JAMES
STEWART
CÁ LCU LO
TRASCENDENTES TEMPRANAS
Octava edición
CÁLCULO
TRASCENDENTES TEMPRANAS
OCTAVA EDICIÓN
JAMES STEWART
McMASTER UNIVERSITY Y UNIVERSITY OF TORONTO
Traducción
Ana Elizabeth García Hernández
Enrique C. Mercado González
Revisión técnica
Ileana Borja Tecuatl
Departamento de Matemática Educativa, CINVESTAV-IPN
Hiram Cárdenas Gordillo
Luz Citlaly Estrada López
Facultad de Ingeniería, Universidad La Salle, México
Centro Universitario de Ciencias Exactas e Ingeniería,
Universidad de Guadalajara, México
Pedro Vásquez Urbano
Universidad de Puerto Rico - Mayaguez
Gilgamesh Luis Raya
Universidad Politécnica de Pachuca, México
José Ignacio Cuevas González
Universidad Peruana
de Ciencias Aplicadas
Armando Silva Castillo
Antonieta Martínez Velasco
Universidad Politécnica
Universidad Panamericana, campus Ciudad de México
de Pachuca, México
Australia • Brasil • Corea • España • Estados Unidos • Japón • México • Reino Unido • Singapur
Cálculo. Trascendentes tempranas,
octava edición.
James Stewart
Director Higher Education
Latinoamérica:
Renzo Casapía Valencia
Gerente editorial Latinoamérica:
Jesús Mares Chacón
Editor Senior Hardside:
Pablo Miguel Guerrero Rosas
Editora de desarrollo
Abril Vega Orozco
Coordinador de manufactura:
Rafael Pérez González
Diseño de portada:
Karla Paola Benítez García
Imagen de portada:
© David Carrick | Dreamstime.com
Composición tipográfica:
Humberto Núñez Ramos
Angélica Toledo Tirado
Alejandro Hernández Hernández
© D.R. 2018 por Cengage Learning Editores, S.A. de C.V.,
una compañía de Cengage Learning, Inc.
Carretera México-Toluca núm. 5420, oficina 2301.
Col. El Yaqui. Del. Cuajimalpa. C.P. 05320.
Ciudad de México.
Cengage Learning® es una marca registrada
usada bajo permiso.
DERECHOS RESERVADOS. Ninguna parte de
este trabajo, amparado por la Ley Federal del
Derecho de Autor, podrá ser reproducida,
transmitida, almacenada o utilizada en
cualquier forma o por cualquier medio, ya sea
gráfico, electrónico o mecánico, incluyendo,
pero sin limitarse a lo siguiente: fotocopiado,
reproducción, escaneo, digitalización,
grabación en audio, distribución en internet,
distribución en redes de información o
almacenamiento y recopilación en sistemas
de información a excepción de lo permitido
en el Capítulo III, Artículo 27 de la Ley Federal
del Derecho de Autor, sin el consentimiento
por escrito de la Editorial. Reg 103
Traducido del libro Calculus: Early Transcendentals,
Eighth Edition, International Metric Version. James Stewart.
Publicado en inglés por Cengage Learning ©2016.
ISBN: 978-1-305-27237-8
Datos para catalogación bibliográfica:
Stewart, James. Cálculo. Trascendentes tempranas,
octava edición.
ISBN: 978-607-526-549-0
Visite nuestro sitio en:
http://latinoamerica.cengage.com
Impreso en México
1 2 3 4 5 6 7 20 19 18 17
Contenido
PREFACIO xi
AL ESTUDIANTE xxiii
CALCULADORAS, COMPUTADORAS Y OTROS DISPOSITIVOS
DE GRAFICACIÓN xxiv
PRUEBAS DE DIAGNÓSTICO xxvi
1
1
Funciones y modelos
9
1.1
1.2
1.3
1.4
1.5
© Pictura Collectus/Alamy
Cuatro maneras de representar una función 10
Modelos matemáticos: un catálogo de funciones esenciales 23
Funciones nuevas a partir de funciones previas 36
Funciones exponenciales 45
Funciones inversas y logarítmicas 55
Repaso 68
Principios para la resolución de problemas 71
2
© Jody Ann / Shutterstock.com
Un adelanto del cálculo
Límites y derivadas
77
2.1
2.2
2.3
2.4
2.5
2.6
2.7
Problemas de la tangente y la velocidad 78
El límite de una función 83
Cálculo de límites usando las leyes de los límites 95
Definición precisa de límite 104
Continuidad 114
Límites al infinito; asíntotas horizontales 126
Derivadas y razones de cambio 140
Proyecto de redacción · Primeros métodos para encontrar tangentes 152
2.8 La derivada como una función 152
Repaso 165
Problemas adicionales 169
iii
iv
Contenido
3
Reglas de derivación
171
3.1
© Mechanik / Shutterstock.com
Derivadas de funciones polinomiales y exponenciales 172
Proyecto de aplicación · Construcción de una mejor Montaña Rusa 182
3.2 Reglas del producto y el cociente 183
3.3 Derivadas de funciones trigonométricas 190
3.4 La regla de la cadena 197
Proyecto de aplicación · ¿Dónde debería un piloto iniciar el descenso? 208
3.5 Derivación implícita 208
Proyecto de laboratorio · Familia de curvas implícitas 217
3.6 Derivadas de funciones logarítmicas 218
3.7 Razones de cambio en las ciencias naturales y sociales 224
3.8 Crecimiento y decaimiento exponenciales 237
Proyecto de aplicación · Controlar la pérdida de glóbulos rojos durante
una cirugía 244
3.9 Razones relacionadas 245
3.10 Aproximaciones lineales y diferenciales 251
Proyecto de laboratorio · Polinomios de Taylor 258
3.11 Funciones hiperbólicas 259
Repaso 266
Problemas adicionales 270
4
Aplicaciones de la derivada
© Tatiana Makotra / Shutterstock.com
4.1
Valores máximos y mínimos 276
Proyecto de aplicación · El cálculo de los arcoíris 285
4.2 Teorema del valor medio 287
4.3 Cómo las derivadas afectan la forma de una gráfica 293
4.4 Formas indeterminadas y regla de L’Hôpital 304
Proyecto de redacción · Los orígenes de la regla de L’Hôpital 314
4.5 Resumen para el trazo de curvas 315
4.6 Trazo de gráficas con cálculo y calculadoras 323
4.7 Problemas de optimización 330
Proyecto de aplicación · La forma de una lata 343
Proyecto de aplicación · Aviones y pájaros: minimización de la energía 344
4.8 El método de Newton 345
4.9 Antiderivadas 350
Repaso 358
Problemas adicionales 363
275
Contenido
5
Integrales
v
365
5.1
5.2
© JRC, Inc. / Alamy
Áreas y distancias 366
La integral definida 378
Proyecto de descubrimiento · Funciones de áreas 391
5.3 El teorema fundamental del cálculo 392
5.4 Integrales indefinidas y el teorema del cambio neto 402
Proyecto de redacción · Newton, Leibniz y la invención del cálculo 411
5.5 Regla de sustitución 412
Repaso 421
Problemas adicionales 425
6
Aplicaciones de la integral
427
6.1
© Richard Paul Kane / Shutterstock.com
Áreas entre curvas 428
Proyecto de aplicación · El índice de Gini 436
6.2 Volúmenes 438
6.3 Volúmenes mediante cascarones cilíndricos 449
6.4 Trabajo 455
6.5 Valor promedio de una función 461
Proyecto de aplicación · El cálculo y el béisbol 464
Proyecto de aplicación · Dónde sentarse en el cine 465
Repaso 466
Problemas adicionales 468
7
Técnicas de integración
© USDA
7.1
7.2
7.3
7.4
7.5
7.6
Integración por partes 472
Integrales trigonométricas 479
Sustitución trigonométrica 486
Integración de funciones racionales por fracciones parciales 493
Estrategias para la integración 503
Integración utilizando tablas y sistemas algebraicos computacionales 508
Proyecto de descubrimiento · Patrones en integrales 513
7.7 Integración aproximada 514
7.8 Integrales impropias 527
Repaso 537
Problemas adicionales 540
471
vi
Contenido
8
Aplicaciones adicionales de la integración
543
8.1
© planet5D LLC / Shutterstock.com
Longitud de arco 544
Proyecto de descubrimiento · Concurso de longitudes de arco 550
8.2 Área de una superficie de revolución 551
Proyecto de descubrimiento · Rotación sobre una pendiente 557
8.3 Aplicaciones a la física y a la ingeniería 558
Proyecto de descubrimiento · Tazas de café complementarias 568
8.4 Aplicaciones a la economía y la biología 569
8.5 Probabilidad 573
Repaso 581
Problemas adicionales 583
9
Ecuaciones diferenciales
9.1
9.2
9.3
© Dennis Donohue /
Shutterstock.com
Modelado con ecuaciones diferenciales 586
Campos direccionales y método de Euler 591
Ecuaciones separables 599
Proyecto de aplicación · ¿Qué tan rápido se vacía un tanque? 608
Proyecto de aplicación · ¿Qué es más rápido, subir o bajar? 609
9.4 Modelos para el crecimiento poblacional 610
9.5 Ecuaciones lineales 620
9.6 Sistemas presa-depredador 627
Repaso 634
Problemas adicionales 637
10
Ecuaciones paramétricas y coordenadas polares
10.1
© Stocktrek / Stockbyte / Getty Images
585
10.2
10.3
10.4
Curvas definidas por ecuaciones paramétricas 640
Proyecto de laboratorio · Circunferencias que corren alrededor
de circunferencias 648
Cálculo con curvas paramétricas 649
Proyecto de laboratorio · Curvas de Bézier 657
Coordenadas polares 658
Proyecto de laboratorio · Familias de curvas polares 668
Áreas y longitudes en coordenadas polares 669
639
Contenido
vii
10.5
10.6
Secciones cónicas 674
Secciones cónicas en coordenadas polares 682
Repaso 689
Problemas adicionales 692
11
Sucesiones y series infinitas
693
11.1
© STScI / NASA / ESA / Galaxy /
Galaxy Picture Library / Alamy
Sucesiones 694
Proyecto de laboratorio · Sucesiones logísticas 707
11.2 Series 707
11.3 La prueba de la integral y estimaciones de sumas 719
11.4 Pruebas por comparación 727
11.5 Series alternantes 732
11.6 Convergencia absoluta y las pruebas de la razón y la raíz 737
11.7 Estrategia para probar series 744
11.8 Series de potencias 746
11.9 Representación de funciones como series de potencias 752
11.10 Series de Taylor y de Maclaurin 759
Proyecto de laboratorio · Un límite escurridizo 773
Proyecto de redacción · Cómo descubrió Newton las series binomiales 773
11.11 Aplicaciones de los polinomios de Taylor 774
Proyecto de aplicación · Radiación de las estrellas 783
Repaso 784
Problemas adicionales 787
12
Vectores y la geometría del espacio
12.1
12.2
12.3
12.4
Sistemas de coordenadas tridimensionales 792
Vectores 798
El producto punto 807
El producto cruz 814
Proyecto de descubrimiento · La geometría de un tetraedro 823
12.5 Ecuaciones de rectas y planos 823
Proyecto de laboratorio · Poner la tridimensionalidad en perspectiva 833
12.6 Cilindros y superficies cuádricas 834
Repaso 841
Problemas adicionales 844
791
viii
Contenido
13
847
13.1
13.2
13.3
13.4
© Natalia Davydenko/Shutterstock.com
Funciones vectoriales y curvas en el espacio 848
Derivadas e integrales de funciones vectoriales 855
Longitud de arco y curvatura 861
Movimiento en el espacio: velocidad y aceleración 870
Proyecto de aplicación · Leyes de Kepler 880
Repaso 881
Problemas adicionales 884
14
Derivadas parciales
887
14.1
14.2
14.3
14.4
Cortesía de © Speedo y ANSYS, Inc.
Funciones de varias variables 888
Límites y continuidad 903
Derivadas parciales 911
Planos tangentes y aproximaciones lineales 927
Proyecto de aplicación · El Speedo LZR Racer 936
14.5 La regla de la cadena 937
14.6 Derivadas direccionales y el vector gradiente 946
14.7 Valores máximos y mínimos 959
Proyecto de aplicación · Diseño de un contenedor de desechos 970
Proyecto de descubrimiento · Aproximaciones cuadráticas y puntos críticos 970
14.8 Multiplicadores de Lagrange 971
Proyecto de aplicación · La ciencia de los cohetes 979
Proyecto de aplicación · Optimización de hidroturbinas 980
Repaso 981
Problemas adicionales 985
15
© Juan Gaertner/
Shutterstock.com
Funciones vectoriales
Integrales múltiples
15.1
15.2
15.3
15.4
15.5
Integrales dobles en rectángulos 988
Integrales dobles en regiones generales 1001
Integrales dobles en coordenadas polares 1010
Aplicaciones de las integrales dobles 1016
Área de una superficie 1026
987
Contenido
ix
15.6
Integrales triples 1029
Proyecto de descubrimiento · Volúmenes de hiperesferas 1040
15.7 Integrales triples en coordenadas cilíndricas 1040
Proyecto de descubrimiento · La intersección de tres cilindros 1044
15.8 Integrales triples en coordenadas esféricas 1045
Proyecto de aplicación · Carrera sobre ruedas 1052
15.9 Cambio de variables en integrales múltiples 1052
Repaso 1061
Problemas adicionales 1065
16
1067
16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8
© Everett Collection/Glow Images
Campos vectoriales 1068
Integrales de línea 1075
El teorema fundamental para integrales de línea 1087
Teorema de Green 1096
Rotacional y divergencia 1103
Superficies paramétricas y sus áreas 1111
Integrales de superficie 1122
Teorema de Stokes 1134
Proyecto de redacción · Tres hombres y dos teoremas 1140
16.9 El teorema de la divergencia 1141
16.10 Resumen 1147
Repaso 1148
Problemas adicionales 1151
17
© CS Stock/Shutterstock.com
Cálculo vectorial
Ecuaciones diferenciales de segundo orden
17.1
17.2
17.3
17.4
Ecuaciones lineales de segundo orden 1154
Ecuaciones lineales no homogéneas 1160
Aplicaciones de ecuaciones diferenciales de segundo orden 1168
Soluciones con series de potencias 1176
Repaso 1181
1153
x
Contenido
Apéndices
A
B
C
D
E
F
G
H
I
A1
Números, desigualdades y valores absolutos A2
Rectas y geometría usando coordenadas A10
Gráficas de ecuaciones de segundo grado A16
Trigonometría A24
Notación sigma A34
Demostración de teoremas A39
El logaritmo definido como una integral A50
Números complejos A57
Respuestas a los ejercicios con número impar A65
Índice analítico
I1
Referencias
R1
Prefacio
Esta versión de la obra difiere de la versión regular de Cálculo. Trascendentes tempranas,
octava edición, de varias maneras:
Las unidades usadas en casi todos los ejemplos y ejercicios han sido cambiadas del
sistema tradicional de Estados Unidos a unidades métricas. Hay un número reducido
de excepciones: en algunas aplicaciones de ingeniería (principalmente en la sección 8.3)
puede ser útil para algunos ingenieros estar familiarizados con las unidades usadas en
Estados Unidos. Y yo quise conservar algunos ejercicios (por ejemplo, los relacionados
con el beisbol) donde sería inapropiado usar unidades métricas.
He cambiado los ejemplos y ejercicios relacionados con datos del mundo real para
que sean de naturaleza más internacional, de manera que la inmensa mayoría de ellos
procede ahora de países distintos a Estados Unidos. Por ejemplo, ahora hay ejercicios y
ejemplos concernientes a las tarifas postales en Hong Kong; la deuda pública canadiense; las tasas de desempleo en Australia; las horas de luz del sol en Ankara, Turquía;
las isotermas en China; el porcentaje de la población en la Argentina rural; poblaciones
de Malasia, Indonesia, México e India, y consumo de energía eléctrica en Ontario, entre
muchos otros.
Además de cambiar ejercicios para que las unidades sean métricas y los datos tengan
un sabor más internacional, otros ejercicios han sido cambiados también, el resultado de lo
cual es que alrededor de 10% de los ejercicios son diferentes de los de la versión regular.
Filosofía del libro
El arte de enseñar, dijo Mark Van Doren, es el arte de ayudar al descubrimiento. Yo he
tratado de escribir un libro que ayude a los estudiantes a descubrir el cálculo, tanto por
su eficacia práctica como por su sorprendente belleza. En esta edición, como en las
siete primeras, intento transmitir al estudiante una noción de la utilidad del cálculo y
desarrollar competencia técnica, pero también me empeño en dar cierta apreciación de
la belleza intrínseca del tema. Newton experimentó indudablemente una sensación
de triunfo cuando hizo sus grandes descubrimientos. Yo deseo que los estudiantes compartan parte de esa emoción.
El énfasis está en la comprensión de conceptos. Pienso que casi todos están de acuerdo
en que esta debería ser la meta primaria de la enseñanza de cálculo. De hecho, el ímpetu
del actual movimiento de reforma del cálculo procedió de la Conferencia de Tulane de
1986, la cual formuló como su primera recomendación:
Concentrarse en la comprensión conceptual.
He tratado de implementar esta meta mediante la regla de tres: “Los temas deben presentarse geométrica, numérica y algebraicamente”. La visualización, la experimentación
numérica y gráfica y otros enfoques han cambiado la forma en que se enseña el razonamiento conceptual de maneras fundamentales. Más recientemente, la regla de tres se
ha ampliado para convertirse en la regla de cuatro enfatizando también el punto de vista
verbal o descriptivo.
Al escribir esta octava edición, mi premisa fue que sea posible alcanzar comprensión
conceptual y retener todavía las mejores tradiciones del cálculo tradicional. El libro contiene elementos de reforma, pero en el contexto de un plan de estudios tradicional.
xi
xii
Prefacio
Versiones alternas
He escrito otros libros de texto de cálculo que podrían ser preferibles para algunos profesores. La mayoría de ellos también se presenta en versiones de una y varias variables.
• Calculus, octava edición, versión métrica internacional, es similar al presente libro
de texto excepto que las funciones exponenciales, logarítmicas y trigonométricas
inversas se cubren en el segundo semestre.
• Essential Calculus, segunda edición, edición internacional, es un libro mucho más
breve (840 páginas), que, sin embargo, contiene casi todos los temas de Calculus,
octava edición, versión métrica internacional. La relativa brevedad se logra mediante
una exposición más breve de algunos temas al trasladar algunas características
al sitio web.
• Essential Calculus: Early Transcendentals, segunda edición, edición internacional,
se asemeja a Essential Calculus, edición internacional, pero las funciones exponenciales, logarítmicas y trigonométricas inversas se cubren en el capítulo 3.
• Calculus: Concepts and Contexts, cuarta edición, edición métrica internacional,
enfatiza la comprensión conceptual con más fuerza todavía que este libro.
La cobertura de temas no es enciclopédica y el material sobre funciones trascendentes y sobre ecuaciones paramétricas se entreteje a lo largo del libro en lugar de ser
tratado en capítulos separados.
• Calculus: Early Vectors presenta los vectores y funciones vectoriales en el primer
semestre y los integra a todo lo largo del libro. Este es conveniente para estudiantes
que toman cursos de ingeniería y física al mismo tiempo que el de cálculo.
• Brief Applied Calculus, edición internacional, está dirigido a estudiantes de negocios, ciencias sociales y ciencias de la vida.
• Biocalculus: Calculus for the Life Sciences intenta mostrar a los estudiantes de las
ciencias de la vida cómo se relaciona el cálculo con la biología.
• Biocalculus: Calculus, Probability, and Statistics for the Life Sciences abarca todo
el contenido de Biocalculus: Calculus for the Life Sciences, así como tres capítulos
adicionales que cubren probabilidad y estadística.
¿Qué hay de nuevo en la octava edición?
Los cambios resultaron de conversar con mis colegas y estudiantes en la Universidad
de Toronto y de leer revistas, así como de sugerencias de usuarios y revisores. He aquí
algunas de las muchas mejoras que he incorporado en esta edición:
• Los datos en los ejemplos y ejercicios han sido actualizados para ser
más oportunos.
• Se han añadido nuevos ejemplos (véanse los ejemplos 6.1.5, 11.2.5 y 14.3.3,
entre otros), y las soluciones de algunos de los ejemplos existentes se ampliaron.
• Se agregaron tres nuevos proyectos: el proyecto Controlar la pérdida de glóbulos
rojos durante una cirugía (página 244) describe el procedimiento anh, en el
que se extrae sangre del paciente antes de una operación y se le reemplaza por
una solución salina. Esto diluye la sangre del paciente para que se pierdan menos
glóbulos rojos durante hemorragias y la sangre extraída es devuelta al paciente
después de la cirugía. El proyecto Aviones y pájaros: minimización de la energía
(página 344) pregunta cómo pueden las aves minimizar fuerza y energía al comparar
entre batir sus alas y planear. En el proyecto El Speedo LZR Racer (página 936) se
explica que este traje de baño reduce la fricción en el agua y, como consecuencia,
Prefacio
xiii
se han roto muchos récords en la natación. Se pregunta a los estudiantes por qué un
pequeño decremento en la fricción puede tener un efecto tan grande en el desempeño.
• He reestructurado el capítulo 15 (Integrales múltiples) combinando las dos primeras
secciones para que las integrales iteradas se traten antes.
• Más de 20% de los ejercicios en cada capítulo son nuevos. He aquí algunos de mis
favoritos: 2.7.61, 2.8.36-38, 3.1.79-80, 3.11.54, 4.1.69, 4.3.34, 4.3.66, 4.4.80, 4.7.39,
4.7.67, 5.1.19-20, 5.2.67-68, 5.4.70, 6.1.51, 8.1.39, 12.5.81, 12.6.29-30, 14.6.65-66.
Además, hay nuevos y buenos Problemas adicionales. (Véanse los problemas 12-14
de la página 272, el problema 13 de la página 363, los problemas 16-17 de la página
426 y el problema 8 de la página 986.)
Caraterísticas
Ejercicios conceptuales
El modo más importante de fomentar la comprensión conceptual es mediante los problemas que se asignan. Con ese fin he ideado varios tipos de problemas. Algunos conjuntos
de ejercicios comienzan con peticiones de explicar los significados de conceptos básicos de
la sección. (Véanse, por ejemplo, los primeros ejercicios de las secciones 2.2, 2.5, 11.2,
14.2 y 14.3.) De igual forma, todas las secciones de repaso comienzan con una Verificación de conceptos y un Examen verdadero-falso. Otros ejercicios ponen a prueba la
comprensión conceptual por medio de gráficas o tablas (véanse los ejercicios 2.7.17,
2.8.35-38, 2.8.47-52, 9.1.11-13, 10.1.24-27, 11.10.2, 13.2.1-2, 13.3.33-39, 14.1.1-2,
14.1.32-38, 14.1.41-44, 14.3.3-10, 14.6.1-2, 14.7.3-4, 15.1.6-8, 16.1.11-18, 16.2.17-18
y 16.3.1-2).
Otro tipo de ejercicios usa la descripción verbal para probar la comprensión conceptual (véanse los ejercicios 2.5.10, 2.8.66, 4.3.69-70 y 7.8.67). Valoro particularmente
los problemas que combinan y comparan los enfoques gráfico, numérico y algebraico
(véanse los ejercicios 2.6.45-46, 3.7.27 y 9.4.4).
Conjuntos de ejercicios graduados
Cada conjunto de ejercicios está cuidadosamente graduado, progresando de ejercicios
conceptuales básicos y problemas de desarrollo de habilidades a problemas más desafiantes que implican aplicaciones y comprobaciones.
Datos del mundo real
Mis asistentes y yo dedicamos mucho tiempo a buscar en bibliotecas, hacer contacto con
compañías y organismos gubernamentales y realizar búsquedas en internet en pos de
datos interesantes del mundo real para presentar, motivar e ilustrar los conceptos del cálculo.
En consecuencia, muchos de los ejemplos y ejercicios tienen que ver con funciones definidas por esos datos numéricos o gráficas. Véanse, por ejemplo, la figura 1 de la sección
1.1 (sismogramas del terremoto de Northridge), ejercicio 2.8.35 (tasas de desempleo),
ejercicio 5.1.16 (velocidad del transbordador espacial Endeavour) y figura 4 de la sección 5.4 (consumo de energía eléctrica en San Francisco). Las funciones de dos variables
son ilustradas por una tabla de valores del índice viento-frío como una función de temperatura del aire y velocidad del viento (ejemplo 14.1.12). Las derivadas parciales son presentadas en la sección 14.3 examinando una columna en una tabla de valores del índice
de calor (temperatura del aire percibida) como una función de la temperatura real y la
humedad relativa. Este ejemplo se retoma después en relación con aproximaciones lineales (ejemplo 14.4.3). Las derivadas direccionales se presentan en la sección 14.6 usando
un mapa de contorno de temperatura para estimar la razón de cambio de la temperatura
en Reno en la dirección de Las Vegas. Integrales dobles se usan para estimar la nevada
promedio en Colorado del 20 y 21 de diciembre de 2006 (ejemplo 15.1.9). Los campos
xiv
Prefacio
vectoriales se presentan en la sección 16.1 mediante descripciones de campos vectoriales
de velocidad reales, que muestran los patrones de viento de la bahía de San Francisco.
Proyectos
Una forma de motivar a los estudiantes y convertirlos en aprendices activos es ponerlos a
trabajar (quizás en grupos) en amplios proyectos que les den una sensación de logro sustancial al completarlos. He incluido cuatro tipos de proyectos: los Proyectos de aplicación
que contienen aplicaciones diseñadas para estimular la imaginación de los alumnos. El
proyecto que está después de la sección 9.3 pregunta si una pelota lanzada hacia arriba
tarda más en llegar a su altura máxima o en caer a su altura original. (La respuesta podría
sorprenderlo.) El proyecto posterior a la sección 14.8 usa multiplicadores de Lagrange
para determinar las masas de las tres etapas de un cohete a fin de minimizar la masa total
mientras que a la vez se permite que alcance una velocidad deseada. Los Proyectos de
laboratorio implican tecnología; el que sigue a la sección 10.2 muestra cómo utilizar las
curvas de Bézier para diseñar formas que representan letras para una impresora láser.
Los Proyectos de redacción piden a los estudiantes comparar métodos actuales con los
de los fundadores del cálculo, el método de Fermat para determinar tangentes por ejemplo. Se proporcionan referencias sugeridas. Los Proyectos de descubrimiento anticipan
resultados que se analizarán posteriormente o que alientan el descubrimiento mediante
el reconocimiento de patrones (véase el que sigue a la sección 7.6). Otros exploran
aspectos de geometría: tetraedros (después de la sección 12.4), hiperesferas (después de
la sección 15.6) e intersecciones de tres cilindros (después de la sección 15.7). Proyectos
adicionales pueden hallarse en la Instructor’s Guide* (véase, por ejemplo, Group Exercise 5.1: posición con base en muestras).
Resolución de problemas
Los estudiantes suelen tener dificultades con problemas para los que no hay un procedimiento claramente definido para la obtención de la respuesta. Pienso que nadie ha
mejorado mucho la estrategia de resolución de problemas en cuatro etapas de George Polya,
así que he incluido una versión de sus principios de resolución de problemas después
del capítulo 1. Estos se aplican, explícita e implícitamente, a lo largo de todo el libro.
Después de los demás capítulos he colocado secciones llamadas Problemas adicionales,
que contienen ejemplos de cómo atacar problemas de cálculo desafiantes. Al seleccionar
los variados problemas para esas secciones tuve en mente el consejo siguiente de David
Hilbert: “Un problema matemático debe ser difícil a fin de atraernos, pero no inaccesible
como para hacer mofa de nuestros esfuerzos”. Cuando pongo estos problemas desafiantes en tareas y exámenes, los califico de manera diferente. Aquí recompenso a los estudiantes significativamente por ideas hacia una solución y por reconocer cuáles principios
de resolución de problemas son relevantes.
Tecnología
La disponibilidad de tecnología vuelve no menos sino más importante comprender con
claridad los conceptos que subyacen en las imágenes en la pantalla. Calculadoras graficadoras y computadoras son herramientas eficaces para descubrir y comprender esos
conceptos cuando se les emplea en forma apropiada. Este libro de texto puede usarse con o
sin tecnología, y yo uso dos símbolos especiales para indicar claramente cuándo se
requiere un tipo particular de aparato. El icono
indica un ejercicio que definitivamente requiere el uso de esa tecnología, aunque eso no quiere decir que no pueda
usarse en los demás ejercicios también. El símbolo
se reserva a problemas en los que
se requieren los servicios completos de un sistema algebraico computacional (como
Maple, Mathematica o el TI-89). Pero la tecnología no vuelve obsoletos el lápiz y el
papel. El cálculo y los diagramas a mano suelen ser preferibles a la tecnología para ilustrar y reforzar algunos conceptos. Tanto profesores como alumnos deben desarrollar la
aptitud de decidir cuándo es apropiada la mano o la máquina.
*Este material se encuentra solo disponible en inglés.
Prefacio
xv
Herramientas para enriquecer el cálculo*
tec es un suplemento del texto y busca enriquecer y complementar su contenido. (Ahora
está disponible en el eBook vía CourseMate* y Enhanced WebAssign.* Visuals y Modules
selectos están disponibles en www.stewartcalculus.com.*) Desarrollado por Harvey Keynes, Dan Clegg, Hubert Hohn y yo, tec usa un enfoque de descubrimiento y exploración. En secciones del libro donde la tecnología es particularmente apropiada, iconos al
margen dirigen a los estudiantes a tec Modules que brindan un entorno de laboratorio
en el que pueden explorar el tema de maneras diversas y en niveles diferentes. Los
Visuals son animaciones de figuras en el texto; los Modules son actividades más
elaboradas e incluyen ejercicios. Los profesores pueden optar por involucrarse en
diversos niveles, desde simplemente alentar a los alumnos a usar los Visuals y Modules
para su exploración independiente hasta asignar ejercicios específicos de los incluidos
en cada Module o crear ejercicios, prácticas y proyectos adicionales que hagan uso de
los Visuals y Modules.
tec incluye asimismo Homework Hints para ejercicios representativos (usualmente con
número impar) en cada sección del texto, indicados mediante la impresión del número
del ejercicio en gris. Estas sugerencias suelen presentarse en forma de preguntas e intentan imitar a un asistente de aprendizaje eficaz funcionando como un tutor mudo. Están
hechas para no revelar de la solución real más que lo mínimamente necesario para hacer
progresos adicionales.
Enhanced WebAssign*
La tecnología ya tiene impacto en la manera en que se asignan tareas a los estudiantes, particularmente en grupos grandes. El uso de tareas en línea es creciente y su atractivo depende
de la facilidad de empleo, la precisión de las calificaciones y la confiabilidad. Con la octava
edición se ha trabajado con la comunidad del cálculo y WebAssign para desarrollar un sistema de tareas en línea. Hasta 70% de los ejercicios en cada sección se puede asignar como
tareas en línea, incluidos formatos de respuesta libre, opción múltiple y partes múltiples.
Este sistema también contiene Active Examples*, en los que los estudiantes son guiados en pequeños tutoriales paso a paso a través de ejemplos del texto, con vínculos con
el libro de texto y soluciones en video.
Sitio web
Visite CengageBrain.com* o stewartcalculus.com* para estos materiales adicionales:
• Homework Hints
• Algebra Review
• Lies My Calculator and Computer Told Me
• History of Mathematics con vínculos a los mejores sitios históricos
• Additional Topics (con conjuntos de ejercicios): series de Fourier, fórmulas para el
término residuo en las series de Taylor, rotación de ejes
• Archived Problems (ejercicios desafiantes que aparecieron en ediciones anteriores,
junto con sus soluciones)
• Challenge Problems (algunas de las secciones de Problemas adicionales de ediciones
anteriores)
• Vínculos de temas especiales con recursos externos de la web
• Selected Visuals y Modules de Tools for Enriching Calculus (tec)
*Este material se encuentra solo disponible en inglés.
xvi
Prefacio
Contenido
Pruebas de diagnóstico El libro comienza con cuatro pruebas de diagnóstico, en álgebra básica, geometría analítica, funciones y trigonometría.
Un adelanto del cálculo Esta es una panorámica del tema e incluye una lista de preguntas para motivar el estudio
del cálculo.
1 Funciones y modelos Desde el principio se enfatizan representaciones múltiples de funciones: verbal, numérica, visual y algebraica. Un análisis de modelos matemáticos conduce a una revisión de
las funciones estándar, entre ellas funciones exponenciales o logarítmicas, desde esos
cuatro puntos de vista.
2 Límites y derivadas El material sobre límites es motivado por un estudio previo de la tangente y problemas
de velocidad. Los límites se tratan desde los puntos de vista descriptivo, gráfico, numérico y algebraico. La sección 2.4, sobre la definición precisa de un límite, es una sección
opcional. Las secciones 2.7 y 2.8 tratan con derivadas (especialmente con funciones definidas gráfica y numéricamente) antes de que las reglas de derivación sean cubiertas en el
capítulo 3. Aquí los ejemplos y ejercicios exploran los significados de las derivadas en
varios contextos. Las derivadas de orden superior se presentan en la sección 2.8.
3 Reglas de derivación Todas las funciones básicas, incluidas las funciones exponenciales, logarítmicas y trigonométricas inversas, se derivan aquí. Cuando se calculan derivadas en situaciones de
aplicación, se pide a los estudiantes explicar sus significados. El crecimiento y decaimiento exponenciales se cubren ahora en este capítulo.
4 Aplicaciones de la derivada Los hechos básicos concernientes a valores extremos y formas de curvas se deducen
del teorema del valor medio. La graficación con tecnología enfatiza la interacción entre
cálculo y calculadoras y el análisis de familias de curvas. Algunos problemas de optimización sustanciales son provistos como una explicación de por qué uno debe elevar la
cabeza 42° para ver la punta de un arcoíris.
5 Integrales El problema del área y el problema de la distancia sirven para motivar la integral definida, con la presentación de la notación sigma cuando es necesario. (Una cobertura completa de la notación sigma se proporciona en el apéndice E.) Se hace énfasis en explicar
los significados de las integrales en varios contextos y en estimar sus valores a partir de
gráficas y tablas.
6 Aplicaciones de la integral Aquí presento las aplicaciones de la integral —área, volumen, trabajo, valor promedio— que pueden hacerse razonablemente sin técnicas especializadas de integración. Se
enfatizan métodos generales. La meta es que los estudiantes sean capaces de dividir una
cantidad en piezas reducidas, estimar con sumas de Riemann y reconocer el límite como
una integral.
7 Técnicas de integración Se cubren todos los métodos estándar, aunque, desde luego, el verdadero reto es poder
reconocer qué técnica es la que más conviene usar en una situación dada. En consecuencia,
en la sección 7.5 presento una estrategia de integración. El uso de sistemas algebraicos
computacionales se analiza en la sección 7.6.
8 Aplicaciones adicionales Aquí están las aplicaciones de la integral —longitud de arco y área de superficies—
de la integración para las que es útil disponer de todas las técnicas de integración, así como aplicaciones
a la biología, economía y física (energía hidrostática y centros de masa). También he
incluido una sección sobre probabilidad. Hay muchas aplicaciones aquí que pueden ser
cubiertas en términos realistas en un curso dado. Los profesores deben seleccionar aplicaciones convenientes para sus alumnos y para las que ellos mismos tengan entusiasmo.
Prefacio
xvii
9 Ecuaciones diferenciales El modelado es el tema que unifica este tratamiento introductorio de las ecuaciones
diferenciales. Campos direccionales y método de Euler se estudian antes de que las ecuaciones separables y lineales se resuelvan explícitamente, de modo que a los métodos
cualitativo, numérico y analítico se les da igual consideración. Estos métodos se aplican
a los modelos exponencial, logístico y otros para el crecimiento de una población. Las
cuatro o cinco primeras secciones de este capítulo sirven como una buena introducción a
las ecuaciones diferenciales de primer orden. Una sección final opcional usa modelos de
presa-depredador para ilustrar sistemas de ecuaciones diferenciales.
10 Ecuaciones paramétricas Este capítulo presenta curvas paramétricas y polares y aplica los métodos del cálculo en
y coordenadas polares ellas. Las curvas paramétricas son adecuadas para proyectos de laboratorio; las dos que
se presentan aquí implican a familias de curvas y curvas de Bézier. Un breve tratamiento
de las secciones cónicas en coordenadas polares prepara el camino para las leyes de
Kepler en el capítulo 13.
11 Sucesiones y series infinitas Las pruebas de convergencia tienen justificaciones intuitivas (véase la página 719), así
como comprobaciones formales. Estimaciones numéricas de sumas de series se basan en
la prueba que se haya usado para comprobar la convergencia. Se hace énfasis en la serie
y polinomios de Taylor y sus aplicaciones a la física. Las estimaciones de error incluyen
las de dispositivos de graficación.
12 Vectores y la geometría El material sobre geometría analítica tridimensional y vectores se divide en dos capítulos. El
del espacio capítulo 12 trata con vectores, los productos punto y cruz, rectas, planos y superficies.
13 Funciones vectoriales Este capítulo cubre las funciones con vectores como valores, sus derivadas e integrales,
la longitud y curvatura de curvas en el espacio y la velocidad y aceleración a lo largo de
curvas en el espacio, lo que culmina con las leyes de Kepler.
14 Derivadas parciales Las funciones de dos o más variables se estudian desde el punto de vista verbal, numérico, visual y algebraico. En particular, presento las derivadas parciales examinando una
columna específica de una tabla de valores del índice de calor (temperatura del aire percibida) como una función de la temperatura real y la humedad relativa.
15 Integrales múltiples Los mapas de contorno y la regla del punto medio se utilizan para estimar la nevada
promedio y temperatura promedio de regiones dadas. Las integrales dobles y triples se
emplean para calcular probabilidades, áreas de superficies y (en proyectos) volúmenes
de hiperesferas y volúmenes de intersecciones de tres cilindros. Se presentan coordenadas cilíndricas y esféricas en el contexto de evaluar integrales triples.
16 Cálculo vectorial Los campos vectoriales se presentan mediante imágenes de campos de velocidad que
muestran patrones de viento de la bahía de San Francisco. Se enfatizan las semejanzas
entre el teorema fundamental para integrales de línea, el teorema de Green, el teorema
de Stokes y el teorema de la divergencia.
17 Ecuaciones diferenciales Dado que las ecuaciones diferenciales de primer orden se cubren en el capítulo 9, este
de segundo orden último capítulo trata con ecuaciones diferenciales lineales de segundo orden, su aplicación
a resortes vibratorios y circuitos eléctricos y soluciones de series.
Complementos
Cálculo. Trascendentes tempranas, octava edición, se apoya en un conjunto completo
de complementos desarrollados bajo mi dirección. Cada pieza ha sido diseñada para
favorecer la comprensión del estudiante y facilitar la enseñanza creativa. Las tablas de
las páginas xxi-xxii describen cada uno de estos complementos.
xviii
Prefacio
Agradecimientos
La preparación de esta y las ediciones previas ha implicado mucho tiempo dedicado a
leer los consejos razonados (aunque a veces contradictorios) de un gran número de perspicaces revisores. Agradezco enormemente el tiempo que ellos destinaron a comprender
mi motivación para el enfoque adoptado. He aprendido algo de cada uno de ellos.
Revisores de la octava edición
Jay Abramson, Arizona State University
Adam Bowers, University of California San Diego
Neena Chopra, The Pennsylvania State University
Edward Dobson, Mississippi State University
Isaac Goldbring, University of Illinois en Chicago
Lea Jenkins, Clemson University
Rebecca Wahl, Butler University
Revisores de tecnología
Maria Andersen, Muskegon Community College
Eric Aurand, Eastfield College
Joy Becker, University of Wisconsin–Stout
Przemyslaw Bogacki, Old Dominion University
Amy Elizabeth Bowman, University of Alabama en Huntsville
Monica Brown, University of Missouri–St. Louis
Roxanne Byrne, University of Colorado en Denver y Health
Sciences Center
Teri Christiansen, University of Missouri–Columbia
Bobby Dale Daniel, Lamar University
Jennifer Daniel, Lamar University
Andras Domokos, California State University, Sacramento
Timothy Flaherty, Carnegie Mellon University
Lee Gibson, University of Louisville
Jane Golden, Hillsborough Community College
Semion Gutman, University of Oklahoma
Diane Hoffoss, University of San Diego
Lorraine Hughes, Mississippi State University
Jay Jahangiri, Kent State University
John Jernigan, Community College of Philadelphia
Brian Karasek, South Mountain Community College
Jason Kozinski, University of Florida
Carole Krueger, The University of Texas en Arlington
Ken Kubota, University of Kentucky
John Mitchell, Clark College
Donald Paul, Tulsa Community College
Chad Pierson, University of Minnesota, Duluth
Lanita Presson, University of Alabama en Huntsville
Karin Reinhold, State University of New York en Albany
Thomas Riedel, University of Louisville
Christopher Schroeder, Morehead State University
Angela Sharp, University of Minnesota, Duluth
Patricia Shaw, Mississippi State University
Carl Spitznagel, John Carroll University
Mohammad Tabanjeh, Virginia State University
CPT. Koichi Takagi, United States Naval Academy
Lorna TenEyck, Chemeketa Community College
Roger Werbylo, Pima Community College
David Williams, Clayton State University
Zhuan Ye, Northern Illinois University
Revisores de ediciones anteriores
B. D. Aggarwala, University of Calgary
John Alberghini, Manchester Community College
Michael Albert, Carnegie Mellon University
Daniel Anderson, University of Iowa
Amy Austin, Texas A&M University
Donna J. Bailey, Northeast Missouri State University
Wayne Barber, Chemeketa Community College
Marilyn Belkin, Villanova University
Neil Berger, University of Illinois, Chicago
David Berman, University of New Orleans
Anthony J. Bevelacqua, University of North Dakota
Richard Biggs, University of Western Ontario
Robert Blumenthal, Oglethorpe University
Martina Bode, Northwestern University
Barbara Bohannon, Hofstra University
Jay Bourland, Colorado State University
Philip L. Bowers, Florida State University
Amy Elizabeth Bowman, University of Alabama en Huntsville
Stephen W. Brady, Wichita State University
Michael Breen, Tennessee Technological University
Robert N. Bryan, University of Western Ontario
David Buchthal, University of Akron
Jenna Carpenter, Louisiana Tech University
Jorge Cassio, Miami-Dade Community College
Jack Ceder, University of California, Santa Barbara
Scott Chapman, Trinity University
Prefacio
Zhen-Qing Chen, University of Washington—Seattle
James Choike, Oklahoma State University
Barbara Cortzen, DePaul University
Carl Cowen, Purdue University
Philip S. Crooke, Vanderbilt University
Charles N. Curtis, Missouri Southern State College
Daniel Cyphert, Armstrong State College
Robert Dahlin
M. Hilary Davies, University of Alaska Anchorage
Gregory J. Davis, University of Wisconsin–Green Bay
Elias Deeba, University of Houston–Downtown
Daniel DiMaria, Suffolk Community College
Seymour Ditor, University of Western Ontario
Greg Dresden, Washington and Lee University
Daniel Drucker, Wayne State University
Kenn Dunn, Dalhousie University
Dennis Dunninger, Michigan State University
Bruce Edwards, University of Florida
David Ellis, San Francisco State University
John Ellison, Grove City College
Martin Erickson, Truman State University
Garret Etgen, University of Houston
Theodore G. Faticoni, Fordham University
Laurene V. Fausett, Georgia Southern University
Norman Feldman, Sonoma State University
Le Baron O. Ferguson, University of California—Riverside
Newman Fisher, San Francisco State University
José D. Flores, The University of South Dakota
William Francis, Michigan Technological University
James T. Franklin, Valencia Community College, East
Stanley Friedlander, Bronx Community College
Patrick Gallagher, Columbia University–New York
Paul Garrett, University of Minnesota–Minneapolis
Frederick Gass, Miami University of Ohio
Bruce Gilligan, University of Regina
Matthias K. Gobbert, University of Maryland, Baltimore County
Gerald Goff, Oklahoma State University
Stuart Goldenberg, California Polytechnic State University
John A. Graham, Buckingham Browne & Nichols School
Richard Grassl, University of New Mexico
Michael Gregory, University of North Dakota
Charles Groetsch, University of Cincinnati
Paul Triantafilos Hadavas, Armstrong Atlantic State University
Salim M. Haïdar, Grand Valley State University
D. W. Hall, Michigan State University
Robert L. Hall, University of Wisconsin–Milwaukee
Howard B. Hamilton, California State University, Sacramento
Darel Hardy, Colorado State University
Shari Harris, John Wood Community College
Gary W. Harrison, College of Charleston
Melvin Hausner, New York University/Courant Institute
Curtis Herink, Mercer University
Russell Herman, University of North Carolina en Wilmington
Allen Hesse, Rochester Community College
Randall R. Holmes, Auburn University
James F. Hurley, University of Connecticut
Amer Iqbal, University of Washington—Seattle
Matthew A. Isom, Arizona State University
xix
Gerald Janusz, University of Illinois en Urbana-Champaign
John H. Jenkins, Embry-Riddle Aeronautical University,
Prescott Campus
Clement Jeske, University of Wisconsin, Platteville
Carl Jockusch, University of Illinois en Urbana-Champaign
Jan E. H. Johansson, University of Vermont
Jerry Johnson, Oklahoma State University
Zsuzsanna M. Kadas, St. Michael’s College
Nets Katz, Indiana University Bloomington
Matt Kaufman
Matthias Kawski, Arizona State University
Frederick W. Keene, Pasadena City College
Robert L. Kelley, University of Miami
Akhtar Khan, Rochester Institute of Technology
Marianne Korten, Kansas State University
Virgil Kowalik, Texas A&I University
Kevin Kreider, University of Akron
Leonard Krop, DePaul University
Mark Krusemeyer, Carleton College
John C. Lawlor, University of Vermont
Christopher C. Leary, State University of New York en Geneseo
David Leeming, University of Victoria
Sam Lesseig, Northeast Missouri State University
Phil Locke, University of Maine
Joyce Longman, Villanova University
Joan McCarter, Arizona State University
Phil McCartney, Northern Kentucky University
Igor Malyshev, San Jose State University
Larry Mansfield, Queens College
Mary Martin, Colgate University
Nathaniel F. G. Martin, University of Virginia
Gerald Y. Matsumoto, American River College
James McKinney, California State Polytechnic
University, Pomona
Tom Metzger, University of Pittsburgh
Richard Millspaugh, University of North Dakota
Lon H. Mitchell, Virginia Commonwealth University
Michael Montaño, Riverside Community College
Teri Jo Murphy, University of Oklahoma
Martin Nakashima, California State Polytechnic University, Pomona
Ho Kuen Ng, San Jose State University
Richard Nowakowski, Dalhousie University
Hussain S. Nur, California State University, Fresno
Norma Ortiz-Robinson, Virginia Commonwealth University
Wayne N. Palmer, Utica College
Vincent Panico, University of the Pacific
F. J. Papp, University of Michigan–Dearborn
Mike Penna, Indiana University–Purdue University Indianapolis
Mark Pinsky, Northwestern University
Lothar Redlin, The Pennsylvania State University
Joel W. Robbin, University of Wisconsin–Madison
Lila Roberts, Georgia College and State University
E. Arthur Robinson, Jr., The George Washington University
Richard Rockwell, Pacific Union College
Rob Root, Lafayette College
Richard Ruedemann, Arizona State University
David Ryeburn, Simon Fraser University
Richard St. Andre, Central Michigan University
xx
Prefacio
Ricardo Salinas, San Antonio College
Robert Schmidt, South Dakota State University
Eric Schreiner, Western Michigan University
Mihr J. Shah, Kent State University–Trumbull
Qin Sheng, Baylor University
Theodore Shifrin, University of Georgia
Wayne Skrapek, University of Saskatchewan
Larry Small, Los Angeles Pierce College
Teresa Morgan Smith, Blinn College
William Smith, University of North Carolina
Donald W. Solomon, University of Wisconsin–Milwaukee
Edward Spitznagel, Washington University
Joseph Stampfli, Indiana University
Kristin Stoley, Blinn College
M. B. Tavakoli, Chaffey College
Magdalena Toda, Texas Tech University
Ruth Trygstad, Salt Lake Community College
Paul Xavier Uhlig, St. Mary’s University, San Antonio
Stan Ver Nooy, University of Oregon
Andrei Verona, California State University–Los Angeles
Klaus Volpert, Villanova University
Russell C. Walker, Carnegie Mellon University
William L. Walton, McCallie School
Peiyong Wang, Wayne State University
Jack Weiner, University of Guelph
Alan Weinstein, University of California, Berkeley
Theodore W. Wilcox, Rochester Institute of Technology
Steven Willard, University of Alberta
Robert Wilson, University of Wisconsin–Madison
Jerome Wolbert, University of Michigan–Ann Arbor
Dennis H. Wortman, University of Massachusetts, Boston
Mary Wright, Southern Illinois University–Carbondale
Paul M. Wright, Austin Community College
Xian Wu, University of South Carolina
Me gustaría agradecer además a R. B. Burckel, Bruce Colletti, David Behrman, John
Dersch, Gove Effinger, Bill Emerson, Dan Kalman, Quyan Khan, Alfonso Gracia-Saz,
Allan MacIsaac, Tami Martin, Monica Nitsche, Lamia Raffo, Norton Starr y Jim Trefzger
por sus sugerencias; a Al Shenk y Dennis Zill por la autorización para usar ejercicios
de sus textos de cálculo; a comap por su autorización para usar material para proyectos; a George Bergman, David Bleecker, Dan Clegg, Victor Kaftal, Anthony Lam, Jamie
Lawson, Ira Rosenholtz, Paul Sally, Lowell Smylie y Larry Wallen por sus ideas para
ejercicios; a Dan Drucker por el proyecto de carrera sobre ruedas; a Thomas Banchoff,
Tom Farmer, Fred Gass, John Ramsay, Larry Riddle, Philip Straffin y Klaus Volpert por
sus ideas para proyectos; a Dan Anderson, Dan Clegg, Jeff Cole, Dan Drucker y Barbara
Frank por resolver los ejercicios nuevos y sugerir maneras de mejorarlos; a Marv Riedesel
y Mary Johnson por su precisión en la lectura de pruebas; a Andy Bulman-Fleming,
Lothar Redlin, Gina Sanders y Saleem Watson por la lectura de pruebas adicional, y a
Jeff Cole y Dan Clegg por su cuidadosa preparación y lectura de pruebas del manuscrito
de respuestas.
Agradezco además a quienes contribuyeron en ediciones anteriores: Ed Barbeau,
George Bergman, Fred Brauer, Andy Bulman-Fleming, Bob Burton, David Cusick, Tom
DiCiccio, Garret Etgen, Chris Fisher, Leon Gerber, Stuart Goldenberg, Arnold Good, Gene
Hecht, Harvey Keynes, E. L. Koh, Zdislav Kovarik, Kevin Kreider, Emile LeBlanc, David
Leep, Gerald Leibowitz, Larry Peterson, Mary Pugh, Lothar Redlin, Carl Riehm, John
Ringland, Peter Rosenthal, Dusty Sabo, Doug Shaw, Dan Silver, Simon Smith, Saleem
Watson, Alan Weinstein y Gail Wolkowicz.
Gracias también a Kathi Townes, Stephanie Kuhns, Kristina Elliott y Kira Abdallah
de TECHarts por sus servicios de producción y a los empleados siguientes de Cengage
Learning: Cheryll Linthicum, gerente de proyectos de contenido; Stacy Green, desarrolladora de contenido titular; Samantha Lugtu, desarrolladora de contenido asociada;
Stephanie Kreuz, asistente de producto; Lynh Pham, desarrolladora de medios; Ryan
Ahern, gerente de mercadotecnia, y Vernon Boes, director de arte. Todos ellos hicieron
un trabajo sobresaliente.
He tenido la enorme suerte de trabajar con algunos de los mejores editores de matemáticas en el ramo en las últimas tres décadas: Ron Munro, Harry Campbell, Craig
Barth, Jeremy Hayhurst, Gary Ostedt, Bob Pirtle, Richard Stratton, Liz Covello y ahora
Neha Taleja. Todos ellos han contribuido ampliamente en el éxito de este libro.
james stewart
Complementos para profesores
Manual del instructor (Instructor’s Guide)*
Por Douglas Shaw
ISBN 978-1-305-39371-4
Cada sección de este texto es analizada desde varios puntos
de vista. Instructor’s Guide contiene tiempo sugerido por
asignar, puntos por enfatizar, temas de análisis del texto,
materiales básicos para exponer en clase, sugerencias de
talleres/debates, ejercicios de trabajo grupal en forma conveniente para su distribución y sugerencias de tareas.
Manual de soluciones completas
(Complete Solutions Manual)*
Single Variable Early Transcendentals*
ISBN 978-1-305-27262-0
Multivariable*
ISBN 978-1-305-38699-0
Incluye soluciones desarrolladas de todos los ejercicios
en el texto.
Printed Test Bank*
Por William Steven Harmon
ISBN 978-1-305-38722-5
Contiene elementos de exámenes de opción múltiple
y respuesta libre específicos del texto.
Cengage Learning Testing Powered by Cognero*
(login.cengage.com)
Este sistema en línea flexible le permite crear, editar y
gestionar contenido del banco de exámenes con base en
múltiples soluciones de Cengage Learning; crear múltiples
versiones de exámenes en un instante y aplicar exámenes
desde su LMS, salón de clases o donde usted quiera.
TOOLS FOR ENRICHING™ CALCULUS*
Por James Stewart, Harvey Keynes, Dan Clegg y el desarrollador
Hubert Hohn
Tools for Enriching Calculus (TEC) funciona como una
herramienta eficaz para profesores lo mismo que como un
entorno tutorial en que los estudiantes pueden explorar y
repasar temas selectos. Los módulos de simulación Flash
en TEC incluyen instrucciones, explicaciones por escrito
y en audio de los conceptos y ejercicios. TEC está disponible
en el eBook vía CourseMate y Enhanced WebAssign.
Visuals y Modules especiales pueden conseguirse en
www.stewartcalculus.com.
Enhanced WebAssign®
www.webassign.net
Código de acceso impreso: ISBN 978-1-285-85826-5
Código de acceso instantáneo: ISBN 978-1-285-85825-8
Exclusivamente de Cengage Learning, Enhanced WebAssign
ofrece un amplio programa en línea para el Cálculo de
Stewart a fin de alentar la práctica decisiva para el dominio
de conceptos. La pedagogía meticulosamente elaborada y
los ejercicios de nuestros textos probados se vuelven aún
más efectivos en Enhanced WebAssign, complementados
por apoyo tutorial en multimedia y retroalimentación inmediata a medida que los estudiantes completan sus tareas.
Las características clave incluyen:
n
n
n
n
n
Complementos para profesores
y estudiantes
Stewart Website*
www.stewartcalculus.com
Contenido: Homework Hints n Algebra Review n Additional
Topics n Drill Exercises n Challenge Problems n Web
Links n History of Mathematics n Tools for Enriching
Calculus (TEC)
n
n
n
Miles de problemas de tarea que coinciden con los ejercicios de fin de sección del libro de texto
Oportunidades para que los alumnos repasen habilidades
y contenido de prerrequisito tanto al principio del curso
como al principio de cada sección
Páginas del eBook Read It, videos Watch It, tutoriales
Master It y vínculos Chat About It
Un YouBook de Cengage personalizable con características para resaltar, tomar apuntes y buscar, así como con
vínculos a recursos multimedia
Personal Study Plans (basados en exámenes de diagnóstico) que identifican temas de capítulos que los estudiantes deberán dominar
Un Answer Evaluator de WebAssign que reconoce y
acepta respuestas matemáticas equivalentes en la misma
forma en que un profesor califica
Una característica de Show My Work que da a los
profesores la opción de ver soluciones detalladas
de los alumnos
Visualizing Calculus Animations, Lecture Videos y más
*Este material se encuentra disponible en inglés. Visite www.cengage.com para acceder a estos recursos.
n Elementos electrónicos
n Elementos impresos
(La tabla continúa en la página xxii)
xxi
Cengage Customizable YouBook*
YouBook es un eBook tanto interactivo como personalizable.
Con todo el contenido del Cálculo de Stewart, YouBook
ofrece una herramienta de edición de texto que permite a los
profesores modificar la narración del libro de texto conforme
sea necesario. Con YouBook, los profesores pueden reordenar rápidamente secciones y capítulos enteros o esconder
contenido que no imparten para crear un eBook que se
ajuste a la perfección a su curso. Los profesores pueden
personalizar adicionalmente el texto añadiendo vínculos de
video creados por ellos mismos o de YouTube. Elementos
adicionales de medios incluyen figuras animadas, videoclips,
características para resaltar y tomar apuntes y más.
YouBook está disponible en Enhanced WebAssign.
CourseMate*
CourseMate es una perfecta herramienta de estudio personal
para los alumnos y no requiere preparación alguna de los profesores. CourseMate da vida a conceptos del curso con herramientas interactivas de aprendizaje, estudio y preparación
para exámenes que prestan apoyo al libro de texto impreso.
CourseMate para el Cálculo de Stewart incluye un eBook
interactivo, Tools for Enriching Calculus, videos, exámenes,
tarjetas de conceptos y más. Para los profesores, CourseMate
incluye Engagement Tracker, una herramienta única en su tipo
que monitorea la participación de los estudiantes.
CengageBrain.com*
Para tener acceso a materiales adicionales de cursos, visite
por favor www.cengagebrain.com. En la página principal
de CengageBrain.com, busque el ISBN de su título (en el
reverso de su libro) usando el cuadro de búsqueda en la
parte superior de la página. Esto lo llevará a la página
del producto donde pueden encontrarse estos recursos.
Complementos para estudiantes
Manual de soluciones para el estudiante
(Student Solutions Manual)*
Single Variable Early Transcendentals
ISBN 978-1-305-27263-7
Multivariable
ISBN 978-1-305-38698-3
Proporciona soluciones completamente elaboradas
de todos los ejercicios de número impar del texto, dando
a los estudiantes la oportunidad de verificar sus respuestas
y cerciorarse de haber dado los pasos correctos para
llegar a la respuesta. El Student Solutions Manual se puede
ordenar o acceder a él en línea como un eBook en
www.cengagebrain.com buscando el ISBN.
Study Guide*
Single Variable Early Transcendentals
Por Richard St. Andre
ISBN 978-1-305-27914-8
Multivariable*
Por Richard St. Andre
ISBN 978-1-305-27184-5
Para cada sección del texto, la Study Guide ofrece a los
estudiantes una breve introducción, una lista corta de
conceptos por dominar y preguntas de resumen y concentración con respuestas explicadas. La Study Guide también
contiene pruebas de autoaplicación con preguntas tipo
examen. La Study Guide se puede ordenar o acceder a
ella en línea como un eBook en www.cengagebrain.com
buscando el ISBN.
A Companion to Calculus*
Por Dennis Ebersole, Doris Schattschneider, Alicia Sevilla
y Kay Somers
ISBN 978-0-495-01124-8
Escrito para mejorar habilidades de álgebra y resolución
de problemas de los estudiantes que toman un curso de
álgebra, cada capítulo de este complemento está dirigido a
un tema de cálculo, ofreciendo fundamentos conceptuales y
técnicas específicas de álgebra necesarios para entender
y resolver problemas de cálculo relacionados con ese tema.
Está diseñado para cursos de cálculo que integran el repaso
de conceptos de precálculo o para uso individual. Pida un
ejemplar del texto o acceda al eBook en línea en
www.cengagebrain.com buscando el ISBN.
Linear Algebra for Calculus*
Por Konrad J. Heuvers, William P. Francis, John H. Kuisti,
Deborah F. Lockhart, Daniel S. Moak y Gene M. Ortner
ISBN 978-0-534-25248-9
Este libro es muy completo, diseñado para complementar
el curso de cálculo, ofrece una introducción y repaso de
las ideas básicas del álgebra lineal. Pida un ejemplar del
texto o acceda al eBook en línea en www.cengagebrain.com
buscando el ISBN.
*Este material se encuentra disponible en inglés. Visite www.cengage.com para acceder a estos recursos.
n Elementos electrónicos
xxii
n Elementos impresos
Al estudiante
Leer un libro de texto de cálculo es diferente a leer un
periódico o una novela, o incluso un libro de física. No se
desanime si tiene que leer un pasaje más de una vez para
comprenderlo. Debería tener lápiz y papel y una calculadora
a la mano para trazar un diagrama o hacer un cálculo.
Algunos estudiantes comienzan probando sus problemas
de tarea y leen el texto solo si se atoran en un ejercicio. Yo
sugiero que un plan mucho mejor es leer y comprender una
sección del texto antes de intentar hacer los ejercicios. En
particular, usted debería examinar las definiciones para ver
los significados exactos de los términos. Y antes de leer cada
ejemplo, sugiero que cubra la solución e intente resolver el
problema usted mismo. Obtendrá mucho más al estudiar la
solución si lo hace así.
Parte de la finalidad de este curso es estimular su pensamiento lógico. Aprenda a escribir las soluciones de los ejercicios
en forma coherente paso a paso, con oraciones explicatorias, no
solo como una cadena de ecuaciones o fórmulas inconexas.
Las respuestas a los ejercicios con número impar aparecen
al final del libro, en el apéndice I. Algunos ejercicios piden
una explicación, interpretación o descripción verbal. En esos
casos, no existe una manera correcta y única de expresar
la respuesta, así que no se preocupe si no ha encontrado la
respuesta definitiva. Además, hay varias formas en las cuales
expresar una respuesta numérica o algebraica, así que si su
respuesta difiere de la mía, no suponga de inmediato que
está equivocado. Por ejemplo, si la respuesta dada al final del
libro es s2 2 1 y usted obtiene 1/(11 s2), entonces usted está
en lo correcto y racionalizar el denominador mostrará que las
respuestas son equivalentes.
El icono indica un ejercicio que definitivamente
requiere el uso de una calculadora graficadora o una computadora con software de graficación. Pero eso no significa que
dispositivos de graficación no puedan usarse también para
verificar su trabajo en los demás ejercicios. El símbolo
se
reserva a problemas en los que son requeridos los recursos
completos de un sistema algebraico computacional (como
Maple, Mathematica o el TI-89).
Usted también encontrará el símbolo , el cual lo previene de cometer un error. He puesto este símbolo al margen
en situaciones en que he observado que una gran proporción
de mis estudiantes tiende a cometer el mismo error.
Tools for Enriching Calculus, que es un complemento de
este texto, se refiere por medio del símbolo
y puede ser
consultado en el eBook vía Enhanced WebAssign
y CourseMate (Visuals y Modules selectos están disponibles
en www.stewartcalculus.com). Esto lo dirige a usted a módulos en los que puede explorar aspectos del cálculo para los
cuales la computadora es particularmente útil.
Notará que algunos números de ejercicios están impresos
en gris: 5. Esto indica que Homework Hints están disponibles
para el ejercicio. Estas sugerencias pueden hallarse
en stewartcalculus.com así como en Enhanced WebAssign
y CourseMate. Las sugerencias de tareas hacen preguntas
que le permiten realizar progresos hacia una solución
sin realmente darle la respuesta. Usted debe seguir cada
sugerencia en forma activa con lápiz y papel para resolver
los detalles. Si una sugerencia particular no le permite
resolver el problema, puede hacer clic para revelar la
sugerencia siguiente.
Le recomiendo conservar este libro para efectos de consulta después de terminar el curso. Dado que es probable que
olvide algunos de los detalles específicos del cálculo, el libro
servirá como un recordatorio útil cuando deba usar el cálculo
en cursos subsecuentes. Y como este libro contiene más
material del que puede cubrirse en un curso, también puede
servir como un valioso recurso para un científico o ingeniero
en ejercicio profesional.
El cálculo es un tema muy interesante, con justicia considerado uno de los grandes logros del intelecto humano.
Espero que usted descubra que es no solo útil, sino también
intrínsecamente bello.
james stewart
xxiii
xxiv
© Dan Clegg
Usted también puede emplear software de
computación como Graphing Calculator de Pacific
Tech (www.pacifict.com) para ejecutar muchas de
esas funciones, lo mismo que aplicaciones para teléfonos y tabletas como Quick Graph (Colombiamug)
o Math-Studio (Pomegranate Apps). Funcionalidad
similar está disponible usando una interfaz web en
WolframAlpha.com.
Los adelantos en tecnología siguen ofreciendo una variedad de
herramientas cada vez más amplia para hacer matemáticas. Las
calculadoras de bolsillo se han vuelto más potentes, lo mismo
que los programas de software y los recursos en internet. Además, muchas aplicaciones matemáticas han sido lanzadas para
teléfonos inteligentes y tabletas como la iPad.
Algunos ejercicios de este texto están marcados con un icono
de graficación , que indica que el uso de alguna tecnología
es requerido. A menudo esto significa que se desea que un
dispositivo de graficación se use para dibujar la gráfica de una
función o ecuación. Usted podría necesitar también tecnología
para determinar los ceros de una gráfica o los puntos de intersección de dos gráficas. En algunos casos se usará un dispositivo
de cálculo para resolver una ecuación o evaluar numéricamente
una integral definida. Muchas calculadoras científicas y graficadoras llevan integradas estas características, como la Texas
Instruments TI-84 o TI-Nspire CX. Calculadoras similares son
fabricadas por Hewlett Packard, Casio y Sharp.
© Dan Clegg
© Dan Clegg
Calculadoras, computadoras
y otros dispositivos de graficación
se reserva a problemas en los que son requeridos los
El icono
recursos completos de un sistema algebraico computacional (sac). Un
sac es capaz de hacer matemáticas (como resolver ecuaciones, calcular
derivadas o integrales) simbólicamente más que solo numéricamente.
Ejemplos de sistemas algebraicos computacionales firmemente
establecidos son los paquetes de software de computación Maple
y Mathematica. El sitio web de WolframAlpha usa el motor de
Mathematica para proporcionar funcionalidad sac vía la web.
Muchas calculadoras graficadoras de bolsillo tienen capacidades del
sac, como la TI-89 y TI-Nspire CX CAS de Texas Instruments. Algunas
aplicaciones para tabletas y teléfonos inteligentes brindan estas capacidades, como el ya mencionado MathStudio.
© Dan Clegg
© Dan Clegg
© Dan Clegg
En general, cuando se usa el término “calculadora” en este libro, se
refiere al uso de cualquiera de los recursos que se han mencionado.
xxv
Pruebas de diagnóstico
El éxito en cálculo depende en gran medida del conocimiento de las matemáticas que
preceden al cálculo: álgebra, geometría analítica, funciones y trigonometría. Las
pruebas siguientes buscan diagnosticar debilidades que usted podría tener en esas
áreas. Después de realizar cada prueba, puede verificar sus respuestas contra las respuestas dadas y, si es necesario, reactivar sus habilidades remitiéndose a los materiales de repaso provistos.
A
Prueba de diagnóstico: álgebra
1. Evalúe cada expresión sin usar una calculadora.
(a) s23d4
(d)
(b) 234
5 23
5 21
(e)
SD
2
3
(c) 324
22
(f) 16 23y4
2. Simplifique cada expresión. Escriba su respuesta sin exponentes negativos.
(a) s 200 ] s 32
(b) s3a 3b 3 ds4ab 2 d 2
(c)
S
3x 3y2 y 3
x 2 y21y2
D
22
3. Desarrolle y simplifique.
(a) 3sx 1 6d 1 4s2x 2 5d
(b) sx 1 3ds4x 2 5d
(c) ss a 1 s b dssa 2sb d
(d) s2x 1 3d2
(e) s x 1 2d3
4. Factorice cada expresión.
(a) 4x 2 2 25
(b) 2x 2 1 5x 2 12
(c) x 3 2 3x 2 2 4x 1 12
(d) x 4 1 27x
(e) 3x 3y2 2 9x 1y2 1 6x 21y2
(f) x 3 y 2 4xy
5. Simplifique la expresión racional.
xxvi
(a)
x 2 1 3x 1 2
x2 2 x 2 2
(c)
x11
x2
2
x2 2 4
x12
2x 2 2 x 2 1
x13
?
x2 2 9
2x 1 1
y
x
2
x
y
(d)
1
1
2
y
x
(b)
Pruebas de diagnóstico
6. Racionalice la expresión y simplifique.
(a)
s10
s5 2 2
(b)
s4 1 h 2 2
h
7. Reescriba completando el cuadrado.
(a) x 2 1 x 1 1
(b) 2x 2 2 12x 1 11
8. Resuelva la ecuación. (Halle solo las soluciones reales.)
(c) x 2 2 x 2 12 5 0
2x
2x 2 1
5
x11
x
(d) 2x 2 1 4x 1 1 5 0
(e) x 4 2 3x 2 1 2 5 0
(f) 3 x 2 4 5 10
(a) x 1 5 5 14 2 12 x
(g) 2xs4 2 xd
21y2
(b)
|
2 3 s4 2 x 5 0
|
9. Resuelva cada desigualdad. Escriba su respuesta usando notación de intervalos.
(b) x 2 , 2x 1 8
(d) x 2 4 , 3
(a) 24 , 5 2 3x < 17
(c) xsx 2 1dsx 1 2d . 0
|
2x 2 3
(e)
<1
x11
|
10. Diga si cada ecuación es verdadera o falsa.
(b) sab 5 sa sb
1 1 TC
511T
(d)
C
1yx
1
(f)
5
ayx 2 byx
a2b
(a) s p 1 qd2 5 p 2 1 q 2
(c) sa 2 1 b 2 5 a 1 b
(e)
1
1
1
5 2
x2y
x
y
RESPUESTAS DE LA PRUEBA DE DIAGNÓSTICO A: ÁLGEBRA
(a) 81
(b) 281
(c)
(d) 25
(e)
9
4
(f)
(a) 6s2
(b) 48a 5b7
(c)
1
81
1
8
x
9y7
(a) 11x 2 2
(b) 4x 2 1 7x 2 15
(c) a 2 b
(d) 4x 2 1 12x 1 9
3
2
(e) x 1 6x 1 12x 1 8
(a) s2x 2 5ds2x 1 5d
(c) sx 2 3dsx 2 2dsx 1 2d
(e) 3x21y2sx 2 1dsx 2 2d
x12
x22
1
(c)
x22
(a)
(b) s2x 2 3dsx 1 4d
(d) xsx 1 3dsx 2 2 3x 1 9d
(f) xysx 2 2dsx 1 2d
(b)
x21
x23
(d) 2sx 1 yd
1
(a) 5s2 1 2s10
(b)
(a) s x 1 12 d 1 34
(b) 2sx 2 3d2 2 7
2
(a) 6
(d) 21 6
(g)
12
5
1
2 s2
(b) 1
(c) 23, 4
(e) 61, 6s2
(f) 23 , 22
3
(a) f24, 3d
(c) s22, 0d ø s1, `d
(e) s21, 4g
(a) Falso
(d) Falso
s4 1 h 1 2
(b) s22, 4d
(d) s1, 7d
(b) Verdadero
(e) Falso
Si tuvo dificultad con estos problemas, consulte el repaso de álgebra
en el sitio web www.stewartcalculus.com.
(c) Falso
(f) Verdadero
xxvii
xxviii
Pruebas de diagnóstico
B
Prueba de diagnóstico: geometría analítica
1. Determine una ecuación para la recta que pasa por el punto (2, ]5) y
(a) tiene pendiente ]3
(b) es paralela al eje x
(c) es paralela al eje y
(d) es paralela a la recta 2x ] 4y 5 3
2. Determine una ecuación para la circunferencia que tiene centro (]1, 4) y pasa por el punto (3, ]2).
3. Determine el centro y radio de la circunferencia con ecuación x2 1 y2 ] 6x 1 10y 1 9 5 0.
4. Sean A(]7, 4) y B(5, ]12) puntos en el plano.
(a) Halle la pendiente de la recta que contiene a A y B.
(b) Encuentre una ecuación de la recta que pasa por A y B. ¿Cuáles son las intersecciones?
(c) Halle el punto medio del segmento AB.
(d) Halle la longitud del segmento AB.
(e) Encuentre una ecuación de la bisectriz perpendicular a AB.
(f) Encuentre una ecuación de la circunferencia para el que AB es un diámetro.
5. Trace la región en el plano xy definida por la ecuación o desigualdades.
(a) 21 < y < 3
(c) y , 1 2
(b)
1
2x
|x| , 4 y |y| , 2
(d) y > x 2 2 1
(e) x 2 1 y 2 , 4
(f) 9x 2 1 16y 2 5 144
RESPUESTAS DE LA PRUEBA DE DIAGNÓSTICO B: GEOMETRÍA ANALÍTICA
(a) y 5 23x 1 1
(b) y 5 25
(c) x 5 2
(d) y 5 12 x 2 6
(a)
3
sx 1 1d2 1 s y 2 4d2 5 52
x
_1
234
4x 1 3y 1 16 5 0; intersección en x 5 24, intersección en y 5 2 16
3
s21, 24d
20
3x 2 4y 5 13
sx 1 1d2 1 s y 1 4d2 5 100
(d)
_4
1
0
(e)
4x
0
1
x
(f)
y
2
_1
y
1
y=1- 2 x
2
x
_2
y
0
(c)
y
2
0
Centro s3, 25d, radio 5
(a)
(b)
(c)
(d)
(e)
(f)
(b)
y
0
≈+¥=4
2
y=≈-1
Si tuvo dificultad con estos problemas, consulte el repaso de geometría
analítica en los apéndices B y C.
x
y
3
0
4 x
xxix
Pruebas de diagnóstico
C
Prueba de diagnóstico: funciones
1. La gráfica de una función f se da a la izquierda.
(a) Enuncie el valor de f (]1).
(b) Estime el valor de f (2).
(c) ¿Para cuáles valores de x es f (x) 5 2?
(d) Estime los valores de x tales que f (x) 5 0.
(e) Enuncie el dominio y rango de f.
f s2 1 hd 2 f s2d
2. Si f (x) 5 x3, evalúe el cociente de diferencia
y simplifique su respuesta.
h
3. Determine el dominio de cada función.
y
1
0
1
x
FIGURA PARA EL PROBLEMA 1
(a) f sxd 5
2x 1 1
x2 1 x 2 2
(b) tsxd 5
3
x
s
x2 1 1
(c) hsxd 5 s4 2 x 1 sx 2 2 1
4. ¿Cómo se obtienen las gráficas de las siguientes funciones a partir de la gráfica de f ?
(a) y 5 2f sxd
(b) y 5 2 f sxd 2 1
(c) y 5 f sx 2 3d 1 2
5. Sin usar una calculadora, haga un diagrama preliminar de la gráfica.
(a) y 5 x 3
(d) y 5 4 2 x 2
(g) y 5 22 x
(b) y 5 sx 1 1d3
(e) y 5 sx
(h) y 5 1 1 x21
(c) y 5 sx 2 2d3 1 3
(f) y 5 2 sx
H
2
si x < 0
6. Sea f sxd 5 1 2 x
2x 1 1 si x . 0
(a) Evalúe f (]2) y f (1).
(b) Trace la gráfica de f.
7. Si f sxd 5 x 1 2x 2 1 y tsxd 5 2x 2 3, determine cada una de las funciones siguientes.
2
(a) f 8 t
(b) t 8 f
(c) t 8 t 8 t
RESPUESTAS DE LA PRUEBA DE DIAGNÓSTICO C: FUNCIONES
(a) 22
(c) 23, 1
(e) f23, 3g, f22, 3g
(b) 2.8
(d) 22.5, 0.3
(a)
0
4. (a) Refleje a través del eje x
(b) Prolongue verticalmente por un factor de 2 y luego
desplace 1 unidad hacia abajo
(c) Desplace 3 unidades a la derecha y 2 unidades hacia arriba
(d)
(g)
1
x
2
0
_1
(e)
(h)
x
1
x
1
x
y
1
0
1
x
0
0
(f)
y
0
x
y
_1
y
1
y
4
0
(c)
y
1
12 1 6h 1 h 2
(a) s2`, 22d ø s22, 1d ø s1, `d
(b) s2`, `d
(c) s2`, 21g ø f1, 4g
(b)
y
x
y
0
1
x
xxx
Pruebas de diagnóstico
(a) 23, 3
(b)
(a) s f 8 tdsxd 5 4x 2 2 8x 1 2
(b) s t 8 f dsxd 5 2x 2 1 4x 2 5
y
1
_1
0
(c) s t 8 t 8 tdsxd 5 8x 2 21
x
Si tuvo dificultad con estos problemas, examine las secciones 1.1-1.3 de este libro.
D
Prueba de diagnóstico: trigonometría
1. Convierta de grados a radianes.
(a) 300°
(b) ]18°
2. Convierta de radianes a grados.
(a) 5y6
(b) 2
3. Determine la longitud de un arco de un círculo con radio 12 cm si el arco subtiende un
ángulo central de 30°.
4. Determine los valores exactos.
(a) tans y3d
(b) sens7 y6d
(c) secs5 y3d
5. Exprese las longitudes de a y b en la figura en términos de .
24
6. Si sen x 5 13 y sec y 5 54, donde x y y se sitúan entre 0 y y2, evalúe sen(x 1 y).
a
7. Compruebe las identidades.
¨
b
FIGURA PARA EL PROBLEMA 5
(a) tan sen 1 cos 5 sec
(b)
2 tan x
5 sen 2x
1 1 tan 2x
8. Determine todos los valores de x tales que sen 2x 5 sen x y 0 ø x ø 2.
9. Trace la gráfica de la función y 5 1 1 sen 2x sin usar una calculadora.
RESPUESTAS DE LA PRUEBA DE DIAGNÓSTICO D: TRIGONOMETRÍA
s4 1 6 s2 d
(a) 5 y3
(b) 2 y10
1
15
(a) 1508
(b) 3608y < 114.68
0, y3, , 5 y3, 2
2 cm
221
(a) s3
(b)
(a) 24 sen
(b) 24 cos
y
2
(c) 2
_π
0
π
x
Si tuvo dificultad con estos problemas, examine el apéndice D de este libro.
Un adelanto del cálculo
Cuando termine este curso, será capaz de calcular la longitud
de la curva utilizada para diseñar el Gateway Arch en St. Louis,
determinar dónde un piloto debe iniciar el descenso para un
aterrizaje suave, calcular la fuerza sobre un bate de béisbol
cuando golpea la pelota y medir la cantidad de luz captada por
el ojo humano conforme cambia el tamaño de la pupila.
EL CÁLCULO ES FUNDAMENTALMENTE DIFERENTE DE las matemáticas que ha estudiado anteriormente: el cálculo es menos estático y más dinámico. Se ocupa de los cambios y del movimiento; estudia cantidades que se aproximan a otras cantidades. Por eso puede ser útil tener una
visión general del tema antes de comenzar su estudio intensivo. Aquí se da un vistazo de algunas de
las ideas principales del cálculo, se muestran cómo surge el concepto de límite cuando se intentan
resolver diferentes problemas.
1
Stewart_ch00_001-008.indd 1
08/06/17 12:50 p.m.
2
UN ADELANTO DEL CÁLCULO
El problema del área
A¡
Los orígenes del cálculo se remontan a unos 2500 años a los antiguos griegos, quienes
calcularon áreas usando el “método de agotamiento”. Los griegos sabían cómo encontrar
el área de cualquier polígono al dividirlo en triángulos como se ve en la figura 1 y sumar
las áreas de estos triángulos.
Un problema mucho más difícil es encontrar el área encerrada por una figura curvada.
El método griego de agotamiento consistía en inscribir y circunscribir polígonos en la
figura y luego aumentar el número de lados de los polígonos. La figura 2 ilustra este
proceso para el caso especial de un círculo con polígonos regulares inscritos.
A∞
A™
A¢
A£
A=A¡+A™+A£+A¢+A∞
FIGURA 1
A£
A¢
A∞
Aß
A¶
A¡™
FIGURA 2
Sea An el área del polígono inscrito con n lados. A medida que aumenta n, el área se
parece cada vez más y más al área del círculo. Se dice que el área del círculo es el límite
de las áreas de los polígonos inscritos, y se escribe
TEC En Preview Visual, puede ver
cómo las áreas de los polígonos
inscritos y circunscritos se aproximan
al área del círculo.
A − lím An
n:`
Los griegos no utilizaron de manera explícita el concepto de límite. Sin embargo, por
razonamiento indirecto, Eudoxo (siglo v a. C.) utilizó la técnica de agotamiento para
demostrar la conocida fórmula para el área de un círculo: A 5 pr2.
En el capítulo 5 se utilizará una idea similar para encontrar las áreas de regiones del
tipo que se muestra en la figura 3. Se aproximará al área deseada por medio de áreas de
rectángulos (como en la figura 4), disminuyendo el ancho de los rectángulos y luego
calculando el área A como el límite de estas sumas de áreas de rectángulos.
y
y
y
(1, 1)
y
(1, 1)
(1, 1)
(1, 1)
y=≈
A
0
FIGURA 3
1
x
0
1
4
1
2
3
4
1
x
0
1
x
0
1
n
1
x
FIGURA 4
El problema del área es el problema central en la rama del cálculo llamado cálculo
integral. Las técnicas que se desarrollarán en el capítulo 5 para encontrar áreas también
permitirán calcular el volumen de un sólido, la longitud de una curva, la fuerza de las aguas
contra una presa, la masa y el centro de gravedad de una varilla y el trabajo realizado al
bombear agua hacia afuera de un tanque.
El problema de la tangente
Considere el problema de encontrar la ecuación de la recta tangente t a una curva con
ecuación y 5 f(x) en un punto dado P. (En el capítulo 2 se dará una definición precisa de
una recta tangente. Por ahora la puede considerar como una recta que toca la curva en P
Stewart_ch00_001-008.indd 2
08/06/17 12:50 p.m.
3
UN ADELANTO DEL CÁLCULO
como en la figura 5.) Como se sabe que el punto P se encuentra en la recta tangente,
se puede encontrar la ecuación de t si se sabe su pendiente m. El problema es que se
necesitan dos puntos para calcular la pendiente y se tiene solo un punto P de t. Como
una solución alternativa al problema se encuentra en primer lugar una aproximación
a m tomando un punto cercano Q de la curva y se calcula la pendiente mPQ de la recta
secante PQ. De la figura 6 se ve que
y
t
y=ƒ
P
0
x
FIGURA 5
La recta tangente en P
mPQ 5
t
Q { x, ƒ}
ƒ-f(a)
P { a, f(a)}
m − lím mPQ
Q :P
x-a
a
f sxd 2 f sad
x2a
Ahora imagine que Q se mueve a lo largo de la curva hacia P como en la figura 7.
Puede verse que la recta secante gira y se acerca a la recta tangente como su posición
límite. Esto significa que la pendiente de la recta secante se acerca más y más a la pendiente mPQ de la recta tangente. Escriba
y
0
1
x
x
FIGURA 6
La recta secante PQ
y diga que m es el límite de mPQ cuando Q se aproxima a P a lo largo de la curva. Puesto
que x se aproxima a a cuando Q se aproxima a P, también se puede utilizar la ecuación 1
para escribir
2
m − lím
x:a
f sxd 2 f sad
x2a
y
t
Q
P
0
x
FIGURA 7
Recta secante aproximándose a la recta
tangente
En el capítulo 2 se verán ejemplos específicos de este procedimiento.
El problema de la tangente ha dado lugar a la rama del cálculo llamada cálculo diferencial, inventada más de 2000 años después que el cálculo integral. Las principales
ideas detrás del cálculo diferencial se deben al matemático francés Pierre de Fermat
(1601-1665) y fueron desarrolladas por los matemáticos ingleses John Wallis (1616-1703),
Isaac Barrow (1630-1677) e Isaac Newton (1642-1727); y el matemático alemán Gottfried
Leibniz (1646-1716).
Las dos ramas de cálculo y sus principales problemas, el problema del área y el problema de la tangente, parecen ser muy diferentes, pero resulta que hay una conexión muy
estrecha entre ellas. El problema de la tangente y el área son problemas inversos en un
sentido que se describe en el capítulo 5.
Velocidad
Cuando se ve el velocímetro de un automóvil y se lee que se está desplazando a 48 km/h,
¿qué información se obtiene? Si la velocidad se mantiene constante, después de una hora
se habrá desplazado 48 km. Pero, si la velocidad del auto varía, ¿qué significa decir que
la velocidad en un instante dado es 48 km/h?
Para analizar esta situación, examine el caso de un automóvil que viaja a lo largo
de una carretera recta en el que se supone que es posible medir la distancia recorrida
por el vehículo (en metros) a intervalos de un segundo como se registra en la tabla
siguiente:
Stewart_ch00_001-008.indd 3
t 5 tiempo transcurrido (s)
0
1
2
3
4
5
d 5 distancia (m)
0
2
9
24
42
71
08/06/17 12:50 p.m.
4
UN ADELANTO DEL CÁLCULO
Un primer paso para determinar la velocidad una vez que han transcurrido 2 segundos,
es encontrar la velocidad promedio durante el intervalo 2 < t < 4:
cambio en la posición
tiempo transcurrido
velocidad promedio −
42 2 9
422
−
− 16.5 mys
Del mismo modo, la velocidad promedio en el intervalo 2 < t < 3 es
velocidad promedio −
24 2 9
− 15 mys
322
Se tiene la sensación de que la velocidad en el instante t 5 2 no puede ser muy diferente
de la velocidad promedio durante un corto intervalo de tiempo desde t 5 2. Así que
imagine que se ha medido la distancia recorrida en intervalos de tiempo de 0.1 segundo
como se ve en la tabla siguiente:
t
2.0
2.1
2.2
2.3
2.4
2.5
d
9.00
10.02
11.16
12.45
13.96
15.80
Entonces se puede calcular, por ejemplo, la velocidad promedio en el intervalo de
tiempo [2, 2.5]:
velocidad promedio −
15.80 2 9.00
− 13.6 mys
2.5 2 2
Los resultados de estos cálculos se muestran en la tabla siguiente:
Intervalo de tiempo
f2, 3g
f2, 2.5g
f2, 2.4g
f2, 2.3g
f2, 2.2g
f2, 2.1g
Velocidad promedio (m/s)
15.0
13.6
12.4
11.5
10.8
10.2
Las velocidades promedio durante intervalos sucesivamente más pequeños parecen
estar aproximándose cada vez más a un número cercano a 10 y, por tanto, se esperaría
que la velocidad exactamente en t 5 2 fuera de 10 m/s. En el capítulo 2 se definirá la
velocidad instantánea de un objeto en movimiento, como el valor límite de las velocidades promedio durante intervalos de tiempo cada vez más pequeños.
En la figura 8 se muestra una representación gráfica del movimiento del automóvil al
trazar la distancia recorrida como función del tiempo. Si se escribe d 5 f(t), entonces f(t)
es el número de metros recorridos después de t segundos. La velocidad promedio en el
intervalo de tiempo [2, t] es
d
Q { t, f(t)}
velocidad promedio −
que es lo mismo que la pendiente de la recta secante PQ en la figura 8. La velocidad y
cuando t 5 2 es el valor límite de esta velocidad promedio cuando t se aproxima a 2; es
decir,
20
10
0
P { 2, f(2)}
1
2
FIGURA 8
Stewart_ch00_001-008.indd 4
3
4
cambio en la posición
f std 2 f s2d
−
tiempo transcurrido
t22
5
t
v − lím
t:2
f std 2 f s2d
t22
y de la ecuación 2 se reconoce que esta es igual a la pendiente de la recta tangente a la
curva en P.
08/06/17 12:50 p.m.
5
UN ADELANTO DEL CÁLCULO
Así, cuando se resuelve el problema de la tangente en el cálculo diferencial, también se da solución a problemas relativos a velocidades. Las mismas técnicas permiten resolver problemas relacionados con tasas de cambio en las ciencias naturales y
sociales.
El límite de una sucesión
En el siglo v a. C., el filósofo griego Zenón de Elea planteó cuatro problemas, ahora
conocidos como Paradojas de Zenón, que estaban diseñados para cuestionar algunas de
las ideas sobre el espacio y el tiempo que se sostenían en esos días. La segunda paradoja
de Zenón se refiere a una carrera entre Aquiles, el héroe griego, y una tortuga a la que se
ha dado cierta ventaja al inicio. Zenón argumentaba que Aquiles nunca podría rebasar
a la tortuga. Suponga que Aquiles empieza en la posición a1 y la tortuga comienza en
posición t1 (véase la figura 9). Cuando Aquiles alcanza el punto a2 5 t1, la tortuga está
más adelante en la posición t2. Cuando Aquiles llega a a3 5 t2, la tortuga está en t3. Este
proceso continúa indefinidamente y así parece que ¡la tortuga siempre estará por delante!
Pero esto desafía el sentido común.
Aquiles
FIGURA 9
a¡
Tortuga
a™
a£
a¢
a∞
...
t¡
t™
t£
t¢
...
Una manera de explicar esta paradoja es con el concepto de sucesión. Las posiciones
sucesivas de Aquiles (a1, a2, a3,….) o las posiciones sucesivas de la tortuga (t1, t2, t3,….)
forman lo que se conoce como una sucesión.
En general, una sucesión {an} es un conjunto de números escritos en un orden definido. Por ejemplo, la sucesión
h1, 12 , 13 , 14 , 15 , . . . j
puede describirse dando la siguiente fórmula para el enésimo término:
an −
a¢ a£
a™
0
Puede visualizar esta sucesión ubicando sus términos en una recta numérica como
en la figura 10(a) o dibujando su gráfica como en la figura 10(b). En cualesquiera de las
dos representaciones se observa que los términos de la sucesión a n 5 1/n se aproximan
cada vez más y más a 0 conforme n aumenta. De hecho, se pueden encontrar términos
tan pequeños como se quiera haciendo n suficientemente grande. En estas condiciones,
se dice que el límite de la sucesión es 0, y se indica escribiendo
a¡
1
(a)
1
1 2 3 4 5 6 7 8
(b)
FIGURA 10
1
n
lím
n:`
n
1
−0
n
En general, la notación
lím a n − L
n:`
se utiliza si los términos an se aproximan al número L cuando n es suficientemente
grande. Esto significa que los números an pueden acercarse al número L tanto como se
quiera si se toma una n suficientemente grande.
Stewart_ch00_001-008.indd 5
08/06/17 12:50 p.m.
6
UN ADELANTO DEL CÁLCULO
El concepto de límite de una sucesión aparece cada vez que se utiliza la representación decimal de un número real. Por ejemplo, si
a 1 − 3.1
a 2 − 3.14
a 3 − 3.141
a 4 − 3.1415
a 5 − 3.14159
a 6 − 3.141592
a 7 − 3.1415926
f
lím a n −
entonces
n:`
Los términos de esta sucesión son aproximaciones racionales de p.
Regrese a la paradoja de Zenón. Las posiciones sucesivas de Aquiles y la tortuga
forman sucesiones {an} y {tn}, donde an , tn para toda n. Puede demostrarse que ambas
sucesiones tienen el mismo límite:
lím a n − p − lím tn
n→`
n→`
Es precisamente en este punto p que Aquiles alcanza a la tortuga.
La suma de una serie
Otra de las paradojas de Zenón, según Aristóteles, es la siguiente: “un hombre parado
en una sala no puede caminar hasta la pared. Para ello, primero tendría que recorrer la
mitad de la distancia, después recorrer la mitad de la distancia restante y, luego, recorrer
la mitad de lo que falta. Este proceso puede mantenerse siempre y nunca puede terminarse” (véase la figura 11).
1
2
FIGURA 11
1
4
1
8
1
16
Por supuesto, se sabe que el hombre realmente puede llegar a la pared, lo que sugiere
que tal vez la distancia total puede expresarse como la suma de una infinidad de distancias cada vez más pequeñas como sigue:
3
Stewart_ch00_001-008.indd 6
1−
1
1
1
1
1
1 1 1
1 ∙∙∙ 1 n 1 ∙∙∙
2
4
8
16
2
08/06/17 12:50 p.m.
UN AVANCE DE CÁLCULO
7
Zenón argumentaba que no tiene sentido sumar una infinidad de números. Pero hay otras
situaciones en que se utilizan implícitamente sumas infinitas. Por ejemplo, en notación
decimal, el símbolo 0.3 − 0.3333 . . . significa
3
3
3
3
1
1
1
1
10
100
1000
10 000
y así, en cierto sentido, debe ser cierto que
3
3
3
3
1
1
1
1
10
100
1000
10 000
−
1
3
Más generalmente, si dn denota el enésimo dígito en la representación decimal de un
número, entonces
0.d1 d2 d3 d4 . . . −
d1
d2
d3
dn
1 2 1 3 1 ∙∙∙ 1 n 1 ∙∙∙
10
10
10
10
Por tanto, algunas sumas infinitas o series infinitas, como se les llama, tienen un significado. Pero se debe definir con cuidado lo que es la suma de una serie infinita.
Regresando a la serie en la ecuación 3, se denota por sn la suma de los n primeros
términos de la serie. Por tanto,
s1 − 12 − 0.5
s2 − 12 1 14 − 0.75
s3 − 12 1 14 1 18 − 0.875
1
s4 − 12 1 14 1 18 1 16
− 0.9375
1
1
s5 − 12 1 14 1 18 1 16
1 32
− 0.96875
1
1
1
s6 − 12 1 14 1 18 1 16
1 32
1 64
− 0.984375
1
1
1
1
s7 − 12 1 14 1 18 1 16
1 32
1 64
1 128
− 0.9921875
f
1
s10 − 12 1 14 1 ∙ ∙ ∙ 1 1024
< 0.99902344
f
s16 −
1
1
1
1 1 ∙ ∙ ∙ 1 16 < 0.99998474
2
4
2
Observe que como le se añadieron cada vez más términos, las sumas parciales parecen
estar más cercanas a 1. De hecho, puede demostrarse que si n es suficientemente grande
(es decir, si se suman suficientes términos de la serie), se puede aproximar la suma parcial tanto como se quiera al número 1. Por tanto, parece razonable decir que la suma de
la serie infinita es 1 y escribir
1
1
1
1
1 1 1 ∙∙∙ 1 n 1 ∙∙∙ − 1
2
4
8
2
Stewart_ch00_001-008.indd 7
08/06/17 12:50 p.m.
8
UN AVANCE DE CÁLCULO
En otras palabras, la razón de que la suma de la serie sea 1 es que
lim sn − 1
n→`
En el capítulo 11 se analizarán con más detalle estas ideas y se utilizará la propuesta
de Newton de combinar las series infinitas con el cálculo diferencial e integral.
Resumen
Se vio que el concepto de límite surge al intentar encontrar el área de una región, la
pendiente de la recta tangente a una curva, la velocidad de un auto o la suma de una serie
infinita. En cada caso el problema común es el cálculo de una cantidad como el límite
de otras cantidades fáciles de calcular. Esta idea básica de límite separa al cálculo de
otras áreas de las matemáticas. De hecho, podría definirse el cálculo como la parte de las
matemáticas que estudia límites.
Después de que Sir Isaac Newton inventó su versión del cálculo, lo usó para explicar
el movimiento de los planetas alrededor del Sol. Hoy el cálculo se utiliza para determinar las órbitas de los satélites y naves espaciales, en la predicción de tamaños de población, en la estimación de la rapidez con la que los precios del petróleo suben o bajan, en
el pronóstico del clima, en medir el gasto cardiaco, en el cálculo de las primas de seguros
de vida y en una gran variedad de otras áreas. En este libro se explorarán algunos de estos
usos del cálculo.
Con el fin de dar una idea del poder del cálculo, se termina este panorama preliminar con una lista de algunas de las preguntas que usted podrá responder al usar el
cálculo:
1. ¿Cómo podría explicar el hecho, ilustrado en la figura 12, de que el ángulo de
elevación desde un observador hasta el punto más alto en un arcoíris es 42°?
(Véase la página 285).
Rayos del Sol
138°
Rayos del Sol
42°
2. ¿Cómo podría explicar las formas de las latas en los estantes del supermercado?
(Véase la página 343).
3. ¿Dónde está el mejor lugar para sentarse en una sala de cine? (Véase la página 465).
Observador
FIGURA 12
4. ¿Cómo diseñaría una montaña rusa para un viaje suave? (Véase la página 182).
5. ¿A qué distancia de la pista de un aeropuerto debe un piloto iniciar el descenso?
(Véase la página 208).
6. ¿Cómo podría ajustar distintas curvas para que al unirlas sirvan para diseñar
letras que puedan ser impresas en una impresora láser? (Véase la página 657).
7. ¿Cómo estimaría el número de trabajadores que fueron necesarios para construir
la gran pirámide de Keops en Egipto? (Véase la página 460).
8. ¿Dónde debe colocarse un parador en corto para atrapar una pelota de béisbol
lanzada por un jardinero y arrojarla al plato (home)? (Véase la página 465).
9. Una bola lanzada verticalmente hacia arriba, ¿tarda más tiempo en llegar a su
altura máxima o en volver a su posición original de lanzamiento? (Véase la
página 609).
10. ¿Cómo podría explicar el hecho de que planetas y satélites se mueven en órbitas
elípticas? (Véase la página 876).
11. ¿Cómo distribuiría el caudal entre las turbinas en una central hidroeléctrica para
maximizar la producción total de energía? (Véase la página 980).
12. Si una canica, una pelota de squash, una barra de acero y un tubo de plomo bajan
una pendiente, ¿cuál de ellos llega primero al fondo? (Véase la página 1052).
Stewart_ch00_001-008.indd 8
08/06/17 12:50 p.m.
1
A menudo una gráfica es la
mejor manera de representar
una función porque transmite
mucha información en un
vistazo. Se muestra la gráfica
de la aceleración vertical del
suelo, creada por el terremoto
de 2011 cerca de Tohoku en
Japón. El terremoto tuvo una
magnitud de 9.0 en la escala
de Ritcher y fue tan fuerte que
movió el norte de Japón 2.4
metros más cerca de América
del Norte.
Funciones y modelos
© Pictura Collectus/Alamy
(cm/s@)
2000
1000
0
tiempo
_1000
_2000
0
50
100
150
200
© Seismological Society of America
LOS OBJETOS FUNDAMENTALES CON LOS que trata el cálculo son las funciones. Este capítulo prepara el camino para el cálculo discutiendo las ideas básicas sobre las gráficas de funciones y la manera de transformarlas y combinarlas. Se destaca que una función puede representarse
de diferentes maneras: mediante una ecuación, una tabla, una gráfica o con palabras. Se verán
los principales tipos de funciones que se presentan en el cálculo y se describirán cómo se utilizan
estas funciones para modelar matemáticamente fenómenos del mundo real.
9
Stewart_ch01_009-024.indd 9
08/06/17 1:09 p.m.
10
CAPÍTULO 1
Funciones y modelos
1.1 Cuatro maneras de representar una función
Las funciones surgen siempre que una cantidad depende de otra. Considere las cuatro
situaciones siguientes:
A. El área A de un círculo depende de su radio r. La regla que relaciona A con r está
dada por la ecuación A 5 pr2. Con cada número positivo r hay asociado un valor de
A, por lo que se dice que A es una función de r.
Año
Población
(millones)
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
1650
1750
1860
2070
2300
2560
3040
3710
4450
5280
6080
6870
B. La población humana del mundo P depende del tiempo t. La tabla muestra las
estimaciones de la población mundial P(t) en el tiempo t, para algunos años. Por
ejemplo,
P(1950) < 2 560 000 000
Pero para cada valor del tiempo t hay un valor correspondiente de P, por lo que se
dice que P es una función de t.
C. El costo C de envío de un paquete por correo depende de su peso w. Aunque no hay
alguna fórmula simple que relacione a w con C, la oficina de correos tiene una regla
para determinar C cuando se conoce w.
D. La aceleración vertical a del suelo, medida por un sismógrafo durante un terremoto,
es una función del tiempo transcurrido t. La figura 1 muestra una gráfica generada
por la actividad sísmica durante el terremoto de Northridge que sacudió Los Ángeles
en 1994. Para un determinado valor de t, la gráfica proporciona un valor correspondiente d