=1+O n
94ª
lim
L
L
− 12
n
n
n→∞
n
n
n
= 1, lim (Kn − Ln ) = 0.
n→∞
, , 'u S − I ìC5¯K, qvk3©z [41] ¥9.
, , ·Ǒù¯K´k, ÙÏ3u¡§)û±é©
z [40] ¥¯K±£, xþ ÷éÒ; ,¡±Ǒ
xÑü«ê SP (n) 9 IP (n) «O. !Qão®Ú [42] ó
, Äu©z [41] ¥g¿(ÜÓaÜ¿±9Ø °(?n,
¨ïÄ S − I ìC5¯K, ¼ rìCúª, äN/`
ǑÒ´y² e¡:
½n 5.1. éu?¿ê n > 2§·kìCúª
n
n
n
n
Sn − In =
4√
n + O (1) .
3
w,©¥(JÖ ©z [41] ¥Øv, Óò©z [40] ¥é
ê S 9 I JѤk¯K )û. ,, dd½n·±
íÑe¡4:
S −I
4
lim (S − I ) = 1 9 lim √
= .
n
3
n
n
n
n→∞
n
1
n
n
n
n→∞
y²: e¡·^{9 Euler Úúª (ë©z [8]) ©
Oé S 9 I ?1~°(O, ª|^ü°(Oѽ
n 5.1 y². é?¿ê n > 2, w,3ê M ÷v:
M < n 6 (M + 1) , = M = n + O(1). u´k
n
n
Sn =
1
2
2
2
1X
1 X
1
SP (k) =
SP (k) +
n
n
n
2
k6n
k6M
X
SP (k)
M 2 <k6n
67
'uSmarandache¯KïÄ#?
=
1 X
n
X
SP (k) +
h6M (h−1)2 <k6h2
1
n
X
(M + 1)2
M 2 <k6n
1
1 X 2
h − (h − 1)2 h2 +
n − M 2 (M + 1)2
n
n
h6M
1
1 X
2h3 − h2 +
n − M 2 (M + 1)2
=
n
n
=
h6M
M 2 (M + 1)2 M (M + 1) (2M + 1) 1
=
n − M 2 (M + 1)2
−
+
2n
6n
n
2
M
(M
+
1)
(2M
+
1)
M
(M
+ 1)2
= (M + 1)2 −
−
.
(5-1)
6n
2n
Ón, â IP (n) ½Â, ·ǑkOúª:
In
=
=
=
=
1 X
1 X
1X
IP (k) =
IP (k) +
IP (k)
n
n
n 2
k6n
k<M 2
M 6k6n
X
1 X
1 X
IP (k) +
M2
n
n
h6M (h−1)2 6k<h2
M 2 6k6n
1
1 X 2
h − (h − 1)2 (h − 1)2 +
n − M2 + 1 M2
n
n
h6M
1
1 X
2h3 − 5h2 + 4h − 1 +
n − M2 + 1 M2
n
n
h6M
=
=
M 2 (M + 1)2 5M (M + 1) (2M + 1)
−
2n
6n
n − M2 + 1 M2
2M (M + 1) M
+
−
+
n
n
n
2
2
M (M − 2M − 3) 5M (M + 1) (2M + 1)
M2 −
−
2n
6n
2M 2 + M
+
.
n
u´d (5-1) 9 (5-2) ª
Sn − In
= (M + 1)2 −
68
M (M + 1) (2M + 1) M 2 (M + 1)2
−
6n
2n
(5-2)
1ÊÙ 'u Smarandache ê9Ùk'¯K
M 2 (M 2 − 2M − 3) 5M (M + 1) (2M + 1) 2M 2 + M
−
+
− M −
2n
6n
n
3
2M + 7M
= 2M + 1 −
.
(5-3)
3n
2
5¿ M = n
1
2
+ O(1),
Sn − In = 2M −
d (5-3) ª·áǑíÑ
2M
4
4√
+ O(1) = M + O(1) =
n + O(1).
3
3
3
u´¤ ½n 5.1 y².
Smarandache 3n-digital
5.2
ê
½Â 5.3. é?¿ê n, Ͷ Smarandache 3n-digital ê
{a } ½ÂǑ: {a } = {13, 26, 39, 412, 515, 618, 721, · · · }. =, é?
¿ê b ∈ {a }, §±©ǑüÜ©, Ù¥1Ü©´1Ü© 3
. ~X, a = 2884, a = 35105, a = 104312, · · · .
3©z [1] ¥ F. Smarandache ïÆ·ïÄê {a(n)} 5. '
uùêéõÆö®²?1 ïÄ¿ X¤J. 3©z [43]
¥, ©¡±Ú[ ïÄ ùêþ¯K, Ñ ±e½n:
½n 5.2. é?¿¢ê N > 1, kìCúª
n
n
n
28
35
104
X n
3
=
· ln N + O (1) .
an
10 ln 10
n≤N
y²: ·^{¤½ny². Äk, é?¿
ê n, - 3n = b b · · · b b , Ù¥ 1 ≤ b ≤ 9, 0 ≤ b ≤ 9,
i = 1, 2, · · · , k(n) − 1. d a ½Â a Ǒ:
2 1
k(n) k(n)−1
n
u´k
k(n)
i
n
an = n · 10k(n) + 3n = n · (10k(n) + 3).
X n
X
1
.
=
k(n)
an
10
+
3
n≤N
n≤N
69
'uSmarandache¯KïÄ#?
w,e N ≤ 3, K
X n
3
−
log10 N
an 10
n≤N
´~ê. Ïd, Ø5, ·b N > 3. d, 3ê M
· · 33} .
33
· · 33} < N ≤ 33
| ·{z
| ·{z
M
M+1
5¿, é?¿ê n, e
33
· · 33} < n ≤ 33
· · 33},
| ·{z
| ·{z
u u−1 · · · b2 b1 .
X n
an
n≤N
X 1
n≤3
10 + 3
+
=
=
X
3<n≤33
1
+
2
10 + 3
M
X
33<n≤333
1
33
· · 33}<n≤33
· · 33}
| ·{z
| ·{z
M−1
=
u´k
X
+
=
u
u−1
K 3n = b b
=
10M
+3
+
1
+ ···
+3
X
103
33
· · 33}<n≤N
| ·{z
1
10M+1
+3
M
M
3
30
300
3 · 10M−1 N − 10 3 −1
+ 2
+ 3
+ ··· +
+ M+1
10 + 3 10 + 3 10 + 3
10M + 3
10
+3
M
2
3
M
N − 10 3 −1
3
10
10
10
10
+ M+1
+
+
+ ··· + M
10 10 + 3 102 + 3 103 + 3
10 + 3
10
+3
3
3
3
3
1−
+ 1− 2
+ 1− 3
+ ···
10
10 + 3
10 + 3
10 + 3
M
N − 10 3 −1
3
+ 1− M
+ M+1
10 + 3
10
+3
3
3
3
3
3
M−
+
+
+ ··· + M
10
10 + 3 102 + 3 103 + 3
10 + 3
M
N − 10 3 −1
+ M+1
10
+3
M
M
N − 10 3 −1
3
1
9 X
=
·M −
·
+ M+1
10
10 i=1 10i + 3
10
+3
70
(5-4)
1ÊÙ 'u Smarandache ê9Ùk'¯K
=
3
· M + O(1).
10
(5-5)
y3·5O M , d (5-4) ª
10M − 1 < 3N ≤ 10M+1 − 1
1
1
M ln 10 + ln 1 − M < ln(3N) ≤ (M + 1) ln 10 + ln 1 − M+1
10
10
1
)
ln(3N) ln(1 − 101M )
ln(3N) ln(1 − 10M+1
−
−1≤M <
−
.
ln 10
ln 10
ln 10
ln 10
1
N → +∞ , ln(1 − 10M+1
) ∼ 101M , ln(1 − 101M ) ∼ 101M .
5¿
ln 3N
−1−O
ln 10
Ï
1
10M
(ÜdªÚ (5-5) ª, áǑíÑ
ln 3N
≤M <
−O
ln 10
1
10M
,
.
X n
3
=
· ln N + O (1) .
an
10 ln 10
n≤N
ùÒ¤ ½ny².
'uùê, Ü©+ÇJÑ Xeß:
ß. 3 Smarandache 3n-digital ê¥Ø3²ê. =,
§
an = m2
(5-6)
vkê).
3©z [44] ¥, ÉïÄ ù¯K¿y² : n ´²ê
Ú ²Ïfê, a Ø´²ê. éÙ{ê n, Ü©+Ç
ß´Ä(E´úm¯K. C, ² [45] éù¯K?1
ïÄ, ?ÚÜ©)û ùß, =Ñ e¡½n:
½n 5.3. § (5-6) kê), ÙÜ©)L«Ǒ:
n
n=
n12 · (10p (p−1) i+k0 + 3)
,
p2
71
'uSmarandache¯KïÄ#?
√
√
30 p
3p
< n1 <
, i = 0, 1, 2, · · · .
+ 3),
30
3
Ù¥ p | (10
½n 5.4. é?¿ê k ≥ 1, 3 Smarandache kn-digital ê
{a (n)} ¥3 ²ê. Ù¥, § a (n) = m Ü©)
L«Ǒ
2
p (p−1) i+k0
k
2
k
Ù¥
n12 · (10p (p−1) i+k0 + k)
,
n=
p2
√
√
10
k
p
kp
< n1 <
, i = 0, 1, 2, · · · .
p2 | (10p (p−1) i+k0 + k),
10 k
k
d±þ½n´Ñ±eíØ:
íØ 5.2.1. é?¿ê b, e b
2
| (10k0 + 3),
K§ (5-6) )Ǒ
n12 · (10k0 + 3)
,
n=
b2
Ù¥
√
√
30 b
3b
< n1 <
.
30
3
Ǒ
íØ 5.2.2. é?¿ê b, e b
n=
Ù¥
√
√
10k b
kb
< n1 <
.
10k
k
2
| (10k0 + k),
K§ (5-6) )
n12 · (10k0 + k)
,
b2
Ǒ ¤½ny², ·I±eAÚn:
Ún 5.2.1. éê p, e p | (10 + 3), K p
2
k0
2
i = 0, 1, 2, · · · .
| (10p (p−1) i+k0 + 3),
y²: ´ p | (10 +3) , (p 6= 2, 5), u´ (10, p ) = 1. d Euler
½n, 10 ≡ 1 (mod p ). 5¿ p | (10 + 3), u´
10
≡ −3 (mod p ), Ù¥ i = 0, 1, 2, · · · ,
l
p | (10
+ 3), Ù¥ i = 0, 1, 2, · · · .
k
φ(p2 )
2
2
p (p−1)i+k0
2
72
p (p−1)i+k0
2
2
k0
1ÊÙ 'u Smarandache ê9Ùk'¯K
ùÒ¤ Ún 5.2.1 y².
Ún 5.2.2. éê p, e p ∤ (10 − 1), K3
ê p δ 10 ≡ 1 (mod p ).
y²: - δ = min{ d : 10 ≡ 1 (mod p), d | ( p − 1 ) }. ÏǑ p ∤
(10
− 1), ¤± p ∤ (10 − 1)
2
pδ
p−1
2
d
p−1
2
2
δ
1 + 10δ + 102δ + · · · + 10(p−1)δ ≡ p ≡ 0 (mod p),
(10δ − 1) (10(p−1)δ + 10(p−2)δ + · · · + 10δ + 1) ≡ 10p δ − 1 ≡ 0 (mod p2 ).
XJ3,ê u p | (10 − 1) u < p δ, K δ < u <
≡
p δ. w, δ | u. - u = k δ(1 < k < p), ÏǑ 1+10 +10 +· · ·+10
k 6≡ 0 (mod p), ¤± p ∤ (1 + 10 + 10 + · · · + 10
),
p ∤ (10 − 1),
u´k p ∤ (10 − 1)(1 + 10 + 10 + · · · + 10 ), = p ∤ (10 − 1),
gñ.
ùÒ¤ Ún 5.2.2 y².
Ún 5.2.3. 3ê p Úê k p | (10 + 3).
y²: é?¿ê k, ò k ©ǑXen«m:
A = {k | 10 + 3 = p p · · · p , Ù¥3α ≥ 2, 1 ≤
i ≤ r},
B = {k | 10 + 3 = p p · · · p , Ù¥3p , 1 ≤ i ≤
r÷v p ∤ (10
− 1)},
C = {k | 10 + 3 = p p · · · p , é?¿p , 1 ≤ i ≤ r, ÷v p |
(10
− 1)}.
·©±eA«¹5?Ø:
¹ 1. XJ k ∈ A, K3ê α ≥ 2 (1 ≤ i ≤ r), u
´ p | (10 + 3). Ún 5.2.3 y.
¹ 2. XJ k ∈ B, 3 p , p , . . . , p ¥3ê p,
p ∤ (10 − 1). ´ p | (10 + 3) (p, 10) = 1. dÚn 5.2.2 ,
2
u
δ
δ
2
δ
2δ
δ
2δ
α1 α2
1
2
k
2
i
(k−1)δ
(k−1)δ
2
(k−1)δ
kδ
k0
αr
r
1 2
δ
2
2
0
k
2δ
i
i
r
p−1
k
1 2
r
2
i
i
p−1
i
2
i
k
1
2
p−1
2
r
k
p2 ∤ (10δ − 1)
Ù¥ i = 0, 1, 2, · · · , k ≡ k (mod δ).
é?¿ i = 0, 1, 2, · · · , p − 1, 10 p + 3 H{ p {X.
10δ i+k1 ≡ −3(mod p),
1
δ i+k1
73
'uSmarandache¯KïÄ#?
d , e3 i, j 10 p + 3 ≡ 10 p + 3 (mod p), Ù
¥ 0 ≤ i < j < p − 1, K p | 10 (10 − 1), u´ p | (10 − 1).
=, 10 ≡ 1 (mod p ), 1 ≤ j − i ≤ p − 1. dÚn 5.2.2 , p δ ´/
X 10 ≡ 1 (mod p ) ¥ê, p δ | δ(j − i), = p | (j − i),
gñ.
u´· i (0 ≤ i < p−1) 10 p + 3 ≡ 0 (mod p),
= p | (10 + 3), e k = δ i + k , K
δ j+k1
δ i+k1
2
δ(j−i)
δ i+k1
δ(j−i)
2
δ(j−i)
2
pδ
2
δ i0 +k1
0
2
0
δ i0 +k1
0
0
1
p2 | (10k0 + 3).
¹ 3. é?¿ê p, 3 p , p , . . . , p ¥, XJ k ∈ C p |
(10
− 1), K 10
+ 3 ≡ 10 + 3 (mod p ) (j = 0, 1, · · · ). =,
p ∤ (10
+ 3), j = 0, 1, · · · .
nþ, ´
A 6= Ø ½ B 6= Ø.
d , k ∈ C 10 + 3 = p p · · · p . é?¿ p (1 ≤ i ≤ r), p |
(10
− 1). ù´ØU.
~X, k = 34 49 | (10 + 3), k ∈ A. k = 1 k ∈ B, ùÒ
¤ Ún 5.2.3 y².
½ny²: e¡·ò¤½ny². Äk, y²½n 5.3.
- n ´ k ?ê, u´l {a } ½Â,
1
p−1
2
(p−1)j+k
2
2
r
k
2
(p−1)j+k
k
1 2
r
2
i
i
pi −1
34
n
an = n · (10k+1 + 3),
½
an = n · (10k+2 + 3).
(ÜÉ [44] (J, N´Ñ±e(Ø: XJ 10 +3 ½ 10 +3
´ ²Ïfê, K a Ø´²ê. l , e a ´
²ê, K 10 + 3 ½ 10 + 3 7L´²ê. y3, ·ÏL²
ê 10 + 3 ½ 10 + 3 E§ (5-6) ê).
lÚn 5.2.1 ÚÚn 5.2.3 , 3ê p Úê k
p | (10
+ 3), Ù¥ i = 0, 1, 2, . . . .
k+1
k+2
n
k+1
k+1
n
k+2
k+2
0
2
74
p (p−1) i+k0
1ÊÙ 'u Smarandache ê9Ùk'¯K
e
10p (p−1) i+k0 + 3
,
p2
√
√
3 n2
30 p
3p
< n1 <
), 3n = 21 ·(10p (p−1) i+k0 +3),
30
3
p
n = n12 ·
=
1
3 n2
< 21 < 1 (
10
p
u´
K
10p (p−1) i+k0 + 3
· (10p (p−1) i+k0 + 3)
p2
10p (p−1) i+k0 + 3 2
= n12 · p2 · (
) .
p2
an = n12 ·
e
10p (p−1) i+k0 + 3
,
m = n1 ·
p
Ù¥
√
√
30 p
3p
< n1 <
,
i = 0, 1, 2, · · · ,
30
3
(5-7)
5.3
.
u´ (5-7) ´§ (5-6) ), ùÒ¤ ½n y² ^aq
{=y²½n 5.4.
75
'uSmarandache¯KïÄ#?
18Ù ¹ Smarandache ¼ê§
6.1
¹ Smarandache ¼êÚ Smarandache
LCM ¼ê§
31Ù¥·Ñ Smarandache LCM ¼ê½Â, =é?
¿ê n, SL(n) ½ÂǑê k, n | [1, 2, · · · , k], ù
p [1, 2, · · · , k] L« 1, 2, · · · , k úê. ØJy, n I
O©)ªǑ n = p p · · · p ,
αk
k
α1 α2
1 2
SL(n) = max{pα1 1 , pα2 2 , · · · , pαk k }.
e¡·0 ±eù¼ê:
½Â 6.1. Smarandache ¼ê Z(n) ½ÂǑê k,
n | k(k 2+ 1) , =
m(m + 1)
Z(n) = min m : m ∈ N, n |
2
.
'uù¼ê5, Ǒ,·8Øõ, ®áÚ
ØÆö?1ïÄ, ¿¼ kdïĤJ. ~X, Kenichiro
Kashihara Ú David Gorski ïÄ ¼ê Z(n) 5, ¿ y²
k(Jµ
é?¿ê p ≥ 3, Z(p) = p − 1;
é?¿ê p ≥ 3 Ú?¿ k ∈ N, Z(p ) = p − 1;
é?¿ k ∈ N, Z(2 ) = 2 − 1;
é?¿ê k > 0, XJ n ØUL«Ǒ 2 /ª, o Z(n) < n.
oçï [46] ïÄ §
k
k
k
k+1
k
Z(n) = SL(n), Z(n) + 1 = SL(n)
)5, ¿|^9)Û{¼ ùü§¤kê).
äN/`ǑÒ´y² e¡ü(Ø:
76
18Ù ¹ Smarandache ¼ê§
½n 6.1. é?¿ê n > 1, §
Z(n) = SL(n)
¤á = n = p · m, Ù¥ p ǑÛê, a ≥ 1, 9 m Ǒ p 2+ 1 ?
¿u 1 Ïê.
½n 6.2. é?¿ê n > 1, §
a
a
Z(n) + 1 = SL(n)
¤á = n = p · m, Ù¥ p ǑÛê, a ≥ 1, 9 m Ǒ p 2− 1 ?
¿Ïê.
y²: ±e·òѽny². Äk·y²½n 6.1.
n = 1, w,k Z(n) = SL(n). ²y n = 2, 3, 4, 5 , n Ø÷
v§ Z(n) = SL(n), u´b½ n ≥ 6 ÷v§ Z(n) = SL(n), Ø
n = p p · · · p Ǒ n IO©)ª, p < p < p · · · < p , ¿
- Z(n) = SL(n) = k, d¼ê Z(n) 9 SL(n) ½Â k ´
ê n ÷ve¡üت:
a
a
a1 a2
1 2
ar
r
1
n | [1, 2, · · · , k], n |
2
3
r
k(k + 1)
.
2
d ¼ ê SL(n) 5 : é ? ¿ ê n, k SL(n) =
max {p , p , · · · , p }, dd±íÑ k = p .
I. k ´Ûê:
(1) a = 1, ´ Z(n) = SL(n) = p, â SL(n) þã5
, - n = p · m, m = p p · · · p , Ù¥ a ≥ 0 p ≥ p , i =
a1
1
a2
2
ar
r
a
a1 a2
1 2
ai
i
i
ai
i
1, 2, 3, · · · , r − 1.
dw,k SL(n) = p, qk n | k(k 2+ 1) , , p · m | p(p 2+ 1) ,
= m | p +2 1 .
m = 1 , n = p, Z(p) = p − 1, SL(p) = p w, Z(n) 6= SL(n),
¤± m = 1 Ø÷v§.
m 6= 1 , SL(p · m) = p Z(p · m) = p, ù´ÏǑ m Ø
p(p − 1)
Ø 2 , ÄK m | p +2 1 gñ.
77
'uSmarandache¯KïÄ#?
¤± Z(m · p) = SL(m · p) = p, n = p · m, m | (p +2 1) m > 1.
(2) a 6= 1, ·k Z(n) = SL(n) = p , Ón- n = p ·m , m =
p · · · p , Ù¥ a ≥ 0
p ≥ p , i = 1, 2, 3, · · · , r − 1. d (1) ,
a
pa11 a22
ai
i
i
a
a
1
1
ai
i
pa + 1
,
m1 |
2
m1 = 1 , n = pa , Z(pa ) = pa − 1, SL(pa ) = pa ,
Z(n) 6=
m1 = 1
.
SL(n),
a
m1 6= 1 , SL(p ·m1 ) = pa
Z(pa ·m1 ) = pa ,
m1
a
a a
p
−
1
pa + 1
p (p − 1)
,
,
, (m1 , pa ) = 1,
, m1 |
m1 |
2
2
2
.
(pa + 1)
Z(pa · m1 ) = SL(pa · m1 ),
n = pa · m1 , m1 |
2
m1 > 1.
II.
k
:
Z(n) = SL(n) = k, k = pa :
2×3
,
(1)
a = 1,
Z(n) = SL(n) = 2,
n|
n | 3,
2
n=1
n = 3,
n≥6
.
p=2 ,
.
a
a
(2) a 6= 1,
Z(n) = SL(n) = 2 ,
n = 2 ·m2 , m2 =
a1 a2
ai
ai
a
p1 p2 · · · pi ,
ai ≥ 0
2 ≥ pi , i = 1, 2, 3, · · · , r − 1.
:
a
a a
(2
−
1)
2
(2
−
1)
,
.
m|
2a m |
2
2
a
m=1 ,n=2 ,
Z(2a ) = 2a+1 − 1, SL(2a ) = 2a ,
2a+1 − 1 = 2a ,
a = 0,
n = 1,
n≥6
.
p=2
.
m 6= 1 ,
SL(2a · m) = 2a ,
Z(2a m) = 2a ,
a a
2 (2 − 1)
Z(n)
: 2a m |
2m | 2a − 1,
.
,
2
p = 2a
.
w,
¤±
Ø÷v§
ù´ÏǑ Ø
Ø
ÄK d
´
ù
gñ
¤±
´óê
d
·k
du
=
½
w,ù
gñ ¤± § )
·k
ÓnÙ¥
Xþã
=
w,k
÷
v§7Lk
=
ù
gñ ¤
± § )
w,
÷v§I
d ½Â
u´k
w,ؤá
¤±
§ )
y3y²½n 6.2. ½n 6.1 y²{q, ùpÑV
y²L§. w, n = 1, 2 Ø÷v§ Z(n) + 1 = SL(n). u´b½ n ≥ 3
÷v§ Z(n) + 1 = SL(n), Ø n = p p · · · p Ǒ n IO
©)ª, ¿- Z(n) + 1 = SL(n) = k, d¼ê Z(n) 9 SL(n) ½Â
k ´ê n ÷ve¡üت:
a1 a2
1 2
n | [1, 2, · · · , k], n |
78
k(k − 1)
.
2
ar
r
18Ù ¹ Smarandache ¼ê§
d¼ê SL(n) 5: dd±íÑ k = p
I. k ´Ûê:
(1) a = 1, ·k Z(n) + 1 = SL(n), â SL(n) þã5
, - n = p · m, m = p p · · · p , Ù¥ a ≥ 0 p ≥ p , i =
a
a1 a2
1 2
ai
i
ai
i
i
1, 2, 3, · · · , r − 1.
dw,k SL(n) = p, qk n | k(k 2− 1) , , p · m | p(p 2− 1) ,
= m | p −2 1 .
m = 1 , n = p, Z(p − 1) = p − 1, SL(p) = p, w, Z(n) + 1 =
SL(n), ¤± m = 1 ÷v§.
m 6= 1 , SL(p · m) = p Z(p · m) = p − 1, ù´ÏǑd pm |
p(p − 1)
Z(n) ≤ p − 1, â Z(n) 5: Z(n) ≥ max{Z(m) :
2
m | n}, ´ Z(n) ≥ Z(p) = p − 1, Z(p) = p − 1. d÷v
§ Z(n) + 1 = SL(n).
(2) a 6= 1, ·k Z(n) + 1 = SL(n) = p , Ón- n =
p ·m , m = p p · · · p , Ù¥ a ≥ 0 p ≥ p , i = 1, 2, 3, · · · , r−1.
dw,k SL(p) = p Ú m | p 2− 1 .
m = 1 , n = p , Z(p ) = p − 1, SL(p ) = p , w, Z(n)+1 =
SL(n), ¤± m = 1 ÷v§.
m 6= 1 , SL(p · m ) = p Z(p · m ) = p − 1, ù´Ï
Ǒd p m | p (p 2− 1) , Z(n) ≤ p − 1, â Z(n) 5: Z(n) ≥
max{Z(m) : m | n}, ´ Z(n) ≥ Z(p ) = p − 1, Z(p ) = p − 1. d
÷v§ Z(n) + 1 = SL(n).
II. k ´óê:
d Z(n) + 1 = SL(n) = k, k = p :
1×2
,n=1
(1) a = 1, ·k Z(n) + 1 = SL(n) = 2, du n |
2
n ≥ 3, gñ. w,Ø÷v§. ¤± p = 2 , § ).
(2) a 6= 1, ·k Z(n) + 1 = SL(n) = 2 , Ón- n =
2 ·m , m = p p · · · p , Ù¥ a ≥ 0 2 ≥ p , i = 1, 2, 3, · · · , r−1.
Xþã: 2 m | 2 (2 2− 1) , = m | (2 2− 1) . ¤± p = 2 , § ).
nܱþA«¹, ·áǑ¤½n 6.2 y².
a
a
1
a1 a2
1 2
1
ai
i
i
a
1
a
1
ai
i
a
a
a
a
a
a
1
a
1
a
a
a
a
1
a
a
1
a
1
a
a
a
a
a
a
a
2
2
a
a1 a2
1 2
a
a
ai
i
i
a
a
ai
i
'u Smarandache ¼ê Z(n) Ú Smarandache LCM ¼ê SL(n),
79
'uSmarandache¯KïÄ#?
Ç! [47] ǑéÙ?1 ïÄ, ¿Ñ §
Z(n) + SL(n) = n
¤kê), =Ñ e¡½n:
½n 6.3. é?¿ê n, §
Z(n) + SL(n) = n
¤kê)L«Ǒ: n = 2 p , Ù¥ p > 2 ´ê, k Ú α ´÷v
±e^ê:
1. 2 > p , p | (2 − 1).
2. 2 < p , 2 | (p − 1), 2
∤ (p − 1).
y²: e¡·ò^{¿(ÜÓ{g¤½ny².
w, n = 6 ´§ Z(n) + SL(n) = n ). y3·b
½ n = 2 · s, Ù¥ s ǑÛê, e¡©A«¹5?Ø:
(a). e n ǑÛê, K k = 0, n = s.
(1) - s = 1, K Z(1) = 1, SL(1) = 1. u´ Z(1) + SL(1) = 2 6= 1.
(2) - s = p, p ´Ûê, K SL(p) = p, Z(p) = p − 1. u´
k α
k
α
α
k
k
α
k
α
k+1
α
k
Z(p) + SL(p) = 2p − 1 6= p.
´Ûê Ǒê u´
l k
Ù¥
ê ´ ê =
(3)
s = pα , p
,α
,
SL (pα ) = pα , Z(pα ) =
pα − 1.
Z(pα ) + SL(pα ) = 2pα − 1 6= pα .
s = pα · pα1 1 pα2 2 · · · pαr r ,
p, p1 , p2 , · · · , pr
,α
(4)
α
,p
s
. ,
´Ûê Ǒ
pα = max {pα , pα1 1 , pα2 2 , · · · , pαr r } .
- p p · · · p = t, K s = p · t. u´ SL(n) = p .
e Z(n) = n − SL(n) = p (t − 1), d Z(n) ½Â,
α1 α2
1 2
αr
r
α
α
α
pα · t |
pα (t − 1)[pα (t − 1) + 1]
.
2
t | (p − 1). d, e m = p − 1, Ó n = p · t
Ø m(m2+ 1) . 5¿ p − 1 < p (t − 1). Ï 3d¹e§ ).
α
α
α
80
α
α
18Ù ¹ Smarandache ¼ê§
d (1)-(4) § Ûê).
(b). e n Ǒóê, K k 6= 0.
(1) - s = 1, K n = 2 , u´ Z(2 ) = 2
− 1, SL(2 ) = 2 . l
k
k
k+1
k
k
Z(2k ) + SL(2k ) = 3 · 2k − 1 6= 2k .
- s = p, K n = 2 · p, p ǑÛê, k Ǒê.
d, e 2 > p, K SL(n) = 2 , e÷v Z(n) + SL(n) = n, K
k
(2)
k
k
Z(n) = m = n − SL(n) = 2k p − 2k = 2k (p − 1).
d Z(n) ½Â,
2k · p |
2k (p − 1)(2k (p − 1) + 1)
.
2
u´ p | (2 − 1). y3·5y² m = 2 (p − 1) ´÷v Z(n)
½Â. d Z(n) 5
, Z(n) ≥ 2
− 1,
Z(n) U
p−1
0u 2 − 1 Ú 2 · 2 m, kXeü«:
k
k
k+1
k+1
k+1
p−1
− 1.
2
p−1
}.
2k+1 · s1 − 1, s1 ∈ {1, 2, · · · ,
2
A. 2k+1 − 1, 2k+1 · 2 − 1, · · · , 2k+1 ·
Pù|êǑ
1 ≤ 2s
1
B. 2
k+1
k+1
, 2
Pù|êǑ
2k+1 · s1 − 1 ≡ 2s1 − 1 (mod p).
− 1 ≤ p − 2.
k+1
u´
p ∤ (2
p−1
k+1
· s1 − 1).
− 1).
2
p−1
− 1}.
2k+1 · s2 , s2 ∈ {1, 2, · · · ,
2
· 2, · · · , 2
·(
2k+1 · s2 ≡ 2s2 (mod p).
2 ≤ 2s ≤ p − 3. u´ p ∤ 2 · s .
e 2 < p, K SL(n) = p, e÷v Z(n) + SL(n) = n, K
2
k+1
2
k
Z(n) = m = n − SL(n) = p(2k − 1).
n = 2k · p |
p(2k − 1)(p(2k − 1) + 1)
.
2
81
'uSmarandache¯KïÄ#?
Ï , 2 | [(2 − 1)p + 1]. =, 2 | (p − 1), 2 ∤ (p − 1).
ey m = p(2 − 1) ´÷v Z(n) ½Â. d Z(n) 5,
Z(n) ≥ p − 1, Z(n) 3 p − 1 Ú p(2 − 1) mUǑ:
C. p − 1, p · 2 − 1, · · · , p · (2 − 1) − 1.
Pù|êǑ p · s − 1, s ∈ {1, 2, · · · , 2 − 1}.
k+1
k
k
k+1
k
k
k
1
k
1
p · s1 − 1 ≡ s1 − 1 (mod 2k ).
0 ≤ s − 1 ≤ 2 − 2. s − 1 = 0 , s
| (p − 1). l gñ. 2 ∤ (p · s − 1).
D. p, p · 2, · · · , p · (2 − 2).
Pù|êǑ p · s , s ∈ {1, 2, · · · , 2 − 2}.
k
1
2
k+1
1
1
k
= 1,
u´ m = p − 1,
1
k
2
k
2
p · s2 ≡ s2 (mod 2k ).
1 ≤ s ≤ 2 − 2. u´ 2 ∤ p · s .
(3) - s = p , n = 2 · p , p ǑÛê, k !α Ǒê.
d, e 2 > p , K SL(n) = 2 . Z(n) + SL(n) = n ,
Z(n) = m = n − SL(n) = 2 (p − 1). d Z(n) ½Â,
k
2
α
k
k
k
2
α
α
k
k
2k · pα |
α
2k (pα − 1)(2k (pα − 1) + 1)
.
2
Ïd p | (2 − 1).
ey m = 2 (p − 1) ´÷v Z(n) ½Â
. d Z(n) 5,
p −1
k Z(n) ≥ 2 − 1, Z(n) 3 2 − 1 Ú 2 · 2 mUk:
α
k
k
α
k+1
k+1
k+1
α
pα − 1
− 1.
2α
p −1
}.
2k+1 · s1 − 1, s1 ∈ {1, 2, · · · ,
2
A. 2k+1 − 1, 2k+1 · 2 − 1, · · · , 2k+1 ·
Pù|êǑ
1 ≤ 2s
1
2k+1 · s1 − 1 ≡ 2s1 − 1 (mod pα ).
− 1 ≤ pα − 2.
u´ p
∤ (2k+1 · s1 − 1).
p −1
− 1).
2 α
p −1
− 1}.
2k+1 · s2 , s2 ∈ {1, 2, · · · ,
2
B. 2k+1, 2k+1 · 2, · · · , 2k+1 · (
Pù|êǑ
α
α
2k+1 · s2 ≡ 2s2 (mod pα ).
82
18Ù ¹ Smarandache ¼ê§
2 ≤ 2s ≤ p − 3. u´ p ∤ 2 · s .
e 2 < p , K SL(n) = p , d Z(n) + SL(n) = n íÑ Z(n) =
m = n − SL(n) = p 2 − 1 . Ï ,
α
2
k
α
k+1
2
α
k
α
pα 2k − 1 (pα 2k − 1 + 1)
n=2 ·p |
.
2
k
α
dd´íÑ 2 | (p − 1) 2 ∤ (p − 1).
ey m = p (2 − 1) ´÷v Z(n) ½Â. d Z(n) ½Â,
k Z(n) ≥ p − 1, Z(n) 3 p − 1 Ú p (2 − 1) mUǑ:
C. p − 1, p · 2 − 1, · · · , p · (2 − 1) − 1.
Pù|êǑ p · s − 1, s ∈ {1, 2, · · · , 2 − 1}.
k
α
α
k+1
α
k
α
α
α
α
α
α
α
1
k
k
k
1
pα · s1 − 1 ≡ s1 − 1 (mod 2k ).
0 ≤ s − 1 ≤ 2 − 2. s − 1 = 0 , s = 1, m = p
| (p − 1). dd·gñ. Ï 2 ∤ (p · s − 1).
D. p , p · 2, · · · , p · (2 − 2).
Pù|êǑ p · s , s ∈ {1, 2, · · · , 2 − 2}.
k
1
2
k+1
1
α
α
k
α
α
α
2
α
1
α
− 1,
1
k
k
2
pα · s2 ≡ s2 (mod 2k ).
1 ≤ s ≤ 2 − 2. u´ 2 ∤ p · s .
(4) - n = 2 · s, Ù¥ s = p · p p · · · p , p, p , p , · · · , p ´
Ûê, α Ǒê, p ´ s ê. =,
2
k
k
k
α
α
2
α1 α2
1 2
αr
r
1
2
r
α
pα = max {pα , pα1 1 , pα2 2 , · · · , pαr r } .
3ù«¹e, ·y²e n knØÓÏf, § Z(n)+
SL(n) = n ).
- a = 2 · p p · · · p , K n = 2a · p , α ≥ 1, (2a, p ) = 1, p Ǒ
ê p ≥ 3.
e¡·©ü«¹5?Ø:
e 2 > p , K SL(n) = 2 . = Z(n) = n − 2 §kê).
l (2a, p ) = 1 ·Ó{§
k−1
k
α
α1 α2
1 2
αr
r
α
k
α
k
α
4ax ≡ 1 (mod pα )
83
'uSmarandache¯KïÄ#?
kê), u´Ó{§
16a2 x2 ≡ 1 (mod pα )
kê). )Ǒ y, p1 ≤−y1≤ p − 1, K p − y ½Ǒ§).
l 1 ≤ y ≤ 2 . l 16a y ≡ 1 (mod p ) p
(4ay − 1) ½ p | (4ay + 1).
A. e p | (4ay − 1), K
α
α
α
2 2
α
α
α
|
α
n = 2a · pα |
4ay(4ay − 1)
.
2
4a(pα − 1)
Z(n) = m ≤ 4ay − 1 ≤
− 1 = n − 2a − 1.
2
B.
ep
α
| (4ay + 1),
K
n = 2a · pα |
4ay(4ay + 1)
.
2
4a(pα − 1)
= n − 2a.
Z(n) = m ≤ 4ay ≤
2
w, 2 < a, Z(n) = n − 2 , Z(n) > n − a. d§ ).
e 2 < p , K SL(n) = p . = Z(n) = n − p = p (2a − 1)
§kê).
l (2a, p ) = 1 Ó{§
k
k
k
α
α
α
α
α
kê), u´Ó{§
pα x ≡ 1 (mod 2a)
p2α x2 ≡ 1 (mod 2a)
kê). )Ǒ2ay, −1 1 ≤ y ≤ 2a − 1, K 2a − y ǑǑ§ê
). 1 ≤ y ≤ 2 .
d p x ≡ 1 (mod 2a) 2a | (p y − 1) ½ 2a | (p y + 1).
2α 2
84
α
α
18Ù ¹ Smarandache ¼ê§
C. e 2a | (p y − 1), K
α
y
Ǒóê.
D.
y
n = 2a · pα |
pα y(pα y − 1)
.
2
Z(n) = m ≤ pα y − 1 ≤ pα ·
e 2a | (p y + 1), K
2a − 1
− 1.
2
α
Ǒóê.
n = 2a · pα |
pα y(pα y + 1)
.
2
Z(n) = m ≤ pα y ≤ pα ·
2a − 1
.
2
u´ Z(n) = n − p Ø´÷v Z(n) ½Â. d§
ê).
ùÒ¤ ½ny².
α
6.2
¹ Smarandache ¼ê Smarandache ¼ê§
þ!ïÄ ü¹ Smarandache LCM ¼ê Smarandache
¼ê§, ùÜ©·UY&?§)5¯K. Äu©z [48]
Äg, ·Ì0 o Ú|ïĤJ, =|^Ú|Ü
{ïļê§
Z(n) + S(n) = kn
(6-1)
)5, Ù¥ k Ǒ?¿ê. äN`Ò´y² e¡½n:
½n 6.4. k = 1 , n = 6, 12 ´§ (6-1) =küAÏ
ê); dÙ§ê n ÷v§ (6-1) p −=
n = p·u ½
1
ö n = p · 2 · u, Ù¥ p ≥ 7 Ǒê, 2 | p − 1, u ´ 2 ?¿
u 1 ÛêÏf.
α
α
α
85
'uSmarandache¯KïÄ#?
½n 6.5. k = 2 , n = 1 ´§ (6-1) AÏ); Ù§
ê n ÷v§ (6-1) = n = p · u, Ù¥ p ≥ 5 Ǒê, u ´ p −2 1
?¿óêÏf.
5¿, Z(n) ≤ 2n − 1 9 S(n) ≤ n, ¤± k > 2 , § (6-1) v
kê). l½n 6.4 éN´é Fermat ê, =/X F = 2 + 1
ê, Ù¥ n ≥ 1 Ǒê. ~X, F = 5, F = 17, F = 257, . d½
n 6.4 ØJíÑe¡íØ:
íØ 6.2.1. k = 1 , XJ n ¹k Fermat Ïf, K n ØU
÷v§ (6-1).
½ny²: ·|^9|Ü{5¤½ny². Äky
²½n 6.4. ù k = 1. 5¿ Z(1)+S(1) = 2 6= 1, Z(2)+S(2) = 5 6= 3,
Z(3) + S(3) = 5 6= 3, Z(4) + S(4) = 11 6= 4, Z(5) + S(5) = 9 6= 5,
Z(6) + S(6) = 6, ¤± n = 1, 2, · · · , 5 Ø÷v§ (6-1), n = 6 ÷v
§ (6-1), u´Ù§ n ÷v§ (6-1) ½k n ≥ 7, n =
p p · · · p Ǒ n IO©)ª, dd Smarandache ¼ê5
n
1
α1 α2
1 2
2
2n
3
αk
k
S(n) = max {S(pαi i )} = S(pα ) = u · p,
1≤i≤k
Ù¥ p Ǒ, p , α Ǒ, α , u ≤ α.
y35¿ p | n 9 S(n) = u · p, ¤± n = p
§ (6-1) k
i
i
α
· n1 .
n ÷v
Z(n) + u · p = pα · n1 .
(6-2)
Äky²3 (6-2) ª¥ α = 1. ÄKb½ α ≥ 2, u´d (6-2) ªáǑ
íÑ p | Z(n) = m. d Z(n) = m ½Â n = p · n Ø m(m2+ 1) ,
(m, m + 1) = 1, ¤± p | m. l d (6-2) ªíÑ p | S(n) = u · p,
= p | u, l p ≤ u. ´,¡, 5¿ S(n) = S(p ) = u · p,
d Smarandache ¼ê S(n) 5 u ≤ α, ¤± p ≤ u ≤ α. dªé
Ûê p w,ؤá. XJ p = 2, K α ≥ 3 , p ≤ u ≤ α Ǒؤ
á. u´k«U: u = α = 2. 5¿ n ≥ 5 ±9 S(n) = 4, ¤±d
k«U: n = 12, n = 12 ´§ (6-1) ). ¤±XJÙ
§ê n ÷v§ (6-1), K (6-2) ª¥7k S(n) = p, α = u = 1. 3
ù«¹e, - Z(n) = m = p · v, K (6-2) ª¤Ǒ
α
1
α
α−1
α
α−1
α
α−1
α−1
v + 1 = n1 ,
86
18Ù ¹ Smarandache ¼ê§
½ö n = v + 1, = n = p · (v + 1), Z(n) = p · v. 2d Z(n) ½Â
n = p · (v + 1) Ø
1
Z(n)(Z(n) + 1)
pv · (pv + 1)
=
,
2
2
½ö (v + 1) Ø
Z(n)(Z(n) + 1)
v · (pv + 1)
=
.
2
2
5¿ (v + 1, v) = 1, ¤± v ǑóêdþªáǑíÑ
v+1 |
p−1
p−1
. w,é
pv + p − p + 1, = v + 1 | p − 1 ½ö v + 1 |
2
?¿u 1 ÛêÏf r, n = p · r ´§ (6-1)2 ). ÏǑd
k Z(p · r) = p · (r − 1).
v ǑÛê, d (v + 1) Ø
Z(n)(Z(n) + 1)
v · (pv + 1)
=
,
2
2
ddíÑ
v+1|
(pv + 1)
(p − 1)(v + 1) + v − p + 2
=
.
2
2
p − 1 = (2k + 1) · (v + 1).
u´ p − 1 = 2 · h, Ù¥ h ǑÛê, K v 2+ 1 Ǒu h ÛêÏf. N
´yé?¿Ûê r | h r < h, n = p · 2 · r Ǒ§ (6-1) ). ÏǑ
dk
β
β
β
Z(p · 2β · r) = p · (2β · r − 1).
¯¢þ, 5¿ r | h, ÄkN´íÑ p · 2
β
·r
Ø
p · (2β · r − 1) · (p · (2β · r − 1) + 1)
.
2
Ùg m < p · (2
d Z(n) ½Â
β
· r − 1)
, ØUk p · 2
β
·r
Ø m(m2+ 1) . u´
Z(p · 2β · r) = p · (2β · r − 1).
87
'uSmarandache¯KïÄ#?
u´y² ½n 6.4.
y3y²½n 6.5. d5¿ k = 2, ¤± n = 1 , k Z(1) +
S(1) = 2, = n = 1 ´§ (6-1) ). XJ§ (6-1) kÙ§
ê) n > 2, Kd½n 6.4 y²{ØJíÑ n = p · u, Ù¥ p ≥ 5
Ǒê, S(u) < p. \§ (6-1)
Z(p · u) + S(p · u) = 2p · u.
ddªáǑíÑ p Ø Z(p·u). Z(p·u) = p·v, K v = 2u−1. d Z(n)
− 1) + 1)
p−1
½Â p · u Ø p(2u − 1)(p(2u
, l u Ø
. d ,
2
2
u Ǒ p −2 1 ?u 1 ÛêÏê, Z(p · u) = p · (u − 1), ¤±d
n = p · u Ø´§ (6-1) ê); u Ǒ p −2 1 ?óêÏê
k
Z(p · u) = p · (2u − 1),
d
Z(p · u) + S(p · u) = 2p · u.
u´¤ ½n 6.5 y².
d½n 6.4 ØJíÑ©¥íØ. ¯¢þ½n 6.4 ¥êØU
´ Fermat ê, ÏǑ p Ǒ Fermat ê, p − 1 vku 1 ÛêÏ
f.
6.3
'u Smarandache ¼êüß
©z [49] Ú? Smarandache p¼ê S (n):
½Â 6.2. S (n) ½ÂǑ÷v y | n! 1 ≤ y ≤ m ê m,
c
=
c
Sc (n) = max{m : y | n!, 1 ≤ y ≤ m, m + 1 ∤ n!}.
~X, S (n) AǑ: S (1) = 1, S (2) = 2, S (3) = 3, S (4) =
c
c
c
c
c
4, Sc (5) = 6, Sc (6) = 6, Sc (7) = 10, Sc (8) = 10, Sc (9) = 10, Sc (10) =
10, Sc (11) = 12, Sc (12) = 12, Sc (13) = 16, Sc (14) = 16, Sc (15) = 16, · · · .
88
18Ù ¹ Smarandache ¼ê§
©z [49] ïÄ S (n) 5, ¿y² ±e(Ø: e S (n) =
n 6= 3, K x + 1 ´u n ê.
©z [50] Ú? Smarandache éó¼ê Z (n):
½Â 6.3. Z (n) ½ÂǑ÷v P k Ø n ê m, =
c
x,
c
∗
m
∗
k=1
m(m + 1)
|n .
Z (n) = max m :
2
∗
©z [51] ïÄ Z (n) 5, (J. ©z [52]
¥ïÄ ùn¼êm'X§ Z(n) + Z (n) = n S (n) =
Z (n) + n, (J, ¿JÑ )ûß:
ß 1. § Z(n) + Z (n) = n kkóê), ǑN=kó
ê)Ǒ n = 6.
ß 2. § S (n) = Z (n) + n )Ǒ p , Ù¥ p Ǒê, 2 ∤ α,
p + 2 ǑǑê.
ïÄ ±þ¯K, e¡ü½n:
½n 6.6. n Ǒóê, § Z(n) + Z (n) = n )k n = 6.
½n 6.7. § S (n) = Z (n) + n )Ǒ p , Ù¥ p Ǒê, 2 ∤ α,
p + 2 ǑǑê, ±9÷v^ a(2a − 1) ∤ n (a > 1), n + 2 Ǒê, n Ǒ
ê.
3y²½n , ·kÑe¡:
Ún 6.3.1. e S (n) = x ∈ Z, n 6= 3, K x + 1 Ǒu n
ê.
y²: ©z [49].
dd, S (n) Ø 3 n = 1, n = 3 ǑÛê , 3Ù{¹e
Ñ´óê.
∗
∗
c
∗
∗
∗
c
α
α
∗
c
∗
α
α
c
c
89
'uSmarandache¯KïÄ#?
Ún 6.3.2.
(
Z ∗ (pα ) =
2, p 6= 3,
1, p = 3.
y²: ©z [51].
Ún 6.3.3. e n ≡ 0 (mod a(2a − 1)), Kk Z (n) ≥ 2a > 1.
y²: ©z [51].
Ún 6.3.4.
√
∗
8n + 1 − 1
.
2
Z ∗ (n) ≤
y²: ©z [51].
Ún 6.3.5. n = p
Ǒ n IO©)ª, k
α0 α1 α2
0 p1 p2
Z(n) ≤ n −
· · · pαk k (p0 = 2, pi ≥ 3, k ≥ 1, αi ≥ 1)
n
min{pα0 0 , pα1 1 , pα2 2 , · · ·
, pαk k }
.
y²: n = p p p · · · p (p = 2, p ≥ 3, k ≥ 1, α ≥ 1) ǑÙ
IO©)ª, ©ü«¹5y²:
(i) n = 2kp , α ≥ 1, (2k, p ) = 1, p ≥ 3 Ǒê, dÓ{§ 4kx ≡
1 (mod p ) k), Ó{§ 16k x ≡ 1 (mod p ) k), Ù)Ø
Ǒ y, Kp 1−≤1 y ≤ p − 1, q p − y ½Ǒ ¡Ó{§), K
1 ≤ y ≤ 2 . d 16k x ≡ 1 (mod p ), K p | (4ky − 1)(4ky + 1),
(4ky − 1, 4ky + 1) = 1, u´ p | 4ky − 1 ½ p | 4ky + 1.
e p | 4ky − 1, K n = 2kp | 4ky(4ky2 − 1) , l
αk
k
α0 α1 α2
0 1 2
α
0
i
i
α
α
2 2
α
α
α
α
2 2
α
α
α
α
α
α
1
4k(pα − 1)
− 1 ≤ n − 2k − 1 ≤ (1 − α )n
2
p
n
≤ n−
.
min{pα0 0 , pα1 1 , pα2 2 , · · · , pαk k }
Z(n) = m ≤ 4ky − 1 ≤
ep
α
| 4ky + 1,
K n = 2kp
Z(n) = m ≤ 4ky ≤
90
α
|
4ky(4ky + 1)
,
2
l Ǒk
1
4k(pα − 1)
≤ n − 2k = (1 − α )n
2
p
18Ù ¹ Smarandache ¼ê§
≤ n−
n
min{pα0 0 , pα1 1 , pα2 2 , · · ·
ǑÓ{§
= ÄK
÷vÓ{§
§¥7k÷v
½
e
, pαk k }
.
KÓ{§
þ7k) ǑÛê
) e
K
K
üÓ{
) K
K
n = 2α (2k + 1), (α ≥ 1, k ≥ 1),
(2k + 1)x ≡
(ii)
1 (mod 2α+1 )
(2k + 1)x ≡ −1 (mod 2α+1 )
,
,
α
α+1
α
(2k + 1)x ≡ 1 (mod 2 )
,
1 ≤ a ≤ 2 − 1,
a
α
α+1
α+1
α+1
α
α
,
2 +1 ≤ a ≤ 2
− 1,
2
−a ≤ 2
− 2 − 1 = 2 − 1,
α+1
α+1
2
−a
(2k + 1)x ≡ −1 (mod 2 ),
1 ≤ a ≤ 2α − 1
a,
2α+1 | (2k + 1)a + 1
2α+1 | (2k + 1)a − 1,
2α+1 | (2k + 1)a + 1,
2α+1(2k + 1) | [(2k + 1)a + 1](2k + 1)a,
l
2
1
Z(n) ≤ a(2k + 1) ≤ (2α − 1)(2k + 1) ≤ (1 − α )n
2
n
≤ n−
.
min{pα0 0 , pα1 1 , pα2 2 , · · · , pαk k }
α+1
| (2k + 1)a − 1
Z(n) ≤ (1 −
, ÓnǑk
1
n
)n
≤
n
−
.
α
α
0
1
2α
min{p0 , p1 , pα2 2 , · · · , pαk k }
nÜ (i), (ii), ·k, n = p
1, α ≥ 1) ǑÙIO©)ª, K
α0 α1 α2
0 p1 p2
· · · pαk k (p0 = 2, pi ≥ 3, k ≥
i
Z(n) ≤ n −
n
min{pα0 0 , pα1 1 , pα2 2 , · · ·
, pαk k }
.
e¡·Ñ½ny².
½n 6.6 y²: ·©ü«¹5y².
(1) n knØÓÏf, = n = p p p · · · p
2, k ≥ 1, α ≥ 1) ´ Ù I O © ) ª, Ǒ Ö B, min{p , p , p , · · · , p }, K
α0 α1 α2
0 1 2
i
α0
0
α1
1
n
i
p2α
i
α2
2
αk
k
α
+
αk
k
(p0 =
=
pαi i
α
i−1
i+1
pα0 0 pα1 1 pα2 2 · · · pi−1
pi+1
· · · pαk k
1
1
=
+ αi > 2.
αi
αi
pi
pi
pi
91
'uSmarandache¯KïÄ#?
l
Ún
4n2 4n
, 2αi + αi + 1 > 8n + 1,
pi
pi
6.3.5,
k
?
n
>
pαi i
n
Z(n) + Z (n) ≤ n − αi +
pi
∗
√
8n + 1 − 1
,
2
u´dÚn 6.3.4
√
8n + 1 − 1
< n.
2
Ǒê ©ü«¹5y²
K
e ´u Ûê K
þ´ êg
pgñ l Ǒóê
K
q
u´
e Ǒ§
) K
?
Kk
gñ
d Ø´§)
e
K
d
k
u´
e Ǒ
) K
?
§
Ï
Kk
½
gñ
K
l
u´
q
ùq©ü«¹
e
k
K
k
l
K
=
Ǒ§)
e
K
l
K
).
.
(2) n = 2α q β (α ≥ 1, β ≥ 0, q ≥ 3
∗
α β
(i)
Z (n) = 2a,
a(2a + 1) | 2 q .
a
1
,
a
2a + 1
q
,
a
2a + 1
,
a
,
α
γ
β
γ+1
β
a|2 ,
a = 2 (0 ≤ γ ≤ α),
(2a + 1) | q ,
(2
+ 1) | q .
∗
α β
α β
n
Z(n) + Z (n) = n
,
Z(2 q ) = 2 q − 2γ+1 ,
2α+1 q β | (2α q β − 2γ+1 )(2α q β − 2γ+1 + 1),
q β | 2γ+1 − 1
.
n
.
(ii)
Z ∗ (n) = 2a − 1,
a(2a − 1) | 2α q β .
(a, 2a − 1) = 1,
γ
β
γ+1
a = 2 (0 ≤ γ ≤ α),
(2a − 1) | q ,
(2
− 1) | q β .
n
∗
α β
α β
γ+1
α+1 β
Z(n) + Z (n) = n
,
Z(2 q ) = 2 q − 2
+ 1,
2 q |
α β
γ+1
α β
γ+1
α β
γ+1
α β
γ+1
(2 q −2 +1)(2 q −2 +2).
(2 q −2 +1, 2 q −2 +2) = 1,
q β | 2γ+1 −1
q β | 2γ+1 −2.
q β | 2γ+1 −2
(2γ+1 −1) | q β
,
β
γ+1
β
γ+1
α β
α
β
q |2
− 1.
q =2
− 1 = 2a − 1,
Z(2 q ) = (2 − 1)q .
α+1
α β
γ+1
2
| (2 q − 2
+ 2),
.
α+1
α β
α
γ = α, 2
| (2 q +2), 2 | 2, α = 1,
a = 2, q β = 3,
n = 6.
Z(6) + Z ∗ (6) = 3 + 3 = 6,
n=6
.
γ
α−1 β
α
0 ≤ γ ≤ α − 1,
a = 2 ≤ 2 , q = 2a − 1 ≤ 2 − 1,
α β
α β
∗ α β
Z(2 q ) ≤ 2 (q − 1), Z (2 q ) = q β ,
Z(2α q β ) + Z ∗ (2α q β ) ≤ 2α (q β − 1) + q β ≤ 2α (q β − 1) + 2α − 1 = n − 1,
d n Ø´§).
½n 6.7 y²: ·©Ê«¹5y².
(1) n = 1 , Z (1) = 1, S (1) = 1, K 1 ØǑÙ).
(2) n = 3 (α ≥ 1), dÚn 6.3.2, Z (3 ) = 2, e n = 3 ´§
), K S (3 ) = 2 + 3 , ÏǑ 3 | 3 + 2 + 1, l 3 + 2 + 1 ØUǑ
ê Ún 6.3.1 gñ, n = 3 Ø´§).
(3) n = p (α ≥ 1, p ≥ 5Ǒê), dÚn 6.3.2, Z (p ) = 1, e n =
p ´§), K S (p ) = 1 + p , Ï p ≥ 5 , 3 | p + 2, dÚ
∗
c
α
c
∗
α
α
α
α
α
α
α
α
α
92
∗
c
α
α
α
2β
18Ù ¹ Smarandache ¼ê§
n 6.3.1, α ØUǑóê, p + 2 (2 ∤ α) Ǒê, n = p (α ≥ 1, p ≥
5Ǒê) ÷v§.
m(m + 1)
| 2 , Ï (m, m + 1) = 1, K m = 1,
(4) n = 2 (α ≥ 1), e
2
Z (2 ) = 1, e n = 2 ´§), K S (2 ) = 1 + 2 , Ï 2 |
(2 + 1 + 1), Ún 6.3.1 gñ, n = 2 (α ≥ 1) Ø´§).
(5) n = p p · · · p (k ≥ 2, α ≥ 1) ǑÙIO©)ª. ·q©ü
«¹5y².
(i) 2 ∤ n, K 2 ∤ p , l 2 | S (n), e n ÷v§, K7
L 2 ∤ Z (n). yÄ Z (n), e3ê a (a > 1), a(2a − 1) | n,
K Z (n) ≥ 2a− 1, e3ê a (a > 1), a(2a+1) | n, K Z (n) ≥ 2a,
l
α
α
α
α
∗
α
α
c
α
α
α
α
αk
k
α1 α2
1 2
i
αi
i
∗
c
∗
∗
∗
Z ∗ (n) = max {max {2k : k(2k + 1) | n} , max {2k − 1 : k(2k − 1) | n}} .
2©n«¹5?Ø:
1, e Z (n) = 2a − 1 > 1, K a(2a − 1) | n, k a | n, a |
[n + (2a − 1) + 1]. e n ÷v§, K S (n) = 2a − 1 + n.
S (n) + 1
ØǑê, Ún 6.3.1 gñ.
1, e Z (n) = 2a > 1, K a(2a + 1) | n, k a | n, (2a + 1) | n. e n
÷v§, K S (n) = 2a + n. S (n) + 1 ØǑê, Ún 6.3.1
gñ.
, e Z (n) = 1, d a > 1, K a(2a − 1) ∤ n, l e n + 2 Ø´
ê, dÚn 6.3.1, ù n Ø´§). e n + 2 Ǒê, dÚ
n 6.3.1, ù n Ǒ§). = a(2a − 1) ∤ n, n + 2 Ǒê
ê n Ǒ§).
Z (n) ≥ 2,
(ii) 2 | n, e n ÷v§, K7L Z (n) Ǒóê,
m(m + 1)
Z (n) = m ≥ 2,
| n, K (m+1) | n, ? (m+1) | (n+m+1),
2
ù S (n) = n + m + 1 Ø´ê, Ún 6.3.1 gñ.
ùÒ¤ ½ny².
∗
c
c
∗
c
c
∗
∗
∗
∗
c
6.4
¹¼ê S (n) §
k
!·UY0 ¹ Smarandache ¼ê§)5¯K.
93
'uSmarandache¯KïÄ#?
½Â 6.4. éu½ê n, k k ≥ 2, Ͷ Smarandache
Ceil ¼ê S (n) ½ÂǑê x n|x , =
k
k
½Â 6.5.
x |n, =
Sk (n) = min{x : x ∈ N, n|xk }.
Sk (n)
k
éó¼ê S (n) ½ÂǑê x
k
Sk (n) = max{x : x ∈ N, xk |n}.
~X, k = 2 , S (n) A´ S (1) = 1, S (2) = 2, S (3) =
3, S (4) = 2, S (5) = 5, S (6) = 6, S (7) = 7, S (8) = 4, S (9) =
3, · · · .
S (n) A´ S (1) = 1, S (2) = 1, S (3) = 1, S (4) =
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2, S2 (5) = 1, S2 (6) = 1, S2 (7) = 1, S2 (8) = 2, S2 (9) = 3, · · · .
'u S (n) Ú S (n) 5, NõÆöǑ?1 ?Ø, ¿
Ñ k(Ø, k'ù SNë©z [53-55]. ~X, 3©z [53]
¥, [,y² éu÷v (a, b) = 1 üê a, b, k
k
k
Sk (ab) = max{m : m ∈ N, mk |a}·max{m : m ∈ N, mk |b} = Sk (a)·Sk (b),
Ú
α
Sk (pα ) = p⌊ k ⌋ .
Ù¥ ⌊x⌋ ½ÂǑuu x ê. éu?¿ê n, X
J n = p p · · · p L« n IO©)ª, u´
α1 α2
1 2
αr
r
⌊
α1
⌋ ⌊
α2
⌋
⌊ αkr ⌋
Sk (pα1 1 pα2 2 · · · pαr r ) = p1 k p2 k · · · pr
= Sk (pα1 1 )Sk (pα2 2 ) · · · Sk (pαr r ).
lù 5·± S (n) ´¼ê, Ó·Ú?ü
¼ê ω(n) Ú Ω(n), e n = p p · · · p , ·½Â ω(n) Ǒ n ¤k
ØÓÏfê, Ø)Ïfê, = ω(n) = ω(p p · · · p ) =
r. Ω(n) ½ÂǑ n ¤kÏfêÚ, = Ω(n) = Ω(p p · · · p ) =
k
α1 α2
1 2
αr
r
α1
1
α1
1
α2
2
α2
2
αr
r
αr
r
α1 + α2 + · · · + αr .
§
3®ÜHÆƹ^o¡òØ©¥, ¨ïÄ ¼ê
X
d|n
94
Sk (d) = ω(n)Ω(n).
(6-3)
18Ù ¹ Smarandache ¼ê§
)5, ¿Ñ T§¤kê). äN/`Ò´y² e¡
½n:
½n 6.8. § (6-3) k ¡õê), ¿ z)áue~
¹:
1). n = p p ½ö p p , Ù¥ 1 ≤ α, β ≤ k − 1;
2). n = p p p ½ö n = p p p ½ö n = p p p ;
3). n = p p p p . Ù¥ p < p < p < p ǑÛê.
y²: e¡·|^9|Ü{5¤½ny²
. ÄkÏ
X
Ǒ S (n) ´¼ê, ¤±d¼ê5 S (d) Ǒ´
.
¼ê, y3±©XeA«¹¹5y²·(Ø
X
(i). n = 1 , é¤k k ≥ 2,
S (d) = S (1) = 1,
ω(n)Ω(n) = 0, ª (6-3) ؤá, Ïd n = 1 ¿Ø´§ (6-3)
).
(ii). n = p , Ù¥ 1 ≤ α ≤ k − 1, p ´ê. d¼ê S (n)
½Â·k
β
1 2
α
1 2
2
1 2 3
2
1 2 3
1 2 3 4
1
2
2
1 2 3
3
4
k
k
d|n
k
k
d|n
α
X
d|pα
k
Sk (d) = Sk (1) + Sk (p) + · · · + Sk (pα ) = α + 1.
d ω(n) = 1, Ω(n) = α, ω(n)Ω(n) = α, X S (d) 6= ω(n)Ω(n),
Ïd n = p ǑØ´§ (6-3) ).
(iii). X
n = p ·p · · · p , Ù¥ 1 ≤ α ≤ k−1, i = 1, 2, · · · , r,
r ≥ 2, du
S (d) ´¼ê, ·k
k
d|n
α
α1
1
α2
2
αr
r
i
k
d|n
X
Sk (d) =
α
α
r
d|p1 1 p2 2 ···pα
r
Ó,
X
α
d|p1 1
Sk (d) ·
X
α
d|p2 2
Sk (d) · · ·
X
Sk (d)
r
d|pα
r
= (α1 + 1)(α2 + 1) · · · (αr + 1).
ω(n) = r, Ω(n) = α1 + α2 + · · · + αr , ω(n)Ω(n) = r(α1 + α2 +
· · · + αr ),
(6-3) :
d§
Ǒ
(α1 + 1)(α2 + 1) · · · (αr + 1) = r(α1 + α2 + · · · + αr ).
(6-4)
95
'uSmarandache¯KïÄ#?
e¡·lXeA«¹é¤kê
r (r ≥ 2) ?1?Ø:
X
(a). e r = 2,
S (d) = (α + 1)(α + 1), ω(n)Ω(n) = 2(α + α ),
·)§ (α + 1)(α + 1) = 2(α + α ) α = 1 ½ö α = 1. ¤
± n = p p Ú n = p p ÷v (6-3), Ù¥ 1 ≤ α, β ≤ k − 1.
(b). e r = 3, ÷v§ (6-4) ªǑ:
k
1
2
1
2
d|n
1
2
β
1 2
α
1 2
1
2
1
2
(α1 + 1)(α2 + 1)(α3 + 1) = 3(α1 + α2 + α3 ).
(6-5)
e¡·é α ?1?Ø, Ù¥ i = 1, 2, 3.
i). e (6-5) ª¥k =k α ÷v α = 1, ·Ø- α
1, α , α > 1, dk
i
i
2
i
1
=
3
2(α2 + 1)(α3 + 1) = 3(1 + α2 + α3 ).
du
2(α2 + 1)(α3 + 1) − 3(1 + α2 + α3 )
= 2α2 α3 − α2 − α3 − 1
= α2 (α3 − 1) + α3 (α2 − 1) − 1 > 0.
ùÒy² 2(α + 1)(α + 1) o´u 3(1 + α + α ), Ïd§ (6-3)
3d«¹e ).
ii). e (6-5) ª¥kü α ÷v α = 1, ·± α = α =
1, α > 1, )§ 4(α + 1) = 3(2 + α ), α = 2, u´ n = p p p
½ö n = p p p ½ö n = p p p ÷v§ (6-3), ´§).
iii). e¤k α Ñ÷v α = 1, § (6-5) ؤá, d§ (6-3)
).
iv). e¤k α ÷v α > 1, ·±éN´y²e¡Øª
¤á:
2
3
2
i
3
3
2
1 2 3
i
ÏǑ
i
3
1
3
2
2
1 2 3
2
1 2 3
i
=
3
i
i
(α1 + 1)(α2 + 1)(α3 + 1) > 3(α1 + α2 + α3 ),
α1 α2 α3 + α1 α2 + α2 α3 + α1 α3 + 1 > 2α1 + 2α2 + 2α3 .
(α1 α2 α3 + α1 α2 + α2 α3 + α1 α3 + 1) − (2α1 + 2α2 + 2α3 )
96
18Ù ¹ Smarandache ¼ê§
= α1 α2 α3 + α1 (α2 − 2) + α2 (α3 − 2) + α3 (α1 − 2) + 1
≥ α1 α2 α3 + 1 > 0.
ùÒy² (6-5) ª>o´um>, Ïd§ (6-3) 3ù«¹e
Ǒ´ ).
(c). k = 4, ·k
(α1 + 1)(α2 + 1)(α3 + 1)(α4 + 1) = 4(α1 + α2 + α3 + α4 ).
(6-6)
e¡·é§ (6-6) ¥ α ?1?Ø, Ù¥ i = 1, 2, 3, 4.
i). § (6-6) ¥k k α ÷v α = 1, ·± α
1, α > 1, α > 1, α > 1, ù (6-6) ªCǑ
i
i
2
3
i
1
=
4
2(α2 + 1)(α3 + 1)(α4 + 1) = 4(1 + α2 + α3 + α4 ),
=
α2 α3 α4 + α2 α3 + α2 α4 + α3 α4 = 1 + α2 + α3 + α4 .
ÏǑ α > 1, α > 1, α > 1, ù·±éN´y² (6-6) ª
>o´um>, d§ ).
ii). § (6-6) ¥kü α ÷v α = 1, Ø- α = α = 1, α >
1, α > 1, ·k
2
3
4
i
i
1
2
3
4
(α3 + 1)(α4 + 1) = 2 + α3 + α4 .
w,ùªØ¤á, Ïd3ù«¹e§ ).
iii). § (6-6) ¥kn α ÷v α = 1, - α
1, α > 1, (6-6) ªCǑ
i
i
1
= α2 = α3 =
4
2(α4 + 1) = 3 + 4α4 .
¿ α = 1/2, ù´ØU, d§ (6-3) ).
iv). § (6-6) ¥¤k α ÷v α = 1, d (6-6) ª¤á, Ï
d n = p p p p ´§ (6-3) ).
v). e¤ko α þ÷v α > 1, du α > 1, α > 1 ,
(α + 1)(α + 1) > 2(α + α ). Ón α > 1, α > 1 , (α +
4
i
i
1 2 3 4
i
1
2
1
i
2
1
3
2
4
3
1)(α4 + 1) > 2(α3 + α4 ).
97
'uSmarandache¯KïÄ#?
u´·k
(α1 + 1)(α2 + 1)(α3 + 1)(α4 + 1)
> 4(α1 + α2 )(α3 + α4 )
= 4(α1 α3 + α1 α4 + α2 α3 + α2 α4 )
> 4(α1 + α2 + α3 + α4 ).
Ïdª (6-6) >o´um>, ¤±§ (6-3) 3d«¹e ).
(d). r > 4,
1 ≤ i ≤ r, ±y²§ (6-3) >o´um
>. =
(α1 + 1)(α2 + 1) · · · (αr + 1) > r(α1 + α2 + · · · + αr ).
¤±§ (6-3) 3ù«¹e ).
e¡·^êÆ8B{y²þãت¤á. r = i , ت¤
á, =
(α1 + 1)(α2 + 1) · · · (αi + 1) > i(α1 + α2 + · · · + αi ).
K k = i + 1 ,
(α1 + 1)(α2 + 1) · · · (αi + 1)(αi+1 + 1) > i(α1 + α2 + · · · + αi )(αi+1 + 1).
qÏǑ
i(α1 + α2 + · · · + αi )(αi+1 + 1) − (i + 1)(α1 + α2 + · · · + αi + αi+1 )
= i(α1 + α2 + · · · + αi )(αi+1 + 1) − i(α1 + α2 + · · · + αi ) − iαi+1
−(α1 + α2 + · · · + αi ) − αi+1
= (iαi+1 − 1)(α1 + α2 + · · · + αi ) − (i + 1)αi+1
> (iαi+1 − 1)(α1 + α2 + · · · + αi ) − (i + 1)(iαi+1 − 1)
> (iαi+1 − 1)(α1 + α2 + · · · + αi − i − 1)
> 0.
¤±, k = i + 1 , ت½¤á, l 3ù«¹e§ (6-3) ).
(iv). n = p Ú α ≥ k, d·½Â α = kβ + γ n = p
,
Ù¥ β ≥ 1, 0 ≤ γ < k, ·k
α
X
d|pkβ+γ
98
Sk (d)
kβ+γ
18Ù ¹ Smarandache ¼ê§
= Sk (1) + Sk (p) + · · · + Sk (pk−1 ) + Sk (pk ) + · · · +
Sk (p2k−1 ) + Sk (p2k ) + · · · + Sk (pk(β−1)−1) + Sk (pk(β−1) )
+ · · · + Sk (pkβ−1 ) + Sk (pkβ ) + Sk (pkβ+1 ) + · · · + Sk (pkβ+γ )
= |1 + ·{z
· · + 1} + p + · · · + p + p2 + · · · + p2 +
| {z } |
{z
}
k
k
β−1
··· + p
|
Ó,
k
β−1
+ ··· + p
{z
k
2
}
ÏǑ (γ + 1)p
+ p + · · · + pβ
|
{z
}
γ+1
β−1
= k(1 + p + p + · · · + p
k(pβ − 1)
=
+ (γ + 1)pβ .
p−1
ω(n)Ω(n) = kβ + γ,
β
) + (γ + 1)pβ
§ (6-3) ±CǑ:
k(pβ − 1)
+ (γ + 1)pβ = kβ + γ.
p−1
β
> γ,
±9
k(pβ − 1) − (p − 1)kβ = kpβ − k − kpβ + kβ
= k(pβ − pβ) + k(β − 1)
> 0.
u´· k(pp −−11) + (γ + 1)p > kβ + γ, d§ ).
(v). e n = p p · · · p Ú α ≥ k, i = 1, 2, · · · , r, ·- α =
kβ + γ , β ≥ 1, 0 ≤ γ < k n = p
p
···p
, Ï
Ǒ S (n) ´¼ê, ·k
β
β
α1 α2
1 2
i
i
i
αr
r
i
i
kβ1 +γ1 kβ2 +γ2
1
2
i
kβr +γr
r
k
X
Sk (d)
α
α
r
d|p1 1 p2 2 ···pα
r
=
X
Sk (d)
kβ1 +γ1 kβ2 +γ2
p2
···prkβr +γr
d|p1
=
X
d|pkβ1 +γ1
Sk (d) ·
X
d|pkβ2 +γ2
Sk (d) · · ·
X
Sk (d)
d|pkβr +γr
k(pβ1 − 1)
k(pβ2 − 1)
β1
β2
=
·
+ (γ1 + 1)p
+ (γ2 + 1)p
p−1
p−1
k(pβr − 1)
βr
· ··· ·
.
+ (γr + 1)p
p−1
99
'uSmarandache¯KïÄ#?
Ó, ω(n)Ω(n) = r [k(β
Ïd§CǑ
1
k(pβ1 −1)
p−1
+ β2 + · · · + βr ) + γ1 + γ2 + · · · + γr ] .
β
2
+ (γ1 + 1)pβ1 · k(pp−1−1) + (γ2 + 1)pβ2 · · · ·
βr
k(p −1)
βr
+ (γr + 1)p
·
p−1
= r [k(β1 + β2 + · · · + βr ) + γ1 + γ2 + · · · + γr ] .
(6-7)
±y² (6-7) ª>o´um>.
·|^êÆ8B{?1y²:
r = i, ت¤á, =
k(pβ1 −1)
p−1
β
2
+ (γ1 + 1)pβ1 · k(pp−1−1) + (γ2 + 1)pβ2 · · · ·
β
k(p i −1)
βi
+ (γi + 1)p
·
p−1
> i [k(β1 + β2 + · · · + βi ) + γ1 + γ2 + · · · + γi ] .
K r = i + 1 ,
β
2
+ (γ1 + 1)pβ1 · k(pp−1−1) + (γ2 + 1)pβ2 · · · ·
βi+1
β
i
· k(pp−1−1) + (γi + 1)pβi · k(p p−1−1) + (γi+1 + 1)pβi+1
βi+1
k(p
−1)
βi+1
> i [k(β1 + β2 + · · · + βi ) + γ1 + γ2 + · · · + γi ]
+ (γi+1 + 1)p
p−1
k(pβ1 −1)
p−1
> (i + 1) [k(β1 + β2 + · · · + βi+1 ) + γ1 + γ2 + · · · + γi+1 ] .
¤± k = i + 1 , ت¤á.
(vi). e n = p p · · · p p
p
···p
, Ù¥ α > k (i =
1, 2, · · · , r), 1 ≤ α < k (r + 1 ≤ j ≤ r + t), l±þ?Ø, d
«¹e§ (6-3) ).
nܱþ?Ø, ·¤ ½ny².
α1 α2
1 2
αr αr+1 αr+2
r r+1 r+2
αr+t
r+t
i
j
6.5
'u Smarandache ¯Kí2
ؽ§ (½§|) ´Cþêêõu§ê, Cþê
§ (½§|). ؽ§´êØ¥P q©|, ~X
Ͷ Fermat ½nҴؽ§;.L, ÙSNyê
100
18Ù ¹ Smarandache ¼ê§
ÆkéX. F. Smarandache Ç3©z [1] 1 50 ¯K¥ïÆ·
ïħ
1
1
xa x + ax = 2a
x
.
(6-8)
)5, ¿T§¤k¢ê)
'uù¯K, Ü©+Ç3©z [56] ¥?1 ïÄ. äN/`, =
y²e¡(Ø:
½n. é¤k a ∈ R\{−1, 0, 1}, § (6-8) k =k¢ê
) x = 1.
!ò§ (6-8) ?1 í2Úò, =Ä n − 1 Cþ
¹, Ñ §
1
1
1
x1 a x1 + x2 a x2 + · · · + xn−1 a xn−1 +
1
ax1 x2 ···xn−1 = na (6-9)
x1 x2 · · · xn−1
¤kK¢ê), ½=y² e¡½n.
½n 6.9. é?¿¢ê a ∈ R\{0}, § (6-9) k =k|K
¢ê)
[59]
x1 = x2 = · · · = xn−1 = 1.
n = 2 , § (6-9) CǑ x a + a = 2a, =©z [56] ¥¤
?ع. Ïd©(J´©z [56] ¥½ní2Úò.
y²: |^©z [56] ¥gѽny². ǑdIe¡
ü(Ø:
(Ø 1. é?¿¢ê a , a , · · · , a , kت
1
1
2
1
x1
1 x1
x1
n
√
a1 + a2 + · · · + an
≥ n a1 a2 · · · an .
n
õ¼ê47^: ¼ê z = f (x , x , · · · , x ) 3
: (x , x , · · · , x ) äk ê 4, K§3T: ê7Ǒ",
=
( Ø 2. f (x , x , · · · , x ) = f (x , x , · · · , x ) = · · · =
1
′
1
′
2
′
n
n
x1
′
2
′
′
1
′
2
′
n
x2
′
1
′
2
′
n
′
fxn (x1 , x2 , · · · , xn ) = 0.
101
'uSmarandache¯KïÄ#?
±þü(Øy²ë©z [9]![57] 9 [58].
y3|^±þü(Ø5y²é¤k a ∈ R\{0}, §
1
1
ax1 x2 ···xn−1 = na
x1 x2 · · · xn−1
1
1
x1 a x1 + x2 a x2 + · · · + xn−1 a xn−1 +
¤á, = x = x = · · · = x = 1. y3ò a ©¤n«
¹ a ≥ 1, 0 < a < 1 9 a < 0 ?Ø.
¯¢þ, a ≥ 1 , dþ¡Äت
1
2
n−1
1
1
1
+
+ ··· +
+ x1 x2 · · · xn−1 ≥ a.
x1 x2
xn−1
u´k
1
1
1
x1 a x1 + x2 a x2 + · · · + xn−1 a xn−1 +
q
≥n
n
1
a x1
þª¤á = x
+ x1 +···+ x
1
2
1
+x1 x2 ···xn−1
n−1
√
≥ n n an ≥ na,
= x2 = · · · = xn−1 =
0 < a < 1 , ǑBå, x
1
n
=
½ö x =
=k|¢ê
1
x1 x2 · · · xn−1
(6-9)
Q a ≥ 1 , §
x2 = · · · = xn−1 = 1.
x1 = x2 = · · · = xn−1 = 1.
)
1
x1 x2 ···xn−1
x1 x2 ···xn−1 a
1
,
x1 x2 · · · xn−1
1
1
¿-¼ê
1
f (x1 , x2 , · · · , xn−1 ) = x1 a x1 + x2 a x2 + · · · + xn−1 a xn−1
1
+
ax1 x2 ···xn−1 − na,
x1 x2 · · · xn−1
Ï Ǒ ¼ ê f (x , x , · · · , x ) 3 (0, +∞) þ ´ ,
é f (x , x , · · · , x ) ©O'u x , x , · · · , x ê,
1
1
2
2
n−1
1
∂f
ln a
= a x1 (1 −
)+
∂x1
x1
1
ln a
= a x1 (1 −
)+
x1
1
∂f
ln a
= a x2 (1 −
)+
∂x2
x2
102
n−1
1
2
n−1
1
1
1
ln aax1 x2 ···xn−1 −
ax1 x2 ···xn−1
x1
x1 x1 x2 · · · xn−1
1 x1
a n (ln a − xn ),
x1
1 x1
a n (ln a − xn ),
x2
18Ù ¹ Smarandache ¼ê§
···
1
ln a
1 x1
∂f
= a xn−1 (1 −
)+
a n (ln a − xn ).
∂xn−1
xn−1
xn−1
©O- ∂x∂f , ∂x∂f , · · · , ∂x∂f
1
2
= 0,
n−1
K
1
1
1
1
a x1 (ln a − x1 ) = a xn (ln a − xn ),
a x2 (ln a − x2 ) = a xn (ln a − xn ),
a
1
xn−1
···
1
(ln a − xn−1 ) = a xn (ln a − xn ).
¼ê u(x) = a (ln a − x), Ù¥ 0 < a < 1. e¡y²d¼êǑüN¼
ê.
1
x
′
1
ln a(x − ln a) − 1]
x2
1
ln a 2 ln a
) −
+ 1]
= −a x [(
x
x
1
ln a 1 2 3
− ) + ] < 0.
= −a x [(
x
2
4
1
u (x) = a x [
u(x) 3 (0, +∞) þ´üN4~¼ê, ¤±éAuÓ¼ê u(x ),
k =k x ¤á. ¤±d
0
0
1
1
1
a x1 (ln a − x1 ) = a x2 (ln a − x2 ) = · · · = a xn (ln a − xn)
Ñ x = x = · · · = x = q. K (q, q, · · · , q) Ǒ ¼
ê f (x , x , · · · , x ) U4:, =kù4:. d q = 1
q = 1, (1, 1, · · · , 1) Ǒ¼ê4:, d4Ǒ 0. ¯¢þ, b
¼ê f (x , x , · · · , x ), kÙ4:, Ǒ (x , x , · · · , x ),
Kdõ¼ê437^, 3ù:7k x = x = · · · =
= 1 ª¤á, üN¼êÓ¼êéAgCþgñ.
x
¼êk: (1, 1, · · · , 1) ù4:. =d¼ê
1
1
2
2
n
n
n−1
1
2
′
′
′
n−1
n−1
2
1
′
′
1
2
′
n−1
1
1
1
f (x1 , x2 , · · · , xn−1 ) = x1 a x1 + x2 a x2 + · · · + xn−1 a xn−1
1
ax1 x2 ···xn−1 − na,
+
x1 x2 · · · xn−1
103
'uSmarandache¯KïÄ#?
4, 4Ǒ 0. Q = x = x = · · · = x
§)´
1
2
n−1
=1
,
x1 = x2 = · · · = xn−1 = 1.
a < 0 , § (6-9) ek), K xp , x , · · · , x 7Ǒkn
ê, ÏǑKêØUm nêg, x = q , (p , q ) = 1, Ù¥ i =
1, 2, · · · , n. e a k¿Â, K p 7ǑÛê, p p · · · p ǑǑÛê, e
3 q Ǒóê, Kd®^k pq ·· ·· ·· pq ·· ·· ·· qp = 1, ù p ǑÛêgñ.
¤± q q · · · q ǑǑÛê, q ǑÛê, ¤±k a = −|a| , u´§
zǑ
1
i
i
qi
pi
i
i
1 2
i
n
2
n−1
i
i
1 2
1
i
n
1
i
n
1
xi
i
n
i
1
xi
1
ax1 x2 ···xn−1
x1 x2 · · · xn−1
1
+
|a|x1 x2 ···xn−1 .
x1 x2 · · · xn−1
1
1
n|a| = −na = −x1 a x1 − · · · − xn−1 a xn−1 −
1
1
= x1 |a| x1 + · · · + xn−1 |a| xn−1
d, d ¡?Øü«¹, § (6-9) )E,´
x1 = x2 = · · · = xn−1 = 1.
nþ¤ã, ѧ (6-9) ¤kK¢ê)Ǒ
x1 = x2 = · · · = xn−1 = 1.
u´, ¤ ½ny².
104
1ÔÙ
1ÔÙ
7.1
Smarandache
¼ê'¯K
Smarandache
Smarandache
¼ê'¯K
¼ê·Üþ¯K
3 ¡®²0 L Smarandache ¼ê S(n) 9ÏfÈê {P (n)}
½Â, =
d
S(n) = min{m : m ∈ N, n | m}
Pd (n) = n
d(n)
2
.
'uùü¼ê«5, ®kNõ<?1ïÄ. Öö3
<ïĤJþE¿)û #·Üþ¯K (©z [60]),
äN`Ò´|^9)Û{ïÄ ·Üþ
2
X
1
S (Pd (n)) − d (n) P (n)
2
n≤x
ìC5§¿Ñ rìCúª.
½n 7.1. N ≥ 1 Ǒ½ê. éu?¿¢ê x > 1, ·k
ìCúª
X
n6x
2 X
3
N
x2
1
ci · i + O
S (Pd (n)) − d (n) P (n) =
2
ln x
i=1
3
x2
lnN+1 x
Ù¥ c (i = 1, 2, · · · , N) ´O~ê
Ǒ Riemann zeta- ¼ê.
Ǒ y²ù(Ø, kÑAÚn.
Ún 7.1.1. n ≥ 1 Ǒê√, K
(i) XJ n kÏf p > n§K S (P (n)) =
√
(ii) XJ n = n p p
n < p < p 6 n§K
·p ;
(iii) XJ n = n p
p > n , Kk S (P (n)) −
,
3 ζ 4 23
, ζ(n)
c1 = ·
2 ζ(3)
i
d(n)
2
d
1 1 2
d(n)
2
!
1
3
1
2
· p;
S (Pd (n)) =
2
1
3
pd (n1 ) .
2
2
1
d
1
d (n) P
2
(n) =
105
'uSmarandache¯KïÄ#?
y ²: é ? ¿ ê n, n = p p · · · p Ǒ n
I O © ) ª. u ´ d Smarandache ¼ ê 5 S(n) =
max{S (p ) , S (p ) , · · · , S (p )}. u´
√
1
(i). n kÏf p > n , 5¿d p ≥ d(n),
2
d Smarandache ¼ê59®^k
αk
k
α1 α2
1 2
α1
1
αk
k
α2
2
d(n)
d(n) d (n)
· p.
S (Pd (n)) = S n 2 = S p 2 =
2
√
1
(ii).
n = n1 p1 p2
n 3 < p1 < p2 6 n ,
Smarandache
S (m1 p1 p2 ) = p2 ,
d(n)
d(n) d(n) d(n)
d(n)
2
2
2
= S p2 2
=
· p2 .
S (Pd (n)) = S m1 p1 p2
2
ê5
d
d
¤±
¼
, dw,k n < p 6 √n. u´
¼ê5¿5¿ d(n) = 3d(n ) ·k:
n = n1 p2
(iii).
Smarandache
1
3
p > n1
1
3
1
d (n) 1
1
S (Pd (n))− d (n) P (n) = 2p·
− pd (n) = pd n1 p2 = p·d (n1 ) .
2
2
2
2
2
u´y² Ún 7.1.1.
Ún 7.1.2. - p Ǒê, m Ǒê,
3
N
2 x 2 X ci · lni−1 m
+O
p =
3 m 23 i=1
lni x
√x
X
m6p6
1
2
3
m 6 x3 ,
!
3
x2
m 2 lnN+1 x
KkìCúª
+O
m
m3
,
ln m
Ù¥ c ǑO~ê c = 1.
y²: w,dê½n·k² Oª:
i
1
X
p6m
2
2
p = m π(m) −
Z
m
2yπ(y)dy = O
2
u´d©z [3] ±9 Abel Úúª·áǑíÑ:
X
√x
m6p6
106
m
p2 =
X
√x
p6
m
p2 + O
m3
ln m
x
=
·π
m
r
m3
ln m
x
m
−
.
Z √x
m
2
2yπ(y)dy
1ÔÙ
Smarandache
¼ê'¯K
3
N
2 x 2 X ci · lni−1 m
=
+O
3 m 23 i=1
lni x
3
x2
3
m 2 lnN+1 x
!
+O
m3
ln m
,
Ù¥ c ǑO~ê c = 1. u´¤ Ún 7.1.2 y².
Ún 7.1.3. é?¿¢ê x > 3, A L«¤kùê n 8
ܵé?¿ê p, p|n = p ≤ n . KkXeOª:
i
1
1
3
2
X
4
1
S (Pd (n)) − d (n) P (n) ≪ x 3 ln2 x.
2
n6x
n∈A
y²: 5¿é?¿ê n ∈ A§w,d Smarandache
¼ê
S(n)
1
1
5 p|n , XJ S(n) = p, K S (P (n)) = 2 d(n)P (n) = 2 d(n)·p,
dk
d
1
S (Pd (n)) − d (n) P (n)
2
XJ S (P (n)) 6= 12 d(n)P (n),
Oª:
X
= 0.
S(n) = S(pα ).
d
n≤M
2
Kw,k α ≥ 2. 5¿
d2 (n) ≪ M · ln3 M.
u´dê½n (ë©z [8] 9 [27]) ·k
2
X
X
1
p2 d2 (n)
S (Pd (n)) − d (n) P (n) ≪
2
2
n6x
n∈A
≪
X
1
p≤x 3
np ≤x
p≤n
p2
X
4
p<n≤ px2
d2 (n) ≪ x 3 ln2 x.
l y² Ún 7.1.3.
½ny²: âÚn 7.1.1 (i) ªé?¿ê n, XJ3
· P (n) = 0. u´(ÜÚn 7.1.1
ê p|n p > √n, K S (P (n)) − d (n)
2
(ii) ªÚÚn 7.1.3 ¿5¿ Riemann zeta- ¼êðªµ
d
∞
X
d2 (n)
3
n=1
n2
ζ 4 23
=
,
ζ(3)
107
'uSmarandache¯KïÄ#?
·áǑ
X
2
1
S (Pd (n)) − d (n) P (n)
2
n6x
2
X
1
=
S (Pd (n)) − d (n) P (n) +
2
n6x
√
p|n, p> n
X
(S (Pd (n))
n6x
√
p|n, p6 n
2
1
− d (n) P (n)
2
2
X
1
S (Pd (n)) − d (n) P (n)
=
2
n6x
√
p|n, p6 n
X
=
n6x
1
2
1
S (Pd (n)) − d (n) P (n) +
2
p|n, p6n 3
X
(S (Pd (n))
n6x
1
√
p|n, n 3 <p6 n
2
1
− d (n) P (n)
2
4
X
2
1
2
2
2
2
3
+ O x ln x
=
S Pd n1 p
− d n1 p P n1 p
2
2
n1 p 6x
n1 <p
X
=
1
X
n6x 3 n<p≤
√x
n
9 X 2
d (n)
=
4
1
n6x 3
N
X
3
2
3
pd (n)
2
X
n<p≤
x
=
ci · i + O
ln x
i=1
2
4
+ O x 3 ln2 x
4
2
3
p + O x ln x
2
√x
n
3
x2
lnN+1 x
!
,
Ù¥ c (i = 1, 2, · · · , N) ´O~ê
l ¤
½ny².
½n3Ͷ Smarandache ¼ê S(n) 9ÏfÈê {P (n)} Ä
:þ, E â¼êÏf¼ê¿|^{Úê½
nïÄ §·Üþ¯K, ¿Ñ §rì?úª.
i
3 ζ 4 23
.
c1 = ·
2 ζ(3)
d
108
1ÔÙ Smarandache ¼ê'¯K
k,Öö±æaq{, 5Eõ¼ê, ¿ïħ·Ü
þ.
'u²Öê SSC(n) ü¯K
7.2
F. Smarandache
:
Ç3©z [1] ¥JÑ ±eù Smarandache
²Öê¼ê
½Â 7.1. é?¿ê n, Ͷ Smarandache ²Öê¼
ê SSC(n) ½ÂǑê m m · n Ǒ²ê, =Ò´
SSC(n) = min{m : m · n = k 2 , m, k ∈ Z ∗ }.
d
½Â·ØJOÑ
A Ǒ:
SSC(n)
SSC(n)
SSC(1) = 1, SSC(2) = 2, SSC(3) = 3, SSC(4) = 1, SSC(5)
5, SSC(6) = 6, SSC(7) = 7, SSC(8) = 2, SSC(9) = 1, SSC(10)
10, SSC(11) = 11, SSC(12) = 3, SSC(13) = 13, SSC(14)
14, SSC(15) = 15, SSC(16) = 1, SSC(17) = 17, SSC(18)
2, SSC(19) = 19, SSC(20) = 5, · · · .
=
=
=
=
'u SSC(n) 5, NõÆö?1 ïÄ, éõkd
¤J. ~X, Russo [61] é SSC(n) ?1 ïÄ, Ñ 'u SSC(n)
5:
5 1. éu?¿ê n, k SSC(n) ≤ n.
5 2. éu?¿ê n, XJ n IO©)ªǑ n =
p p · · · p , o
α1 α2
1 2
αs
s
odd(α1 ) odd(α2 )
p2
SSC(n) = p1
Ù¥ α ≥ 0, p
i
i
s)
· · · podd(α
,
s
´pØÓê, ¼ê odd(n) ½ÂǑ:
(
1, en´Ûê;
odd(n) =
0, en´óê.
(i = 1, 2, · · · , s)
109
'uSmarandache¯KïÄ#?
Russo ÓJÑXe¯K:
n
X
ln SSC(k)
¯K 1. O4
n→∞
¯K 2. O4
SSC(n)
,
n→∞
θ(n)
lim
k=2
ln k
n
lim
.
Ù¥ θ(n) = P ln SSC(k).
k≤n
'uùü¯K, 8qvk<ïÄ, ·vkwLk'
¡Ø©. CR [62] )û ùü¯K, Ñ ±e(Ø:
½n 7.2. éu?¿ê n ≥ 1, kOª
n ln SSC(k)
P
ln k
1
k=2
.
=1+O
n
ln n
íØ 7.2.1. éu?¿ê n ≥ 1, k4
n ln SSC(k)
P
ln k
= 1.
lim k=2
n→∞
n
½n 7.3. éu?¿ê n ≥ 1, kOª
SSC(n)
=O
θ(n)
1
ln n
.
íØ 7.2.2. éu?¿ê n ≥ 1, k4
lim
n→∞
SSC(n)
= 0.
θ(n)
Ǒ ¤½ny², I±eAÚn:
110
1ÔÙ Smarandache ¼ê'¯K
éu?¿¢ê x ≥ 2, kìCúª
Ún 7.2.1.
X
µ2 (n) =
n≤x
√
6
x .
x
+
O
π2
(7-1)
5¿ ζ(2) = π6 , Ïd (7-1) ªǑ
2
X
µ2 (n) =
n≤x
√
x
+O x ,
ζ(2)
(7-2)
Ù¥ ζ(n) Ǒ Riemann zeta- ¼ê.
Ún 7.2.2. éu?¿¢ê x ≥ 2, kìCúª
X
n≤x
ln SSC(n) = x ln x − Ax + O
√
x ln2 x ,
(7-3)
Ù¥ A Ǒ~ê.
y²: XJ^ A L«¤k ²Ïfê8Ü, od Abel Ú
úª (ë©z [8] ¥½n 4.2!Ún 1 95 2), k
X
ln SSC(n)
n≤x
X
=
ln SSC(m2 l) =
m2 l≤xl∈A
=
X X
√
m≤ x l≤ mx2
X
ln l
m2 l≤xl∈A
ln l · µ2 (l)
)
√ Z x
√
m2 1
x
x
t
1 x
t dt
ln 2
=
−
+O
+O
m ζ(2) m2
m
t ζ(2)
√
1
m≤ x
√
X x ln x 1
x ln x
2x ln m
x 1
=
.
(7-4)
−
−
+O
ζ(2) m2 ζ(2) m2
ζ(2) m2
m
√
X
(
m≤ x
5¿eAìCúª
[8]
X1
1
,
= ln x + C + O
n
x
n≤x
:
Ù¥C Ǒ~ê;
111
'uSmarandache¯KïÄ#?
Z
∞
1
X 1
1
1
= ζ(2) − + O
;
2
n
x
x2
n≤x
X ln n
ln x
1
ln x
= B −
−
+ O
,
n2
x
x
x2
n≤x
Ù¥B
=
1 +
Ǒ~ê.
(t − [t])(t − 2t ln t)
dt
t4
(7-4) ,
d
ªk
X
n≤x
ln SSC(n) =
x ln x X 1
2x X ln m
−
2
ζ(2)
ζ(2) √ m2
√ m
m≤ x
m≤ x
√
x X 1
2
x
ln
x
−
+
O
ζ(2) √ m2
m≤ x
√
2
Bx − x + O x ln2 x
ζ(2)
√
= x ln x − Ax + O x ln2 x ,
= x ln x −
2B
Ù¥ A = ζ(2)
+ 1 Ǒ~ê.
u´¤ Ún 7.2.2 y².
½ny²: 3ùÜ©, ^{ѽny². Äky²
½n 7.2.
¡, d5 1, k
n ln SSC(k)
n ln k
P
P
ln k
ln k
n−1
k=2
≤ k=2
=
< 1.
n
n
n
(7-5)
,¡, dÚn 7.2.2, k
n ln SSC(k)
P
ln k
k=2
n
112
n
1 X
ln SSC(k)
>
n ln n
k=2
ln n
A
+O √
= 1−
ln n
n
1
= 1+O
.
ln n
(7-6)
1ÔÙ Smarandache ¼ê'¯K
(Ü (7-5)!(7-6) ª, k
n ln SSC(k)
P
ln k
1
k=2
.
=1+O
n
ln n
u´¤ ½n 7.2 y².
íØ 7.2.1 n)Ǒ½n 7.2 ¥ n → ∞ 4.
y3y²½n 7.3.
d5 1!Ún 7.2.2 9 SSC(n) ½Â, k
n
SSC(n)
<
=O
0<
θ(n)
θ(n)
d (7-7) ª, k
SSC(n)
=O
θ(n)
1
ln n
1
.
ln n
.
(7-7)
u´y² ½n 7.3.
íØ 7.2.2 n)Ǒ½n 7.3 ¥ n → ∞ 4.
±þ·ÏL|^9)Û{ïÄ ln SSC(n) ©Ù5
, l ò Russo [61] JÑü4¯K.)û. 'u Smarandache
²Öê¼ê SSC(n) 58 $, kNõ¯Kkk,
Æö?1ïÄ. ~X,
¯K 1. § S(n) + Z(n) = SSC(n) ¤kê).
¯K 2. ïļê SSC(Z(n)) 9¼ê Z(SSC(n)) 5.
k
7.3
k
k
'u Smarandache ¼êþ¯K
½Â 7.2. é?¿ê n, Ͷ Smarandache ¼ê SP (n) ½
ÂǑê m n|m , Ù¥ m Ú n kÓÏf. =µ
m
Y
Y
SP (n) = min m : n|mm , m ∈ N,
p=
p ,
p|n
p|m
113
'uSmarandache¯KïÄ#?
Ù¥ N L«¤kg,ê8Ü. ~X, SP (n) AǑ: SP (1) = 1,
SP (2) = 2, SP (3) = 3, SP (4) = 2, SP (5) = 5, SP (6) = 6, SP (7) =
7, SP (8) = 4, SP (9) = 3, SP (10) = 10, SP (11) = 11, SP (12) = 6,
SP (13) = 13, SP (14) = 14, SP (15) = 15, SP (16) = 4, SP (17) = 17,
SP (18) = 6, SP (19) = 19, SP (20) = 10, · · · .
Ç3©z [1] ¥ïÆ·ïÄ SP (n) 5.
½Â éN´e¡(Ø: e n = p , Ù¥ p Ǒ
F. Smarandache
SP (n)
,
l
ê, Kk
p,
2
p ,
SP (n) =
p3 ,
···
pα ,
α
1 ≤ α ≤ p;
p + 1 ≤ α ≤ 2p2 ;
2p2 + 1 ≤ α ≤ 3p3 ;
···
(α − 1)pα−1 + 1 ≤ α ≤ αpα .
- n = p p · · · p L« n ê©)ª.
w,, SP (n) Ø´¼ê. ~X, SP (8) = 4, SP (3) = 3,
SP (24) = 6 6= SP (3) × SP (8). éA¤k m Ú n
(m, n) = 1,
Ñk SP (mn) = SP (m) · SP (n).
3©z [63] ¥, M󸮲ïÄ SP (n) þ5, ¿¼
rìCúªµ
α1 α2
1 2
αr
r
3
1 2Y
1
SP (n) = x
+ O x 2 +ǫ ,
1−
2
p(p + 1)
p
n≤x
X
Ù¥ ǫ L«?¿½ê,
Y
p
L«é¤kê p È.
ïÄ ¹ SP (n) ¡?êÂñ5¯
K, ¿y² é?¿Eê s ÷v Re(s) > 1, k
Zhou Huanqin [64]
114
s
2 +1 1
,
k = 1, 2;
s − 1 ζ(s)
2
∞
2s + 1 1
X
2s − 1
(−1)µ(n)
−
,
k = 3;
=
k ))s
2s − 1 ζ(s)
4s
(SP
(n
n=1
2s − 1 3s − 1
2s + 1 1
s
−
+
, k = 4, 5.
2 − 1 ζ(s)
4s
9s
1ÔÙ Smarandache ¼ê'¯K
X¥ 3©z [65] ¥|^{ïÄ SP (n) ²;êؼê
î.¼ê φ(n) 'X, =ïÄ § SP (n ) = φ(n) )5, ¿Ñ
k = 1, 2, 3 ¤kê), =e¡(Ø:
(1) SP (n) = φ(n) k =k 4 ê) n = 1, 4, 8, 18.
(2) § SP (n ) = φ(n) k =k 3 ê) n = 1, 8, 18.
(3) § SP (n ) = φ(n) k =k 2 ê) n = 1, 16.
k
2
3
Ü©Ì8´|^)Û{ïÄ
SP (n) k g©Ù5
P
P
(k > 0, l ≥ 0) ìCúª, í
, Ñ n (SP (n)) 9
2 ©z [63] (Ø.
½n 7.4. é?¿¢ê x ≥ 3 9½¢ê k, l (k > 0, l ≥ 0),
kìCúª
l
k
n≤x
n≤x
(SP (n))k
nl
[67]
Y
1
ζ(k + 1)
1
k+l+1
n (SP (n)) =
+O xk+l+ 2 +ε ,
x
1− k
(k + l + 1)ζ(2)
p (1 + p)
p
n≤x
X
l
k
X (SP (n))k
n≤x
nl
Q
Y
1
ζ(k + 1)
1
k−l+1
+O xk−l+ 2 +ε ,
=
x
1− k
(k − l + 1)ζ(2)
p (1 + p)
p
Ù¥, L«é¤kê p È, ε L«?¿ê, ζ(s) L« Riemann
zeta- ¼ê.
íØ 7.3.1. é?¿¢ê x ≥ 3 9½¢ê k > 0, kìCúª
p
′
X
(SP (n))
n≤x
AO/,
1
′
k
′
′
′
k +1 Y
6k ζ( 1+k
′ )
1
k
x k′
= ′
1− 1
2
(k + 1)π
p k′ (1 + p)
p
9ζ( 43 ) 4 Y
1
x3
(SP (n)) =
1− 1
2
2π
p 3 (1 + p)
p
n≤x
X
1
3
!
4ζ( 23 ) 3 Y
1
x2
(SP (n)) =
1− 1
2
π
p 2 (1 + p)
p
n≤x
X
1
2
!
!
+O x
′
k +2
′ +ε
2k
,
5
+ O x 6 +ε ,
+ O x1+ε .
115
'uSmarandache¯KïÄ#?
é?¿¢ê x ≥ 3 9½¢ê, kìCúª
íØ 7.3.2.
3
Y
1
1
l+2
n (SP (n)) =
+ O xl+ 2 +ε ,
x
1−
(l
+
2)
p(1
+
p)
p
n≤x
X
l
5
6ζ(3) l+3 Y
1
n (SP (n)) =
+
O
xl+ 2 +ε ,
x
1
−
2 (1 + p)
(l + 3)π 2
p
p
n≤x
7
Y
X
1
π2
l+4
l
3
+ O xl+ 2 +ε .
x
1− 3
n (SP (n)) =
15(l + 4)
p (1 + p)
p
n≤x
X
l
2
Ǒ ¤½ny², IeÚn.
s = σ + it, ζ(s) Ǒ Riemann zeta- ¼ê, kQ> 0, l ≥ 0 Ǒ½ü
¢ê, p Ǒê. - n = p p · · · p , U(n) = p.
α1 α2
1 2
αr
r
p|n
Ún 7.3.1. é?¿¢ê x ≥ 1 9½¢ê k ≥ 1, kìCúª
X
n≤x
1
ζ(k + 1) k+1 Y
k+ 21 +ε
+O x
x
1− k
(U(n)) =
.
(k + 1)ζ(2)
p (1 + p)
p
k
, du U(n) ´È5¼ê, â©z [66]
y²: - A(t) = P (U(n))
n
¥ Euler È©ª, σ > k + 1 ,
k
∞
n=1
s
#
" ∞
m k
Y X
(U(p ))
=
A(s) =
s
n
pm
p
m=0
n=1
Y
1
pk
ζ(s)ζ(s − k) Y
pk
1− k
.
=
1 + s + 2s + · · · =
s−k )
p
p
ζ(2s
−
2k)
p
(1
+
p
p
p
∞
X
(U(n))k
- h(s) =
∞
X
(U(n))k
n=1
nσ
116
p
1
,
1− k
p (1 + ps−k )
< ζ(σ − k),
X a(n)
n≤x
Y
ns0
σ > k + 1 , |U(n)| ≤ n,
d©z [66] ¥ Perron úª,
1ÔÙ
Smarandache
¼ê'¯K
b
x B(b + σ0 )
xs
A(s + s0 ) ds + O
s
T
b−iT
lg x
x
1−σ0
−σ0
+O x
H(2x) min(1,
) + O x H(N) min(1,
) ,
T
T kxk
1
=
2πi
Z
b+iT
Ù¥, N Ǒl x Cê, x ǑÛê, N = x − 21 , kxk =
3
, H(x) =
|x − N|. a(n) = (U(n)) , s = 0, b = k + , T = x
2
x, B(σ) = ζ(σ − k), K
k
1
(U(n)) =
2πi
n≤x
X
k
òÈ©l
Z
k+ 32 +iT
k+ 23 −iT
s
ζ(s)ζ(s − k)
xs
k+ 21 +ε
.
h(s) + O x
ζ(2s − 2k)
s
£ k + 12 ± iT , d ¼
3 s = k + 1 ?k4:, Ù3êǑ
s = k +
− k)
x
ê ζ(s)ζ(s
h(s)
ζ(2s − 2k)
s
k+ 21
0
3
± iT
2
xs
ζ(s)ζ(s − k)
h(s)
L(x) = Res
s=k+1
ζ(2s − 2k)
s
ζ(s)ζ(s − k)
xs
= lim (s − k − 1)
h(s)
s→k+1
ζ(2s − 2k)
s
ζ(k + 1) k+1
=
x h(k)
(k + 1)ζ(2)
Y
1
.
, h(k) =
1− k
,
p (1 + p)
p
Z k+ 1 +iT Z k+ 1 −iT Z k+ 3 +iT !
2
2
2
1
ζ(s)ζ(s − k)
1
xs
+
+
h(s) ≪ xk+ 2 +ε .
2πi
ζ(2s − 2k)
s
k+ 23 +iT
k+ 21 +iT
k+ 21 −iT
Ù¥
N´O
¤±,
1
1
ζ(k + 1) k+1 Y
+ O xk+ 2 +ε .
x
1− k
(U(n)) =
(k + 1)ζ(2)
p (1 + p)
p
n≤x
X
k
Ún 7.3.1 y.
Ún 7.3.2. é?¿¢ê x ≥ 3!½¢ê k > 0 9ê α,
k
X
pα ≤x
α>p
(αp)k ≪ ln2k+1 x.
117
'uSmarandache¯KïÄ#?
y²: π(x) = P 1, d©z [27] ,
p≤x
x
+O
π(x) =
ln x
d Abel ª,
x
p = π(x)x − k
lnk x
+ O lnk−1 x − k
=
(k + 1)
Z
ln x
p≤x
p≤ln x
k
p
x
ln2 x
Z
X
X
k
k
.
π(t)tk−1 dt.
2
2
Z
tk
dt + O
ln t
ln x
2
tk
dt
ln2 x
lnk x
+ O lnk−1 x .
k+1
=
ÏǑ α > p, ¤± p
p
< pα ≤ x.
p<
q
X
o
ln x
ln x
< ln x, α ≤
.
ln p
ln p
nk =
n≤x
l
X
(αp)k
pα ≤x
α>p
=
X
pk
p≤ln x
≪ lnk+1 x
xk+1
+ O xk .
k+1
X
x
α≤ ln
ln p
X
p≤ln x
αk ≪ lnk+1 x
X
p≤ln x
pk
lnk+1 p
pk ≪ ln2k+1 x.
Ún 7.3.2 y.
½ny²: - A = {n|n = p p · · · p , α ≤ p , i = 1, 2, · · · , r},
n ∈ A , k SP (n) = U(n), n ∈ N , k SP (n) ≥ U(n), l
α1 α2
1 2
X
(SP (n))k −
n≤x
118
X
(U(n))k =
n≤x
αr
r
i
i
X
(SP (n))k − (U(n))k ≪
n≤x
X
n≤x
SP (n)>U(n)
(SP (n))k .
1ÔÙ Smarandache ¼ê'¯K
d©z [63] , 3ê α 9ê p, SP (n) < αp, âÚ
n 7.3.2
X
X
(SP (n))k <
n≤x
SP (n)>U(n)
n≤x
SP (n)>U(n)
X
n≤x
(SP (n))k −
dÚn 7.3.1 ,
X
(αp)k ≪
X
XX
n≤x pα ≤x
α>p
(αp)k ≪ x ln2k+1 x.
(U(n))k ≪ x ln2k+1 x.
n≤x
(SP (n))k
n≤x
1
ζ(k + 1) k+1 Y
1
=
+ O xk+ 2 +ε + O x ln2k+1 x
x
1− k
(k + 1)ζ(2)
p (1 + p)
p
ζ(k + 1) k+1 Y
1
k+ 21 +ε
=
.
+O x
x
1− k
(k + 1)ζ(2)
p (1 + p)
p
B(x) = P (SP (n)) , |^ Abel Úúª,
k
n≤x
X
nl (SP (n))k
n≤x
l
Z
x
B(t)tl−1 dt
1
1
ζ(k + 1) k+l+1 Y
k+l+ 21 +ε
+O x
x
1− k
=
(k + 1)ζ(2)
p (1 + p)
p
Z x
Z x
1
lζ(k + 1) Y
k+l
k+l− 12 +ε
1− k
t dt + O
t
−
dt
(k + 1)ζ(2) p
p (1 + p)
1
1
Y
1
1
ζ(k + 1)
k+l+1
+ O xk+l+ 2 +ε ,
x
1− k
=
(k + l + 1)ζ(2)
p (1 + p)
p
= x B(x) − 1 − l
X (SP (n))k
n≤x
−l
nl
= x B(x) − 1 + l
Z
x
B(t)t−l−1 dt
1
119
'uSmarandache¯KïÄ#?
1
ζ(k + 1) k−l+1 Y
k−l+ 21 +ε
+O x
x
1− k
=
(k + 1)ζ(2)
p (1 + p)
p
Z x
Z x
1
lζ(k + 1) Y
k−l
k−l− 12 +ε
dt
1− k
t dt + O
t
+
(k + 1)ζ(2) p
p (1 + p)
1
1
Y
ζ(k + 1)
1
k−l+ 21 +ε
k−l+1
=
.
+O x
x
1− k
(k − l + 1)ζ(2)
p (1 + p)
p
½ny.
â½n, l = 0, k = k1 , =íØ 7.3.1; k = 1, 2, 3, Ä
ζ(2) = π /6, ζ(4) = π /90, =yíØ 7.3.2. ±wÑ, T½n´
é©z [63] í2.
′
2
4
'u Smarandache {ü¼ê
7.4
F. Smarandache
:
Ç3©z [1] ¥1 42 ¯K½Â
Smarandache
{ü¼êXe
½Â 7.3. n Ǒê, Smarandache {ü¼ê S (n) ½ÂǑ: ÷
v p |m! ê m ∈ N, =µ
p
n
Sp (n) = min {m : pn |m!, m ∈ N} .
©z [68] ½Â Smarandache {ü¼ê\{aq¼êXe:
½Â 7.4. S (n) = min {m : p ≤ m!!, m ∈ N} (n ∈ (1, ∞))
Ú S (n) = max {m : m!! ≤ p , m ∈ N} (n ∈ (1, ∞)), K¡ S (n)
Ú S (n) Ǒ Smarandache {ü¼ê\{aq.
w,, e (m − 2)!! < p ≤ m!!, S (n) = m, Ù¥ m > 2. 'u S (n)
5, NõÆöÑ?1 ïÄ, ë©z [69-72]. X©z [72] ïÄ
d(S (n)) þ5, Ñ ìCúª:
n
p
∗
P
∗
p
n
n
p
p
p
X
n≤x
120
d(S p (n)) = 2x(ln x − 2 ln ln x) + O (x ln p) .
p
1ÔÙ
¼ê'¯K
!ÌïÄ σ (S (n)) ìC5, Ù¥ σ (n) = P d ´ØêÚ¼
ê, ¿ üǑ°(ìCúª.
½n 7.5. p Ǒ½ê
, é?¿¢ê x ≥ 1, k
π x ln p
2x ln p
x
ln
, XJα = 1,
+O
ln x
3 ln x
ln x
X
α
Smarandache
p
α
α
d|n
[73]
2
2
2
2
σα (S p (n)) =
n≤x
ζ(α + 1) 2
α+1
2
α+1 α+1
α
2x ln p
x
ln p
ln
α+1
ln x
ln
x
xα+1
,
+O
lnα+1 x
α 6= 1.
XJ
½n 7.6. p Ǒ½ê
, é?¿¢ê x ≥ 1, k
π x ln p
2x ln p
x
ln
, XJα = 1,
+O
ln x
3 ln x
ln x
X
[73]
2
2
2
2
∗
σα (S p (n))
n≤x
=
2
ζ(α + 1) 2
α+1
α+1 α+1
α
x
ln p
ln
α+1
ln
x
2x ln p
ln x
xα+1
+O
lnα+1 x
α 6= 1.
XJ
Ún 7.4.1. é?¿¢ê x ≥ 1, k
X
σ1 (n) =
n≤x
π2 2
x + O (x ln x) .
12
Ún 7.4.2. é?¿¢ê x ≥ 1 Ú α > 0, α 6= 1, k
X
σα (n) =
n≤x
ζ(α + 1) α+1
x
+ O xβ ,
α+1
Ù¥ β = max{1, α}.
Ún 7.4.1 ÚÚn 7.4.2 y²©z [8].
ln(m − 2)!! ln m!!
½ny²: d S (n) ½Â, n ∈ ln p , ln p ,
k S (n) = m. e (m − 2)!! < p ≤ m!!, K m − 2xlnlnx p ≪ ln ln x. dÚ
n 7.4.1 Ú Abel ª, k
p
x
p
X
σ1 (S p (n))
n≤x
121
,
'uSmarandache¯KïÄ#?
=
X
X
=
X
m≤ 2xlnlnx p
=
X
m≤ 2xlnlnx p
=
X
m≤ 2xlnlnx p
1
=
ln p
ln m
σ1 (m) + O
ln p
2x ln p
ln x
X
<m< 2xlnlnx p +ln ln x
ln x
σ1 (m)
ln p
ln m
σ1 (m) + O (x ln ln x)
ln p
ln m
X
σ1 (m) + O (x ln ln x)
σ1 (m) + O
ln p
2x ln p
m≤
X
ln mσ1 (m) + O
m≤ 2xlnlnx p
σ1 (m)
2x ln p
<m< 2xlnlnx p +ln ln x ln(m−2)!!
<n≤ lnlnm!!
ln x
ln p
p
m≤ 2xlnlnx p ln(m−2)!!
<n≤ lnlnm!!
ln p
p
X
X
σ1 (m) +
2x ln p
1
=
ln
ln p
ln x
X
m≤ 2xlnlnx p
ln x
x2
ln2 x
σ1 (m) −
Z
2x ln p
ln x
1X
σ1 (t)dt + O
t
1
m≤t
x2
ln2 x
Z 2x ln p 2
ln x
1
2x ln p π 2 4x2 ln2 p
1 π 2
1
−
ln
t + O (t ln t) dt
=
ln p
ln x
12 ln2 x
ln p 1
t 12
2
x
+O
ln2 x
2
π 2 x2 ln p
x
2x ln p
=
+O
ln
.
2
3 ln x
ln x
ln2 x
XJ α 6= 1, dÚn 7.4.2 Ú Abel ª, k
X
σα (S p (n))
n≤x
=
X
X
m≤ 2xlnlnx p ln(m−2)!!
<n≤ lnlnm!!
ln p
p
=
X
m≤ 2xlnlnx p
=
X
m≤ 2xlnlnx p
122
ln x
X
2x ln p
<m< 2xlnlnx p +ln ln x ln(m−2)!!
<n≤ lnlnm!!
ln x
ln p
p
ln m
σα (m) + O
ln p
2x ln p
X
σα (m) +
X
<m< 2xlnlnx p +ln ln x
ln x
σα (m)
ln p
ln m
X
σα (m) + O
σα (m) + O (x ln ln x)
ln p
2x ln p
m≤
ln x
σα (m)
1ÔÙ
1
=
ln p
X
ln mσα (m) + O
m≤ 2xlnlnx p
2x ln p
1
ln
ln p
ln x
=
Smarandache
X
m≤ 2xlnlnx p
¼ê'¯K
xα+1
lnα+1 x
σα (m) −
Z
2x ln p
ln x
1
1X
σα (t)dt
t m≤t
xα+1
+O
lnα+1 x
2x ln p ζ(α + 1) 2α+1 xα+1 lnα+1 p
1
ln
=
ln p
ln x
α+1
lnα+1 x
α+1
2x
ln
p
Z
ln x
1 ζ(α + 1) 2
1
x
α
−
t + O (t ) dt + O
ln p 1
t
α+1
lnα+1 x
xα+1
ζ(α + 1) 2α+1xα+1 lnα+1 p
2x ln p
+O
=
ln
.
α+1
ln x
lnα+1 x
lnα+1 x
ùÒ¤ ½n 7.5 y². ^Ó{±y²½n 7.6.
Smarandache k
7.5
gÖê¼ê
½Â 7.5. k ≥ 2 Ǒê, éu?¿ê n ≥ 2, e A (n) ´
÷v A (n) × n Ǒ k gê, ¡ A (n) Ǒ n k g
Öê¼ê, Ǒ¡ A (n) Ǒ n k gÖê. ~X, A (1) = 1, A (2) = 2,
A (3) = 3, A (4) = 1, A (5) = 5, A (6) = 6, A (7) = 7, A (8) = 2, · · · ,
= A (2) = 2 , A (3) = 3 , A (2 ) = 1, · · · .
½Â 7.6. é?¿ê k ≥ 2, a (n) ´÷v a (n) + n Ǒ k g
ê, ¡ a (n) Ǒ n k g\Öê¼ê, Ǒ¡ a (n) Ǒ n
k g\Öê.
½Â 7.7. é?¿ê n, f (n) = min{r : 0 ≤ r = n − m , m ∈ N},
¡ f (n) Ǒ n k g~{Ö¼ê, = f (n) ´Kê, n − f (n) ´
k g?ÛKê¼ê h(n) ê. ½¡ f (n) Ǒ n
k g~{Öê.
k
k
k
k
2
k
2
k−1
2
2
k−1
k
k
2
k
2
k
2
2
k
k
k
k
k
k
k
k
k
123
'uSmarandache¯KïÄ#?
½Â 7.8. éê n, eÙIO©)ªǑ n = p p · · · p , ½Â
(
α + α + · · · + α , n > 1,
Ω(n) =
n = 1.
0,
é Smarandache k gÖê¯K, kéõÆö®²LïÄ¿¼
k(J , X©z [74] é\ k g\Öê a (n)
Ñ ìCúª: é?¿¢ê x ≥ 3,
α1 α2
1 2
1
2
αk
k
k
[74−76]
X
k
ak (n) =
n≤x
1
2
k2
x2− k + O x2− k .
4k − 2
1
1
1
d(ak (n)) = (1 − )x ln x + (2γ + ln k − 2 + ) + O x1− k ln x ,
k
k
n≤x
X
Ù¥ d(n) Ǒ Dirichlet Øê¼ê, γ Ǒî.~ê.
3©z [74] Ä:þ, !$^Ú)Û{ïÄ n − f (n)
þ9Ú5, ¼ kìCúª (©z [78]), * F.
Smarandache Ç3 [1] Ö¥¤9¯KïÄó.
½n 7.7. éu?Û¢ê x > 1, ke¡ìCúª
k
x
,
Ω(n − fk (n)) = kx ln ln x + k(A − ln k)x + A2 x + O
ln x
n≤x
X
Ù¥, A = γ + X(ln(1 − p1 ) + p −1 1 ), P L«êÚ, γ ´î.~ê.
½n
p
p
é u ? Û ¢ ê x ≥ 3 Ú ê k ≥ 2, é ?
α ≤ 1 , ?ê´uÑ; α > 1 , ?ê
7.8.
1
,
α
n=1 (n − fk (n))
,
ê
´Âñ
∞
P
∞
X
1
= Ck1 ζ(kα − k + 1) + Ck2 ζ(kα − k + 2) + · · ·
α
(n
−
f
(n))
k
n=1
+Ck2 ζ(kα − 2) + Ck1 ζ(kα − 1) + ζ(kα),
Ù¥, ζ(s) ´ Riemann zeta- ¼ê, AO k = α = 2, 9 k = α = 3,
íÑ
X
∞
1
= 2ζ(3) + ζ(4),
(n − f2 (n))2
n=1
124
1ÔÙ
¼ê'¯K
Smarandache
∞
X
1
= 3ζ(7) + 3ζ(8) + ζ(9)2ζ(3) + ζ(4).
3
(n
−
f
(n))
3
n=1
¤½ny²I±eÚn:
Ún 7.5.1. é?¿¢ê x ≥ 1, kìCúª
X
Ω(n) = x ln ln x + Ax + O
n≤x
x
,
ln x
Ù¥, A = γ + X(ln(1 − p1 ) + p −1 1 ), P L«êÚ, γ ´î.~ê.
p
p
y²: ©z [77].
½ny²: Äk5y²½n 7.7. éu?¿ê x ≥ 2, 3
ê M , M ≤ x < (M + 1) , ±íä, - M = [x ], ¿5¿
x − M = O(1), é?¿ê p 9Ùê α, 5¿ Ω(p ) = αp 9
k
k
1/k
1/k
α
k
(x + 1) =
X
n≤x
Ω(n − fk (n))
M−1
X
X
M−1
X
X
t=1 tk ≤n≤(t+1)k
=
t=1 tk ≤n≤(t+1)k
=
Cki xk−i,
i=0
±íä
=
k
X
M−1
X
t=1
Ω(n − fk (n)) + O
Ω((t + 1)k ) + O
X
M k ≤n<x
X
Ω(n − fk (n))
M k ≤n<(M+1)k
Ω((M + 1)k )
k(Ck1 tk−1 + Ck2 tk−2 + Ck3 tk−3 + · · · + Ck1 t1 + 1)Ω(t + 1)
+O x(k−1)/k + ε
= k2
M−1
X
t=1
(t + 1)k−1Ω(t + 1) + O x(k−1)/k + ε
125
'uSmarandache¯KïÄ#?
M
X
(t)k−1 Ω(t) + O x(k−1)/k + ε ,
= k
2
t=1
Ω(n) ≪ nε ,
- A(x) = P Ω(n), ^ Abel Úúª´
M
X
(t)k−1 Ω(t)
t=1
=
=
=
M
′
A(M ) −
A(t)((t)k−1 ) dt + O (1)
2
M
k−1
M ln ln M + AM + O
M
ln M
Z M
t
−
t ln ln t + At + O
(k − 1)tk−2 dt + O (1)
ln t
2
k
M
M k ln ln M + AM k + O
ln M
Z M
−
((k − 1)tk−1 ln ln t + A(k − 1)tk−1 )dt
2
k
M
k−1
k
k
k
k
(M ln ln M + AM ) + O
M ln ln M + AM −
k
ln M
k
1 k
A
M
,
M ln ln M + M k + O
k
K
ln M
= M
=
Z
k−1
du 0 ≤ x − M
k
< (M + 1)k − M k = Ck1 M k−1 + Ck2 M k−2 + Ck3 M k−3 +
· · · + Ck1 M 1 + 1 ≤ x(k−1)/k , ln k + ln ln M ≤ ln ln x < ln k + ln ln(M + 1) <
ln k + ln ln M + O x−1/k ,
l k
M
x
X
1
,
(t)k−1 Ω(t) = x ln ln M + (A − ln k)xk + O
k
ln x
t=1
X
n≤x
Ω(n − fk (n)) = x ln ln x + k(A − ln k)x + O
ùÒ¤½n 7.7 y².
126
x
.
ln x
1ÔÙ Smarandache ¼ê'¯K
ey½n 7.8. é?¿ê n ≥ 1, 3ê m, m ≤ n <
(m + 1) , ±íä, ÷v n − f (n) = m ª n k ((m + 1) − m ),
k
k
∞
X
k
k
k
k
∞
X
1
(m + 1)k − mk
=
(n − fk (n))α
mkα
n=1
m=1
∞
X
Ck1 mk−1 + Ck2 mk−2 + + · · · + Ck2 m2 + Ck1 m1 + 1
=
mkα
m=1
d?ê"ñ{é?Û¢ê α ≤ 1, ?ê´uÑ, XJ α > 1,
?ê´Âñ, ÙÚǑ
Ck1 ζ(kα−k+1)+Ck2 ζ(kα−k+2)+· · ·+Ck2 ζ(kα−2)+Ck1 ζ(kα−1)+ζ(kα).
ùÒ¤½n 7.8 y².
3½n 7.8 ¥ k = α = 2 9 k = α = 3 =íØ.
7.6
¹ Gauss ¼ê§9Ù¢ê)
QJÑXe¯K:
ϧ
F. Smarandache
1.
¯K
xy − [x] = y
(7-8)
¤k¢ê), Ù¥ [x] ´ØL x ê.
éd¯KR, Smarandache ¿)û. ~X±e¹ÿ?Ø:
(a) y ∈
;
Q
m Q
∈ ;
(b) y =
n
Z
5: Smarandache Ñe y ´u 1 Ûê, Kk
1
x = (y + 1) y .
(7-9)
éud¹, ª (7-9) ØÉ. Ïe y > 0, Kk
y + 1 < (1 + 1)y = 2y .
127
'uSmarandache¯KïÄ#?
òª (7-9) \§ (7-8), u´k
y
1
xy − [x] = (y + 1) y − ⌊(y + 1) y ⌋ = y + 1 − 1 = y.
(7-10)
ª (7-10) L² 0 < y ∈ R , § (7-8) )Ǒ x = (y + 1) .
y < 0 , ÏǑÄEê, ¤±Ï§ (7-8) )¬'(J,
ùk·?Ú?Ø.
¯K 2. ϧ x − [x] = y ¤k¢ê).
¯K 3. ϧ x − [x] = x ¤k¢ê).
¯K 4. ϧ x[y] − [x]y = |x − y| ¤k¢ê).
¯K 5. ϧ x − y = |x − y| ¤k¢ê).
¯K 4 ®ÿt)û, ©z [79]. C, <a [80] |^
{é§ x − [x] = x )5?1 ïÄ, ÓA^ Mathematic
5.0 ^±yT§3z«m [n, n + 1] (n ∈ N) þÑ3¢ê).
du x, y Cz5~, éJѧ¤k)äN/ª, ¤±¨=
Ä x, y > 0 ¹. éu x, y < 0 ¹, ±|^é¡Ñ.
3 y ≥ 1 , §þk¢ê). éu y éê, ±½ y ,
r§=zǑ'u x §, , )Ñ x. äN`Ò´y² ±e:
7.6.1. ng§
s x r− px − q = 0 (p, q > 0) ¢ê)Ǒ x =
s Ún
r
1
y
y
y
y
y
y
[y]
[x]
y
3
q
+
2
3
p
q
( )2 − ( )3 +
2
3
3
q
−
2
p
q
( )2 − ( )3 .
2
3
½n 7.9. é?¿ê N, M 9½ y ∈ Q \{0 < y ≤ 2},
§ x − [x] = x 3«m [N, M ] þk k M − N + O(1) ¢ê).
y²: - f (x) = x −[x] −x. y > 2 , 3«m [n, n+1) (n ∈ Z )
S, f (n) = n − n − n < 0, q lim f (x) = (n + 1) − n − n − 1 =
y
1
n (1 + ) − n − n − 1, ÏǑ (1 + ) > 1 + ,
lim f (x) =
n
n
+
y
y
y
y
y
+
y
y
y
x→(n+1)−
y
1 y
n
y
y
x→(n+1)−
1
ny (1 + )y − ny − n − 1 > ny + yny−1 − ny − n − 1 = yny−1 − n − 1 > 0.
n
0 < δ < 1,
n < x < n + δ , f (x) > 0
.
=3
128
¤á
1ÔÙ
Smarandache
¼ê'¯K
Ó- f (θ) = (n + θ) − n − y (0 ≤ θ < 1), f (θ) = y(n +
θ)
> 0. ¤±¼ê f (x) 3 [n, n + δ] SëY4O. |^":3½n
, 3z«m [n, n + δ] þ, f (x) = 0 k k). ǑÒ´`,
x ∈ [N, M ], N, M ∈ N , § x −[x] = x k k M −N +O(1)
¢ê). Ïd§ x − [x] = x k ¡õ¢ê).
y
′
y
y−1
+
y
y
y
y
íØ 7.6.1. § x
y
− [x]y = x
k¢ê)
(
x ∈ [0, 1),
y = 1.
y²: y = 1 , § x − [x] = x CǑ (x − [x] = x, = [x] = 0.
¤± x ∈ [0, 1). u´§ x − [x] = x k¢ê) yx =∈ [0,1. 1),
y
y
íØ
9
y
y
§
7.6.2.
xy − [x]y
√
1 + 1 + 4n2
x=
(n ∈ N+ ),
2
y = 2.
= x
k¢ê)
(
x=0
y=2
y²: y = 2 , § x − [x] = x =Ǒg§ x −
[x] − x = 0. e x = 0 (
, § x − [x] − x = 0 w,¤á, ¤±
§ x − [x] = x k¢ê) xy == 2.0,
e x√∈ [n, n + 1), x − [x] = x §CǑ x − x − n = 0. ),
y
2
2
y
y
2
2
y
y
y
2
2
1 + 4n2
(n ∈ N+ ).
2
√
√
1
+
1 + 4n2
, 2n <
1 + 4n2 < 2n + 1.
√ 2
√
1 + 1 + 4n2
1 + 1 + 4n2 − 2n
> 0,
n + 1 −
n =
2
√ 2
√
1
+
1 + 4n2
2n + 2 − 1 − 1 + 4n2
> 0 (n ∈ N+ ),
n≤x=
2
2
√
1 + 1 + 4n2
n + 1,
(n ∈ N+ )
x =
x2 − x − n2 =
2
√
1 + 1 + 4n2
(n ∈ N+ )
x=
xy − [x]y = x
.
2
y=2
x=
1+
w,
=
du
¤±
÷v§
´§
−
=
<
0,
¢ê)
129
'uSmarandache¯KïÄ#?
§
íØ 7.6.3.
xy − [x]y = x
k¢ê)
(
x=0
y=3
r
9 x =
3
n3
2
y = 3.
+
q
n6
4
−
1
27
+
r
3
n3
2
−
q
n6
4
−
1
27
(n ∈ N+ ),
y²: y = 3 , §
( x − [x] = x =Ǒ x − x − [x]
§ x − [x] = x k¢ê) xy == 3.0,
e x ∈ [n, n + 1) (n ∈ N ), § x − [x]r = x qCǑ x
x = 0, |^Ún x = A + B, Ù¥: A =
+
−
r
y
y
y
3
y
y
3
n3
2
−
= 0,
3
− n3 −
y
+
3
3
q
w,
n6
4
−
n3
2
n6
4
1
27 ,
B =
1
27 .
s
r
s
r
3
3 n
n6
1
1
A+B =
+
−
+
−
−
2
4
27
2
4
27
v
!
!
r
r
u
6
6
3
u n3
n
n
1
1
n
3
+
+
−
−
−
> t
2
4
27
2
4
27
3
n3
n6
= n,
ÏǑ (A + B) = A + B
¤± A + B ≥ n.
ÏǑ
3
3
s
3
+ 3A2 B + 3AB 2 = n3 + (A + B), A > 0, B > 0,
130
r
s
r
3
3 n
n6
1
1
+
−
+
−
−
2
4
27
2
4
27
v
!
r
u
u n3
1
n6
3
+
−
< 2t
2
4
27
" 1/3
1/6 #
3
6
n
n
1
< 2
+
+
2
4
27
3
n3
n6
1ÔÙ
< 2
¼ê'¯K
Smarandache
n
√
+ n < n + 2n = 3n,
3
2
(A + B) =rn + (Aq+ B) < n +r3n < q(n + 1) , = A + B < n + 1.
l x = + − + − − ∈ [n, n + 1), =
3
3
3
´§ x
y
n
7.7
x=
n3
2
r
3
3
n3
2
n6
4
+
y = 3.
− [x]y = x
q
3
1
27
n6
4
−
3
1
27
+
n3
2
r
3
n3
2
n6
4
−
q
n6
4
1
27
−
1
27
(n ∈ N+ ),
¢ê).
?¥"êiê²Ú¼êþ
Ç3©z [1] ¥JÑ1 22 ¯K´ “ïÄ
?¥êiÚê5”. ©z [81-83] òù¯Kz, Ì
ïÄ n ?¥êiÚ¼ê!êi²Ú¼êþ. ÊwÚ1
¯ [84] 3dÄ:þ, ÏLínØyÑ n ?¥"êiê²Ú
¼ê a(m, n) þ, = A(m, n) °(Oúª. Ǒ QãB, Ú\
Xe½Â:
½Â 7.9. n (n ≥ 2) Ǒ½ê, é?ê m, b
½ m 3 n ?¥L«Ǒ m = a n + a n + · · · + a n , Ù¥11 ≤ a1 ≤
+
+
n − 1, i = 1, 2, · · · , s, k > k > · · · > k ≥ 0, K¡ a(m, n) =
a
a
P
1
··· +
Ǒ
n ?¥"êiê²Ú¼ê, A(N, n) =
a(m, n)
a
Ǒ¼ê a(m, n) þ.
Ǒ {zúª, P ϕ ( n1 ) = X i1 .
F. Smarandache
1
1
k1
2
2
k2
s
ks
s
i
2
1
2
s
2
2
m<N
n−1
r
r
½n 7.10. N = a n
Ù¥
+ a2 nk2 + · · · + as nks ,
1 ≤ ai < n, i =
1, 2, · · · , s, k1 > k2 > · · · > ks ≥ 0,
i−1
s
X
X
ki ai ϕ2 ( n1 )
1 ki
1
+ ϕ2 ( ) + ai
n .
A(N, n) =
n
ai
a2
j=1 j
i=1
1
k1
i=1
Kk
131
'uSmarandache¯KïÄ#?
AO n = 2 , kXeíØ:
íØ 7.7.1. N = 2 +2 +· · ·+2 , Ù¥ k > k
K
X
k1
k2
s
A(N, 2) =
i=1
ks
1
2
> · · · > ks ≥ 0,
ki
+ (i − 1) 2ki .
2
Ǒ ¤½ny², IÚ\e¡üÚn:
Ún 7.7.1.
1
y²:
A(nk , n) = knk−1 ϕ2 ( ).
(7-11)
n
X
k = 1 ,
=A(n, n) =
a(m, n) = a(1, n) +
>
m<N
1
1
1
1
=
ϕ
(
)=
a(2, n) + · · · + a(n − 1, n) = 2 + 2 + · · · +
2
1
2
(n − 1)2
n
.
·K¤á
b k = p ·K¤á, =
1
A(np , n) = pnp−1 ϕ2 ( ).
n
o k = p + 1 ,
A(np+1 , n) =
X
m>,
(7-12)
a(m, n)
m<np+1
=
X
a(m, n) +
m<np
=
X
np ≤m<2np
a(m, n) +
m<np
+
X
X
0≤m<np
X
0≤m<np
a(m, n) + · · · +
X
(n−1)np ≤m<np+1
a(m + np , n) + · · ·
a(m + (n − 1)np , n)
X
1
=
a(m, n) +
a(m, n) + 2 + · · ·
1
p
p
m<n
0≤m<n
X
1
a(m, n) +
+
(n − 1)2
0≤m<np
X
1
1
1
+ 2 + ··· +
np
= n
a(m, n) +
2
2
1
2
(n − 1)
m<np
X
132
a(m, n)
1ÔÙ
Smarandache
¼ê'¯K
1
= nA(np , n) + ϕ2 ( )np .
n
(7-13)
d (7-12) ªÚ (7-13) ª,
1
1
1
A(np+1 , n) = npnp−1 ϕ2 ( ) + ϕ2 ( )np = (p + 1)ϕ2 ( )np .
n
n
n
¤±, k = p + 1 ·K¤á. u´¤ Ún 7.7.1 y².
Ún 7.7.2.
1
1
A(bnk , n) = bknk−1 ϕ2 ( ) + ϕ2 ( )nk ,
n
b
Ù¥ b Ǒg,ê.
y²:
A(bnk , n) =
X
a(m, n)
m<bnk
=
X
a(m, n) +
m<nk
=
X
nk ≤m<2nk
a(m, n) +
m<nk
+
X
X
0≤m<nk
X
0≤m<nk
a(m, n) + · · · +
X
a(m, n)
(b−1)nk ≤m<bnk
a(m + nk , n) + · · ·
a(m + (b − 1)nk , n)
X
1
=
a(m, n) +
a(m, n) + 2 + · · ·
1
m<nk
0≤m<nk
X
1
+
a(m, n) +
(b − 1)2
0≤m<nk
X
1
1
1
+ 2 + ··· +
nk
= b
a(m, n) +
2
2
1
2
(b
−
1)
k
X
m<n
1
= bA(nk , n) + ϕ2 ( )nk .
b
(7-14)
d (7-11) ªÚ (7-14) ª,
1
1
A(bnk , n) = bknk−1 ϕ2 ( ) + ϕ2 ( )nk .
n
b
(7-15)
u´¤ Ún 7.7.2 y².
133
'uSmarandache¯KïÄ#?
½ny²:
A(N, n) =
X
a(m, n)
m<N
X
=
m<a1 nk1
+
X
a(m, n) +
X
a1 nk1 ≤m<a1 nk1 +a2 nk2
a(m, n) + · · ·
a(m, n)
N−as nks ≤m<N
1
=
a(m, n) +
a(m, n) + 2 + · · ·
a1
k
k
1
2
m<a1 n
0≤m<a2 n
!
s−1
X
X
1
a(m, n) +
+
a2
i=1 i
0≤m<as nks
s
s
i−1
X
X
X
1
=
A(ai nki , n) +
ai nki .
2
a
i=1
i=1
j=1 j
X
X
(7-16)
d (7-15) ªÚ (7-16) ª,
X
i−1
s
s
X
X
1
1
1
ai nki
ai ki nki −1 ϕ2 ( ) + ϕ2 ( )nki +
A(N, n) =
2
n
a
a
i
j=1 j
i=1
i=1
s
i−1
X
X
ai ki ϕ2 ( n1 )
1 ki
1
=
+ ϕ2 ( ) + ai
n .
n
ai
a2
i=1
j=1 j
u´¤ ½ny².
134
ë©z
ë©z
[1] F. Smarandache, Only Problems, Not Solutions, Chicago: Xiquan Publishing
House, 1993.
[2] Liu Yaming, On the solutions of an equation involving the Smarandache function,
Scientia Magna, 2(2006), No. 1, 76-79.
, Smarandache
,
, 49(2006), No. 5, 1009-1012.
[3]
[4] Le Mohua, A lower bound for S 2p−1 (2p − 1) , Smarandache Notions Journal,
12(2001), No. 1-2-3, 217-218.
[5]
,
Smarandache
,
, 22(2009),
No. 1, 133-134.
[6]
,
Smarandache
,
,
24(2008), No. 4, 706-708.
[7] Wang Jinrui, On the Smarandache function and the Fermat numbers, Scientia
Magna, 4(2008), No. 2, 25-28.
[8] Tom. Apostol, Introduction to Analytic Number Theory, New York: SpringerVerlag, 1976.
[9]
,
,
,
, 2007.
, Smarandache
,
, 26(2010), No. 3,
[10]
413-416.
Mó¸
ïw 'u
ïw 'u
¼ê©Ù êÆÆ
¼êe.O pÄ:ÆÆ
¼ê#e.O X{êÆA^êÆ
Ü©+ êØ ñÜÆÑ ÜS
§X¶
¼êe.O X{êÆA^êÆ
[11] Á¯, 'u Smarandache ¼ê¤êê, ÜÆÆ (g,Æ), 40(2010),
No. 4, 583-585.
[12] J. Sándor and F. Luca, On S(n! + 1), where S is the Smarandache function,
Octogon Math. Mag., 16(2008), No. 2, 1024-1026.
[13] C. L. Stewart, On the greatest and least prime factors of n! + 1, II, Publ. Math.
Debrecen, 65(2004), No. 3-4, 461-480.
[14] M. Murthy and S. Wong, The abc-conjecture and prime divisors of the Lucas and
Lehmer sequences, Peters, K., Number theory theory for the millenium III, Natick,
MA, 2002, 43-54.
[15] J. Oesterlé, Nouvelles approaches du Théoréme Fermat, Sem. Bourbaki, 1987/1988,
No. 694, 1-21.
[16] D. W. Masser, Open problems, Analytic number theory, London: Imperial College,
1995, 27-35.
[17] R. K. Guy, Unsolved problems in number theory, third edition, New York:
Springer Verlag, 2004.
[18] P. Erdös and C. L. Stewart, On the greatest and least prime factors of n! + 1, J.
London Math. Soc., 13(1976), No. 4, 513-519.
[19] J. Sándor, On certain new inequalities and limits for the Smarandache function,
Smarandache Notions Journal, 9(1998), No. 1-2, 63-69.
[20]
,
,
:
, 1981.
[21] Chen Jianbin, Value distribution of the F. Smarandache LCM function, Scientia
ç5Ú |ÜPê{9ÙA^ ® ÆÑ
135
'uSmarandache¯KïÄ#?
Magna, 3(2007), No. 2, 15-18.
[22] Le Maohua, Two function equations, Smarandache Notions Journal, 14(2004), No.
1-3, 180-182.
[23]
,
Smarandache LCM
,
,
24(2008), No. 1, 71-74.
[24] Lu Zhongtian, On the F. Smarandache LCM function and its mean value, Scientia
Magna, 3(2007), No. 1, 22-25.
[25] Ge Jian, Mean value of the F. Smarandache LCM function, Scientia Magna,
3(2007), No. 2, 109-112.
[26]
, Smarandache LCM
,
(
), 39(2010), No. 3, 229-231.
[27]
,
,
,
:
, 1988.
ë 'u
¼êaþ þ X{êÆA^êÆ
A¡_
¼êÙéó¼ê·Üþ SÆÆ g
,ÆÇ©
«É «J ê½ny² þ° þ°ÆEâÑ
[28] A¡_, Smarandache LCM éó¼êÏf¼êþ, pÄ:
ÆÆ, 23(2010), No. 3, 323-325.
[29] I, ¹# Smarandache ¼ê§, êÆ¢£, 40(2010), No.
11, 206-210.
[30]
²^, 'u Smarandache ¼ê9 Smarandache LCM ¼ê·Üþ, ÜÆ
Æ (g,Æ), 40(2010), No. 5, 772-773.
[31] I, ¹ê¼ê S(d) Ú SL(d) §, ÜÆÆ (g,Æ),
40(2010), No. 3, 382-384.
[32] http://www.fs.gallup.unm.edu/mathematics.htm.
[33] http://www.gallup.unm.edu/∼smarandache/Smarandacheials.htm.
[34]
,
Smarandache
Dirichlet
,
(
), 38(2010), No. 5, 14-17.
[35] C. H. Zhong, A sum related to a class arithmetical functions, Utilitas Math.,
ï² a¹
Æ
Ú¼ê
?ê ñÜÆÆ g,
44(1993), 231-242.
[36] H. N. Shapiro, Introduction to the theory of numbers, John Wiley and Sons, 1983.
[37] M. L. Perez, Florent Smarandache Definitions, Solved and Unsolved Problems,
Conjectures and Theorems in Number theory and Geometry, Chicago: Xiquan
Publishing House, 2000.
[38] Liu Hongyan and Zhang Wenpeng, On the simple numbers and its mean value
properties, Smarandache Notions Journal, 14(2004), 171-175.
[39] Zhu Weiyi, On the divisor product sequences, Smarandache Notions Journal,
14(2004), 144-146.
[40] Kenichiro Kashihara, Comments and Topics on Smarandache Notions and
Problems, USA: Erhus University Press, 1996.
[41]
,
SSSP (n)
SISP (n)
,
, 25(2009), No. 3,
431-434.
'u
Ú
þ X{êÆA^êÆ
[42] o®Ú, Smarandache ²ê SP (n) Ú IP (n) þ , X{êÆA^êÆ,
26(2010), No. 1, 69-71.
[43] Lu Xiaoping, On the F. Smarandache 3n-digital sequence, Research on Number
Theory and Smarandache Notions, edited by Zhang Wenpeng, USA: Hexis, 2009, 5-7.
[44] Wu Nan, On the Smarandache 3n-digital sequence and the Wenpeng Zhang’s
136
ë©z
conjecture, Scientia Magna, 4(2008), No. 4, 120-122.
[45] Yang Ming, The conjecture of Wenpeng Zhang with respect to the Smarandache
3n-digital sequence, Research on Number Theory and Smarandache Notions, edited by
Zhang Wenpeng, USA: Hexis, 2010, 57-61.
[46]
,
Smarandache
,
, 27(2010), No. 4, 446-448.
[47] Wu Xin, An equation involving the Pseudo-Smarandache function and F.
Smarandache LCM function, Scientia Magna, 5(2009), No. 4, 41-46.
[48]
,
,
Smarandache
Smarandache
,
(
), 33(2010), No. 2, 200-202.
[49] Murthy A., Smarandache reciprocal function and an elementary inequality,
Smarandache Notions Journal, 11(2000), 312-315.
oçï ¹ü
¼ê§9Ùê) ç9Æg,Æ
Æ
o | a¹
ê) oAÆÆ g,Æ
¼ê
¼ê§9Ù
[50] J. Sándor, On certain arithmetic function, Smarandache Notions Journal,
12(2001), 260-261.
[51] J. Sándor, On a dual of the Pseudo Smarandache function, Smarandache Notions
Journal, 13(2002), 18-23.
[52]
,
F. Smarandache
,
, 38(2008), No. 2,
173-175.
[53] Wang Yongxing, Some identities involving the Smarandache ceil function, Scientia
Magna, 2(2006), No. 1, 45-49.
[54] Lu Yaming, On a dual function of the Smarandache ceil function, Research on
Smarandache problems in number theory, edited by Zhang Wenpeng, USA: Hexis,
2005, 55-57.
[55] Ding Liping, On the mean value of the Smarandache ceil function, Scientia Magna,
2(2005), No. 1, 74-77.
Ü©+ 'u
¼êü¯K ÜÆÆ
[56] Zhang Wenpeng, On an equation of Smarandache and its integer solutions,
Smarandache Notions, 13(2002), 176-178.
[57]
,
,
:
, 1983.
[58]
,
Smarandache
,
(
), 37(2007),
No. 2, 197-198.
,
Smarandache
,
(
), 40(2010),
[59]
No. 1, 9-10.
[60]
,
,
(
), 38(2010), No. 2, 12-14.
[61] Russo F., An introduction to the Smarandache square complementary function,
Smarandache Notions Journal, 13(2002), No. 1-2-3, 160-172.
[62]
,
SSC(n)
,
, 25(2010), No. 3,
436-437.
E ÆêÆX êÆ©Û ® pÑ
4ÿV ¹
¼ê§ ÜÆÆ g,Æ
H¡ÿ 'u
¯Kí2 ÜÆÆ g,Æ
H¡ÿ â¼êÏf¼ê·Üþ ñÜÆÆ g,Æ
R 'u²Ö¼ê
ü¯K HàÆÆ
[63] Mó¸, Smarandache ¼êþ, êÆÆ, 49(2006), No. 1, 77-80.
[64] Zhou Huanqin, An infinite series involving the Smarandache power function
SP (n), Scientia Magna, 3(2006), No. 2, 109-112.
[65] Tian C. and Li X., On the Smarandache power function and Euler totient function,
Scientia Magna, 4(2008), No. 1, 35-38.
137
'uSmarandache¯KïÄ#?
«É «J )ÛêØÄ: ® ÆÑ
?+ "Öw 'u
¼ê5P E
[66]
,
,
,
:
, 1999.
[67]
,
,
,
Smarandache
,
, 28(2010), No. 17,
50-53.
[68] J. Sándor, On additive analogue of certain arithmetic function, Smarandache
Notions Journal, 14(2004), 128-132.
[69] Le Maohua, Some problems concerning the Smarandache square complementary
function, Smarandache Notions Journal, 14(2004), No. 1-3, 220-222.
[70] Zhu Minhui, The additive analogue of Smarandache simple function, Research
on Smarandache problems in number theory, edited by Zhang Wenpeng, USA: Hexis,
2004, 39-40.
[71]
,
,
, 19(2006), No. 1, 5-6.
[72]
,
F. Smarandache
,
, 27(2009), No. 3, 337-338.
F[r êؼê9Ù§ pÄ:ÆÆ
Á¯ 'u
¼ê¯K ÜÆ
[73] Á¯, 'u F. Smarandache {ü¼ê Dirichlet ØêÚ¼ê·Üþ, S
ÆÆ (g,ÆÇ©), 39(2010), No. 5, 441-443.
[74] Xu Zhefeng, On additive k-power complements, Research on Smarandache
problems in number theory, edited by Zhang Wenpeng, USA: Hexis, 2004, 11-14.
[75]
,
,
,
k
,
, 23(2007), No. 3, 347-350.
[76] Liu Hongyan, Liu Yuanbing, A note on the 29th Smarandache problem, Smarandache Notions Journal, 14(2004), No. 1-3, 156-158.
[77] Hardy G. H., Ranlnanujan S., The normal number of prime factors of a number
n, Quarterly Journal Mathematics, 48(1917), 78-92.
[78]
,
,k
,
,
28(2010), No. 1, 11-13.
[79]
,
Gauss
,
, 40(2008), No. 4,
^êÆ
; 4àÜ oB 'u g\{Ö¼êÏf¼êþúª X{êÆA
è Ü=4 g~{ÖêÏf¼êþìCúª °HÆÆg,Æ
ÿt ¹
¼ê§¢ê) x²ÆÆ
15-18.
[80] <a, U, ¹ Gauss ¼ê§9Ù¢ê), pnÆr, 30(2008), No.
2, 9-11.
[81]
Êw, o°9, 'u n ?¥êiÚ¼êþO, ÜÆÆ (g,Æ
), 32(2002), No. 4, 361-366.
[82] , 'u n ?¥êiÚ¼êngþ, pÄ:ÆÆ, 14(2001), No.
4, 286-288.
[83]
Êw, o°9, 'u n ?9Ùk'O¼ê, X{êÆA^êÆ, 18(2002), No.
3, 13-15.
[84]
Êw, 1¯, n ?¥"êiê²Ú¼êþ, SÆÆ (g,
ÆÇ©), 39(2010), No. 3, 226-228.
[85] «É, «J§êØ, ®: ÆÑ, 1999.
138
New Progress on
Smarandache Problems Research
Guo Xiaoyan
Department of Mathematics,
Northwest University,
Xi’an, Shaanxi, 710127, P. R. China
Yuan Xia
Department of Mathematics,
Northwest University,
Xi’an, Shaanxi, 710127, P. R. China
High American Press
2010