❙t❛t✐st✐❝❛❧ ❚❤❡♦r② ✵✾✽✹✶✹ ✕ ❙✉♠♠❛r② ◆♦t❡s
❏✉❧② ✺✱ ✷✵✶✾
❙t❛t✐st✐❝❛❧ ▼♦❞❡❧s
❘❡❣✉❧❛r✐t② ❈♦♥❞✐t✐♦♥s
{Pθ }θ∈Θ ✐s ❝❛❧❧❡❞
❆ st❛t✐st✐❝❛❧ ♠♦❞❡❧ ✐s ❛ ❢❛♠✐❧② ♦❢ ❞✐str✐❜✉t✐♦♥s✱ {Pθ }θ∈Θ ✳
✶✳ Pθ ✐s ❝♦♥t✐♥✉♦✉s ❢♦r ❡✈❡r② θ ∈ Θ
• X ∼ Pθ ❛r❡ t❤❡ r❛♥❞♦♠ ♦❜s❡r✈❛t✐♦♥s ❛ss♦❝✐❛t❡❞ ✇✐t❤ t❤❡ ♠♦❞❡❧✳
• LX (θ) = Pθ (X) ✐s ❝❛❧❧❡❞ t❤❡
•
•
r❡❣✉❧❛r ✐❢ ❡✐t❤❡r ♦❢ t❤❡ ❢♦❧❧♦✇✐♥❣ ❤♦❧❞s✿
∞
✷✳ Pθ ✐s ❞✐s❝r❡t❡
P∞ ❢♦r ❡✈❡r② θ ∈ Θ ❛♥❞ t❤❡r❡ ❡①✐sts ❛ ❝♦✉♥t❛❜❧❡ s❡t X = {ξi }i=1
s✉❝❤ t❤❛t i=1 Pθ (X = ξi ) = 1✱ ∀θ ∈ Θ✳
❧✐❦❡❧✐❤♦♦❞ ❢✉♥❝t✐♦♥✳
P❛r❛♠❡tr✐❝ ♠♦❞❡❧✿ ✇❤❡♥ Θ ✐s ✜♥✐t❡ ❞✐♠❡♥s✐♦♥❛❧ ✭❡✳❣✳✱ R3 ✮✳
❋❛❝t♦r✐③❛t✐♦♥ ❚❤❡♦r❡♠ ✭❋✐s❤❡r✲◆❡②♠❛♥✮
◆♦♥✲♣❛r❛♠❡tr✐❝ ♠♦❞❡❧✿ ✇❤❡♥ Θ ❤❛s ✐♥✜♥✐t❡ ❞✐♠❡♥s✐♦♥✳
■❢ {Pθ }θ∈Θ ✐s r❡❣✉❧❛r✱ t❤❡♥ T (X) ✐s ❛ s✉✣❝✐❡♥t st❛t✐st✐❝ ✐❢✲❛♥❞✲♦♥❧②✲✐❢ t❤❡r❡ ❡①✐st
• ◆✉✐s❛♥❝❡ ♣❛r❛♠❡t❡rs✿
t❤❡ ❝♦♠♣♦♥❡♥ts ♦❢ θ ✇❤✐❝❤ ❛r❡ ♥♦t ♦❢ ✐♥t❡r❡st ✭❡✳❣✳✱ ✇❤❡♥
❢✉♥❝t✐♦♥s g ❛♥❞ h s✉❝❤ t❤❛t
θ = µ, σ 2 ❛♥❞ ♦♥❡ ✐s ✐♥t❡r❡st❡❞ ♦♥❧② ✐♥ µ✱ t❤❡♥ σ 2 ✐s ❛ ♥✉✐s❛♥❝❡ ♣❛r❛♠❡t❡r✮✳
Pθ (x) = g (T (x) , θ) · h (x)
■❞❡♥t✐✜❛❜✐❧✐t②
▼✐♥✐♠❛❧ ❙✉✣❝✐❡♥t ❙t❛t✐st✐❝
❆ ♠♦❞❡❧ Pθ ✐s ✐❞❡♥t✐✜❛❜❧❡ ✐❢ ❢♦r ❡✈❡r② θ1 , θ2 ∈ Θ✱
θ1 6= θ2
⇒
S (X) ✐s ❝❛❧❧❡❞ ♠✐♥✐♠❛❧ s✉✣❝✐❡♥t st❛t✐st✐❝ ✐❢ ❢♦r ❡✈❡r② s✉✣❝✐❡♥t st❛t✐st✐❝ T (X)
t❤❡r❡ ❡①✐st ❛ ❢✉♥❝t✐♦♥ f s✉❝❤ t❤❛t S (x) = f (T (x)) ✭♥❛♠❡❧② S ✐s ❝♦❛rs❡r t❤❛♥ T ✮✳
Pθ1 6= Pθ2
• ❚❤❡ ✐♥✈❡rs❡ ✐s tr✐✈✐❛❧❧② tr✉❡✱ t❤❛t ✐s✿ Pθ1 6= Pθ2 ⇒ θ1 6= θ2 ✳
• ■❞❡♥t✐✜❛❜✐❧✐t② ♠❡❛♥s ❛ ♦♥❡✲t♦✲♦♥❡ ❝♦rr❡s♣♦♥❞❡♥❝❡ ❜❡t✇❡❡♥ Θ ❛♥❞ {Pθ }θ∈Θ ❀ ■t ❚❤❡♦r❡♠✿
✐s ❛ ♥❡❝❡ss❛r② ❝♦♥❞✐t✐♦♥ ❢♦r t❤❡ ❛❜✐❧✐t② t♦ ❡st✐♠❛t❡ t❤❡ ♣❛r❛♠❡t❡r θ✳
❆ s✉✣❝✐❡♥t st❛t✐st✐❝ S ✐s ♠✐♥✐♠❛❧ ✐❢ ❢♦r ❡✈❡r② x, y t❤❡ ❢♦❧❧♦✇✐♥❣ ❝♦♥❞✐t✐♦♥ ❤♦❧❞s✿
❙✉✣❝✐❡♥t ❙t❛t✐st✐❝
❆ss✉♠❡ X ∼ Pθ ✳
• ❆ ❢✉♥❝t✐♦♥ T (X) ✐s ❝❛❧❧❡❞ ❛
• T (X) ✐s ❝❛❧❧❡❞
S (x) = S (y)
❞✐str✐❜✉t✐♦♥ ♦❢ X| T = t ❞♦❡s ♥♦t ❞❡♣❡♥❞ ♦♥ θ✳
Pθ (x)
❞♦❡s ♥♦t ❞❡♣❡♥❞ ♦♥ θ
Pθ (y)
❈♦♠♣❧❡t❡ ❙t❛t✐st✐❝
st❛t✐st✐❝ ✐❢ ✐t ❞♦❡s ♥♦t ❞❡♣❡♥❞ ♦♥ θ✳
s✉✣❝✐❡♥t st❛t✐st✐❝ ✐❢ ❢♦r ❡✈❡r② t ✐♥ t❤❡ r❛♥❣❡ ♦❢
⇐⇒
❆ s✉✣❝✐❡♥t st❛t✐st✐❝ T (X) ✐s ❝❛❧❧❡❞ ❝♦♠♣❧❡t❡ ✐❢ ∀θ ∈ Θ ✐t ❤♦❧❞s t❤❛t
T (·)✱ t❤❡
Eθ [g (T (X))] = 0
✶
=⇒
g (T (X)) = 0 ❛✳s✳
❊①♣♦♥❡♥t✐❛❧ ❋❛♠✐❧✐❡s
❇❛②❡s✐❛♥ ▼♦❞❡❧s
❚❤❡ ♠♦❞❡❧ X ∼ Pθ ❜❡❧♦♥❣s t♦ ❛ ♦♥❡✲❞✐♠❡♥s✐♦♥❛❧ ❡①♣♦♥❡♥t✐❛❧ ❢❛♠✐❧② ✐❢
• ■♥ ❇❛②❡s✐❛♥ ♠♦❞❡❧s✱ θ ✐s ❝♦♥s✐❞❡r❡❞ ❛s ❛ r❛♥❞♦♠ ✈❛r✐❛❜❧❡✳
Pθ (x) = exp [c (θ) T (x) + d (θ) + S (x)] · IA (x)
• (X, θ) ❤❛s ❛ ❥♦✐♥t ❞✐str✐❜✉t✐♦♥✱ ✇❤❡r❡ ( X| θ = θ0 ) ∼ Pθ0 ❛♥❞ θ ∼ π ✳
✇❤❡r❡ IA (x) = I (x ∈ A) ❛♥❞ t❤❡ s✉♣♣♦rt A ❞♦❡s ♥♦t ❞❡♣❡♥❞ ♦♥ θ✳
• Pθ0 ✐s t❤❡ ♠♦❞❡❧ ❛♥❞ π ✐s ❝❛❧❧❡❞ t❤❡ ♣r✐♦r ✭✇✐t❤ s✉♣♣♦rt Θ✮✳
❘❡♠❛r❦s✿
• ▼♦❞❡❧ ✰ ♣r✐♦r ❞❡t❡r♠✐♥❡ t❤❡ ❞✐str✐❜✉t✐♦♥ ♦❢ ( θ| X = x)✱ ✇❤✐❝❤ ✐s t❤❡ ♣♦st❡✲
r✐♦r✳
• T (X) ✐s ❛ s✉✣❝✐❡♥t st❛t✐st✐❝ ✭❜❛s❡❞ ♦♥ t❤❡ ❢❛❝t♦r✐③❛t✐♦♥ t❤❡♦r❡♠✮✳
• ❈♦♠♠♦♥ ❡①❛♠♣❧❡s✿ ❇✐♥♦♠✐❛❧✱ ●❛♠♠❛✱ ◆♦r♠❛❧✱ ❇❡t❛✱ ●❡♦♠❡tr✐❝✳
• ❚❤❡ ❧✐❦❡❧✐❤♦♦❞ ❢✉♥❝t✐♦♥ ✐♥ t❤✐s ❝❛s❡ ✐s LX (θ0 ) = p (X |θ = θ0 ) = Pθ0 (X)✳
• ❈♦♠♠♦♥ ❡①❛♠♣❧❡s ♦❢ ♥♦♥✲❡①♣♦♥❡♥t✐❛❧ ❢❛♠✐❧✐❡s✿ ❯♥✐❢♦r♠✱ ❍②♣❡r✲●❡♦♠❡tr✐❝✱
❈♦♥❥✉❣❛t❡ ❉✐str✐❜✉t✐♦♥s
❈❛✉❝❤②✱ ●❛✉ss✐❛♥ ▼✐①t✉r❡✱ t✲❞✐str✐❜✉t✐♦♥✱ ❋✲❞✐str✐❜✉t✐♦♥✳
• ❚❤❡ ❦✲❞✐♠❡♥s✐♦♥❛❧ ❝❛s❡ ♦❢ ❡①♣♦♥❡♥t✐❛❧ ❢❛♠✐❧② ✐s✿
k
X
cj (θ) Tj (x) + d (θ) + S (x) · IA (x)
Pθ (x) = exp
• ■❢ t❤❡ ♣r✐♦r ❛♥❞ ♣♦st❡r✐♦r ❛r❡ ♦❢ t❤❡ s❛♠❡ ❢❛♠✐❧② ♦❢ ❞✐str✐❜✉t✐♦♥s✱ t❤❡② ❛r❡
❝❛❧❧❡❞ ❝♦♥❥✉❣❛t❡ ❞✐str✐❜✉t✐♦♥s✳
• ■♥ t❤✐s ❝❛s❡✱ t❤❡ ♣r✐♦r ✐s ❝❛❧❧❡❞ ❛ ❝♦♥❥✉❣❛t❡ ♣r✐♦r ❢♦r t❤❡ ❧✐❦❡❧✐❤♦♦❞ ❢✉♥❝t✐♦♥✳
j=1
• ❊①❛♠♣❧❡s✿
◆❛t✉r❛❧ ❋♦r♠✿
✕ ❇❡t❛ ❞✐str✐❜✉t✐♦♥ ✐s ❛ ❝♦♥❥✉❣❛t❡ ♣r✐♦r ✇✐t❤ r❡s♣❡❝t t♦ ❛ ❇✐♥♦♠✐❛❧ ♠♦❞❡❧✳
❙✉♣♣♦s❡ t❤❛t c (θ) = η ✐s ❛ ♦♥❡✲t♦✲♦♥❡ ❢✉♥❝t✐♦♥ ❛♥❞ ❞❡✜♥❡ d0 (η) = d c−1 (η) ✱
✇❤❡r❡ η ∈ H ✳ ❚❤❡♥ t❤❡ ♥❛t✉r❛❧ ❢♦r♠ ♦❢ t❤❡ ❡①♣♦♥❡♥t✐❛❧ ❢❛♠✐❧② ✐s t❤❡ ❢♦❧❧♦✇✐♥❣
r❡✲♣❛r❛♠❡t❡r✐③❛t✐♦♥ ♦❢ t❤❡ ♠♦❞❡❧✿
✕ ❋♦r t❤❡ ❡①♣♦♥❡♥t✐❛❧ ❢❛♠✐❧②✱ t❤❡ ❝♦♥❥✉❣❛t❡ ♣r✐♦r ✐s
πt1 ,t2 (θ0 ) = exp (t1 c (θ0 ) + t2 d (θ0 ) + w (t1 , t2 )) I (θ0 ∈ Θ)
P̃η (x) = exp [η · T (x) + d0 (η) + S (x)] · IA (x)
✇❤❡r❡ w (t1 , t2 ) = − log Θ (t1 c (θ) + t2 d (θ)) dθ ✐s ❛ ♥♦r♠❛❧✐③✐♥❣ ❝♦♥st❛♥t
❛♥❞ t❤❡ ♣❛r❛♠❡t❡r s♣❛❝❡ ✐s Ω = {(t1 , t2 ) : w (t1 , t2 ) < ∞}✳
R
❚❤❡♦r❡♠s
• ■❢ {Pθ }θ∈Θ ✐s ❛ ♦♥❡✲❞✐♠❡♥s✐♦♥❛❧ ❞✐s❝r❡t❡ ❡①♣♦♥❡♥t✐❛❧ ❢❛♠✐❧②✱ t❤❡♥ T ∼ Qθ
✇❤❡r❡ {Qθ }θ∈Θ ✐s ❛❧s♦ ❛ ♦♥❡✲❞✐♠❡♥s✐♦♥❛❧ ❡①♣♦♥❡♥t✐❛❧ ❢❛♠✐❧②✳
P❛r❛♠❡t❡r ❊st✐♠❛t✐♦♥
• ▲❡t X = (X1 , . . . , Xn ) ❜❡ ❛ s❛♠♣❧❡ ♦❢ s✐③❡ n ❢r♦♠ Pθ ✱ ✇✐t❤ {Pθ }θ∈Θ ❜❡✐♥❣
❛ ♦♥❡✲❞✐♠❡♥s✐♦♥❛❧ ❡①♣♦♥❡♥t✐❛❧ ❢❛♠✐❧②✳ ❚❤❡♥ t❤❡ ❞✐str✐❜✉t✐♦♥
P ♦❢ X ✐s ❛❣❛✐♥ ❛
♦♥❡✲❞✐♠❡♥s✐♦♥❛❧ ❡①♣♦♥❡♥t✐❛❧ ❢❛♠✐❧② ✇✐t❤ s✉✣❝✐❡♥t st❛t✐st✐❝ ni=1 T (Xi )✳
• ❚❤❡ ✉♥❦♥♦✇♥ ♣❛r❛♠❡t❡r ✐s θ ∈ Θ✳
• ❚❤❡ r❛♥❞♦♠ ♦❜s❡r✈❛t✐♦♥s ❛r❡ ❛ss✉♠❡❞ t♦ ❜❡ X1 , . . . , Xn ∼ Pθ ✳
✐✳✐✳❞
• ❈♦♥s✐❞❡r t❤❡ ♥❛t✉r❛❧ ❢♦r♠ ♦❢ t❤❡ ❡①♣♦♥❡♥t✐❛❧ ❢❛♠✐❧② ❛♥❞ ❛ss✉♠❡ t❤❛t η ✐s ❛♥
✐♥♥❡r ♣♦✐♥t ✐♥ H ✱ t❤❡♥
✕ ❚❤❡r❡❢♦r❡✱ t❤❡ ❞✐str✐❜✉t✐♦♥ ♦❢ X = (X1 , . . . , Xn ) ✐s
✶✳ MT (t) = exp (d0 (η) − d0 (η + t))✱ t❤❡ ♠♦♠❡♥t✲❣❡♥❡r❛t✐♥❣ ❢✉♥❝t✐♦♥ ♦❢ T ✳
✷✳ E (T ) = −d′0 (η) ❛♥❞ Var (T ) = −d′′0 (η)✳
Qn
i=1
Pθ (xi )✳
• ❆♥ ❡st✐♠❛t♦r ♦r ❞❡❝✐s✐♦♥ r✉❧❡ θ̂ = δ̃ (X) ✐s s♦♠❡ ❢✉♥❝t✐♦♥ ♦❢ X✳
✷
▲♦ss ❛♥❞ ❘✐s❦
•
❆
❧♦ss ❢✉♥❝t✐♦♥ L θ̂, θ
✈❛❧✉❡ ✐s
✕
θ❀
•
♠❡❛s✉r❡s ✏❤♦✇ ❜❛❞✑ ❛♥ ❡st✐♠❛t❡
✕
❙q✉❛r❡❞ ❧♦ss ♦r
r✐s❦ ❢✉♥❝t✐♦♥
✕
✕
•
❚❤❡
■t ✐s ❝♦♠♠♦♥ t♦ ❞❡♥♦t❡ ✐t ❛s
θ̂ = δ̃ (X)
2
R θ̂, θ
❚❤❡ r✐s❦ ✐s ❛ ❢✉♥❝t✐♦♥ ♦❢
❆❞♠✐ss✐❜✐❧✐t②
❆♥ ❡st✐♠❛t♦r
θ̂
▲❡t
•
❚❤❡ ♠♦♠❡♥t ❡st✐♠❛t♦r ♦❢
•
θ̂✮✳
✐s ❝❛❧❧❡❞
X✳
•
h i
•
∃θ ∈ Θ
✇✐t❤ str✐❝t ✐♥❡q✉❛❧✐t②✳
❆♥ ❡st✐♠❛t♦r
θ̂
✐s ❝❛❧❧❡❞
•
•
▲❡t
❈♦♥s✐❞❡r t❤❡
L2 ✲❧♦ss
❢✉♥❝t✐♦♥✱ s♦
R θ̂, θ =
Pn
i=1
Eθ
i=1
Xik ✳
q (θ) = g (m1 (θ) , . . . , mr (θ))
✐s ❞❡✜♥❡❞ ❛s
g
✐s ♥♦t ✉♥✐q✉❡✳
(
n
Y
Pθ (Xi )
i=1
)
LX (θ)✿
)
( n
X
log Pθ (Xi )
= arg max
θ∈Θ
i=1
■❢ t❤❡ tr✉❡ ♣❛r❛♠❡t❡r ✈❛❧✉❡ ✐s
θ0 ✱
t❤❡♥ ❜② t❤❡ ✇❡❛❦ ❧❛✇ ♦❢ ❧❛r❣❡ ♥✉♠❜❡rs✱
n
1X
P
log Pθ (Xi ) −→ Eθ0 [log Pθ (X1 )]
n i=1
❖♥ t❤❡ ♦t❤❡r ❤❛♥❞✱ ✐t ❤♦❧❞s t❤❛t ❢♦r ❛❧❧
θ ∈ Θ✱
Eθ0 [log Pθ (X1 )] ≤ Eθ0 [log Pθ0 (X1 )]
❜❡ ✐♥❞❡♣❡♥❞❡♥t r❛♥❞♦♠ ✈❛r✐❛❜❧❡s✱
✕
✕
✭✐t ❢♦❧❧♦✇s ❢r♦♠ ❏❡♥s❡♥ ✐♥❡q✉❛❧✐t② ❛♥❞ t❤❡ ❝♦♥✈❡①✐t② ♦❢
❛❞♠✐ss✐❜❧❡ ✐❢ t❤❡r❡ ❡①✐st ♥♦ s✉❝❤ ❡st✐♠❛t♦r θ̃✳
Xi ∼ N (θi , 1) , i = 1, . . . , n
Pn
❲❤② ▼▲ ❡st✐♠❛t✐♦♥ ✐s ❛ ✏❣♦♦❞ ✐❞❡❛✑❄
s✉❝❤ t❤❛t
•
❙t❡✐♥✬s P❛r❛❞♦①✿
•
1
n
❚❤❡ ▼▲❊ ✐s t❤❡ ♠❛①✐♠✐③❡r ♦❢ t❤❡ ❧✐❦❡❧✐❤♦♦❞ ❢✉♥❝t✐♦♥
θ∈Θ
R θ̃, θ ≤ R θ̂, θ , ∀θ ∈ Θ
❛♥❞
❢♦r ❛♥②
m̂k =
❛♥❞
θ̂M L (X) = arg max
h
i2
= Varθ θ̂ + biasθ θ̂
2
kXk
▼❛①✐♠✉♠ ▲✐❦❡❧✐❤♦♦❞ ❊st✐♠❛t✐♦♥ ✭▼▲❊✮
✐♥❛❞♠✐ss✐❜❧❡ ✐❢ t❤❡r❡ ❡①✐st ❛♥ ❡st✐♠❛t♦r θ̃
θ̂✱
❚❤❡ ♠♦♠❡♥t ❡st✐♠❛t♦r ✐s ♥♦t ✉♥✐q✉❡✱ s✐♥❝❡
❢✉♥❝t✐♦♥✱ t❤❡ r✐s❦ ✐s t❤❡ ▼❡❛♥✲❙q✉❛r❡❞✲❊rr♦r✿
θ̂ − θ
n−2
q̂ = g (m̂1 , . . . , m̂r )
✐t ✐s ♥♦t ❛ r❛♥❞♦♠ ✈❛r✐❛❜❧❡✳
2
mk (θ) = Eθ X1k
•
t♦ ✐♥❞✐❝❛t❡ t❤❡ ❞❡♣❡♥❞❡♥❝❡ ♦♥ t❤❡
1−
❜✐❛s ♦❢ ❛♥ ❡st✐♠❛t♦r ✐s ❞❡✜♥❡❞ ❛s biasθ θ̂ = E θ̂ − θ✳
L2 ✲❧♦ss
n ≥ 3❀
❜✉t ✐♥❛❞♠✐ss✐❜❧❡ ❢♦r
!
n ≥ 3✿
R θ̂ST , θ < n = R θ̂, θ , ∀θ ∈ Θ
❞♦♠✐♥❛t❡s t❤❡ ✏♥❛t✉r❛❧✑ ❡st✐♠❛t♦r
✭❜✉t ♥♦t ♦♥ t❤❡ r❛♥❞♦♠ ✈❛❧✉❡ ♦❢
θ❀
n = 1, 2✱
▼♦♠❡♥t ❊st✐♠❛t✐♦♥
❚❤❡ ❡①♣❡❝t❛t✐♦♥ ✐s ♦✈❡r t❤❡ ❞✐str✐❜✉t✐♦♥ ♦❢
MSE = Eθ
•
i
h
R θ; δ̃ = Eθ L δ̃ (X) , θ
❋♦r t❤❡
✐s ❛❞♠✐ss✐❜❧❡ ❢♦r
θ̂ST = X ·
✐s t❤❡ ❡①♣❡❝t❛t✐♦♥ ♦❢ t❤❡ ❧♦ss✿
❞❡❝✐s✐♦♥ r✉❧❡ ♦❢
•
L2 ✲❧♦ss✱ L θ̂, θ = θ̂ − θ
✕ L1 ✲❧♦ss✱ L θ̂, θ = θ̂ − θ
✕ ❩❡r♦✲♦♥❡✲❧♦ss✱ L θ̂, θ = I θ̂ 6= θ
❚❤❡
✐s ✇❤❡♥ t❤❡ tr✉❡
θ̂ = X
❙t❡✐♥✬s ❡st✐♠❛t♦r✱
t❤❡r❡❢♦r❡✱ t❤❡ ❧♦ss ✐s ❛ r❛♥❞♦♠ ✈❛r✐❛❜❧❡✳ ❈♦♠♠♦♥ ❧♦ss ❢✉♥❝t✐♦♥s✿
•
θ̂
❚❤❡ ❡st✐♠❛t♦r
θ̂i − θ
2
Θ = Rn ✳
•
✳
❲❛r♥✐♥❣s✿
✕
✕
❚❤❡r❡ ❛r❡ ❝❛s❡s ✇❤❡r❡ ▼▲❊ ❞♦❡s ♥♦t ❡①✐st ✭✐✳❡✳✱ t❤❡r❡ ✐s ♥♦ ♠❛①✐♠✐③❡r✮✳
❚❤❡r❡ ❛r❡ ♦t❤❡r ❝❛s❡s ✇❤❡r❡ ▼▲❊ ✐s ♥♦t ✉♥✐q✉❡✳
■♥ r❡❣✉❧❛r ♠♦❞❡❧s✱ t❤❡ ▼▲❊ ✐s ❢✉♥❝t✐♦♥ ♦❢ ❛ s✉✣❝✐❡♥t st❛t✐st✐❝
LX (θ) = g (T (X) , θ) · h (X)
✸
f (z) = − log (z)✮✳
T (X)✱
s✐♥❝❡
❇❛②❡s✐❛♥ ❊st✐♠❛t✐♦♥
❋✐s❤❡r✬s ■♥❢♦r♠❛t✐♦♥
• ❇❛②❡s r✐s❦ ✭♥✉♠❜❡r✱ ♥♦t ❛ ❢✉♥❝t✐♦♥ ♦❢ θ✮
❘❡❣✉❧❛r✐t② ❈♦♥❞✐t✐♦♥s ✭❢♦r ❝♦♥t✐♥✉♦✉s ❝❛s❡✮
• Θ ⊆ R ✐s ❛♥ ♦♣❡♥ s❡t✳
• ❇❛②❡s ❡st✐♠❛t♦rs ❛r❡ ❛❞♠✐ss✐❜❧❡
• ❚❤❡ s✉♣♣♦rt ♦❢ Pθ ❞♦❡s ♥♦t ❞❡♣❡♥❞ ♦♥ θ✳
❊♠♣✐r✐❝❛❧ ❇❛②❡s
• ❋♦r ❡✈❡r② x ❛♥❞ θ ∈ Θ✱
∂
∂θ Pθ
(x) ❡①✐sts ❛♥❞ ✜♥✐t❡✳
• ❋♦r ❡✈❡r② st❛t✐st✐❝ T ✇✐t❤ ✜♥✐t❡ ❡①♣❡❝t❛t✐♦♥✱
Z
Z
∂
∂
T (x) Pθ (x) dx = T (x) Pθ (x) dx
∂θ
∂θ
❚❇❉
▼✐♥✐♠❛① ❊st✐♠❛t♦r
❉❡✜♥✐t✐♦♥ ✫ Pr♦♣❡rt✐❡s
❚❇❉
• ❚❤❡ ❋✐s❤❡r✬s ■♥❢♦r♠❛t✐♦♥✱ I (θ)✱ ✐s ❛ ❢✉♥❝t✐♦♥ ♦❢ θ t❤❛t ✐s ❞❡✜♥❡❞ ✇✐t❤ r❡s♣❡❝t
t♦ ❛ st❛t✐st✐❝❛❧ ♠♦❞❡❧ X ∼ Pθ ❜②
"
2 #
∂
I (θ) = Eθ
log Pθ (X)
∂θ
❊q✉❛❧✐③❡r ✴ ❊q✉❛❧✐③✐♥❣ ❘✉❧❡
❚❇❉
• ■♥ ❢❛❝t✱ ✐t ❤♦❧❞s t❤❛t
❯▼❱❯ ❊st✐♠❛t♦r
Eθ
❆♥ ✉♥❜✐❛s❡❞ ❡st✐♠❛t♦r T ⋆ ✐s ❝❛❧❧❡❞ ❯▼❱❯❊ ✭❯♥✐❢♦r♠ ▼✐♥✐♠❛❧ ❱❛r✐❛♥❝❡ ❯♥❜✐❛s❡❞
❊st✐♠❛t♦r✮ ✐❢ Varθ (T ⋆ ) ≤ Varθ (T )✱ ∀θ ∈ Θ ❢♦r ❡✈❡r② ✉♥❜✐❛s❡❞ ❡st✐♠❛t♦r T ✳
∂
log Pθ (X) = 0
∂θ
s♦ t❤❡ ✐♥❢♦r♠❛t✐♦♥ ❝❛♥ ❛❧s♦ ❜❡ ✇r✐tt❡♥ ❛s
I (θ) = Var
❘❛♦✲❇❧❛❝❦✇❡❧❧ ❚❤❡♦r❡♠
∂
log Pθ (X)
∂θ
• ■♥ ❛❞❞✐t✐♦♥ ✐t ❝❛♥ ❜❡ ❝♦♠♣✉t❡❞ ✉s✐♥❣ t❤❡ s❡❝♦♥❞ ❞❡r✐✈❛t✐✈❡✱ ❜②
2
∂
log Pθ (X)
I (θ) = −Eθ
∂θ2
❙✉♣♣♦s❡ t❤❛t T (X) ✐s ❛ s✉✣❝✐❡♥t st❛t✐st✐❝ ❛♥❞ Eθ |S (X)| < ∞ ❢♦r ❛❧❧ θ ∈ Θ✳ ❉❡✜♥❡
T ⋆ (X) = E [S (X) |T (X) ]✱ t❤❡♥
h
i
h
i
2
2
Eθ (T ⋆ (X) − θ) ≤ Eθ (S (X) − θ) ,
∀θ ∈ Θ
• ❲❤❡♥ θ ∈ Rd ✱ t❤❡ ✐♥❢♦r♠❛t✐♦♥ ✭♠❛tr✐①✮ ✐s ❞❡✜♥❡❞ ❜②
h
i
T
I (θ) = Eθ ∇θ log Pθ (X) · (∇θ log Pθ (X)) ∈ Rd×d
✇✐t❤ str✐❝t ✐♥❡q✉❛❧✐t② ✇❤❡♥ Varθ [S (X)] < ∞ ❛♥❞ T (X) 6= S (X) ❛✳s✳
⋆
▲❡❤♠❛♥♥✲❙❝❤❡✛❡ ❚❤❡♦r❡♠
• ❲❤❡♥ X1 , . . . , Xn ∼ Pθ ✱ t❤❡ ✐♥❢♦r♠❛t✐♦♥ ♦❢ X = (X1 , . . . , Xn ) ✐s
✐✳✐✳❞
■❢ T (X) ✐s ❛ ❝♦♠♣❧❡t❡ s✉✣❝✐❡♥t st❛t✐st✐❝ ❛♥❞ S (X) ✐s ❛♥ ✉♥❜✐❛s❡❞ ❡st✐♠❛t❡ ♦❢ θ
✇✐t❤ ✜♥✐t❡ ✈❛r✐❛♥❝❡✱ t❤❡♥ T ⋆ (X) = E [S (X) |T (X) ] ✐s ❯▼❱❯ ❡st✐♠❛t♦r✳
In (θ) = n · I (θ)
✹
❈r❛♠❡r✲❘❛♦ ▲♦✇❡r ❇♦✉♥❞ ✭❈❘▲❇✮
❍♦❞❣❡s ❙✉♣❡r ❊✣❝✐❡♥❝②
❚❇❉
• ❋♦r ❛ st❛t✐st✐❝ T (X) ❞❡✜♥❡ ψ (θ) = Eθ [T (X)]
• ❉❡♥♦t❡ t❤❡ ❋✐s❤❡r✬s ■♥❢♦r♠❛t✐♦♥ ♦❢ X ❜② I (θ)
❍②♣♦t❤❡s✐s ❚❡st✐♥❣ ❛♥❞
❈♦♥✜❞❡♥❝❡ ■♥t❡r✈❛❧s
• ■❢ Eθ |T (X)| < ∞, ∀θ✱ t❤❡♥
2
Varθ [T (X)] ≥
(ψ ′ (θ))
≡ ❈❘▲❇
I (θ)
Pr❡❧✐♠✐♥❛r②
◆♦t❡s✿
▲❡t X ∼ Pθ ✱ ✇✐t❤ θ ∈ Θ✳
• ❲❤❡♥ T (X) ✐s ❛♥ ✉♥❜✐❛s❡❞ ❡st✐♠❛t♦r ♦❢ θ✱ t❤❡♥ ψ ′ (θ) = 1✳
• ❚❤❡ r❛♥❞♦♠ ✐♥t❡r✈❛❧ (L (X) , U (X)) ✐s ❝❛❧❧❡❞ ❛ ❝♦♥✜❞❡♥❝❡
❧❡✈❡❧ (1 − α) ✐❢
Pθ (L (X) ≤ θ ≤ U (X)) ≥ 1 − α
• ■❢ s✉❝❤ ❛♥ ❡st✐♠❛t♦r ❛❝❤✐❡✈❡s Varθ [T (X)] = 1 /I (θ) t❤❡♥ ✐t ✐s ❯▼❱❯❊✳
• ●❡♥❡r❛❧ ❢♦r♠ ♦❢
• ❲❤❡♥ T = Tn ❞❡♣❡♥❞s ♦♥ X1 , . . . , Xn ∼ Pθ ❛♥❞ I (θ) ✐s t❤❡ ✐♥❢♦r♠❛t✐♦♥ ♦❢ ❛
s✐♥❣❧❡ Xi ✱ t❤❡♥ t❤❡ ❞❡♥♦♠✐♥❛t♦r ♦❢ t❤❡ ❈❘▲❇ ✐s n · I (θ)✳
✐✳✐✳❞
✇❤❡r❡ Θ0 , Θ1 ❛r❡ ❞✐s❥♦✐♥t s✉❜s❡ts ♦❢ Θ✳
• ❍②♣♦t❤❡s✐s H0 ✐s ❝❛❧❧❡❞
❈♦♥s✐st❡♥❝②
n
o∞
✐s ❝❛❧❧❡❞ ❝♦♥s✐st❡♥t ✐❢ ✐t s❛t✐s✜❡s θ̂n −→ θ✳
n
o∞
✐s ❝❛❧❧❡❞ ❡✣❝✐❡♥t ✐❢ ✐t s❛t✐s✜❡s
n=1
n=1
s✐♠♣❧❡ ✇❤❡♥ Θ0 = {θ0 } ✭♦t❤❡r✇✐s❡ ✐t ✐s ❝♦♠♣♦s✐t❡✮✳
• ❚❡st ✴ ❉❡❝✐s✐♦♥ ❘✉❧❡✿ δ (X) ∈ {0, 1}✱ ✇❤❡r❡ δ = 1 ♠❡❛♥s H0 ✐s r❡❥❡❝t❡❞✳
P
• ❚②♣❡✲■ ❡rr♦r✿ ✇❤❡♥ H0 ✐s ✇r♦♥❣❧② r❡❥❡❝t❡❞✳
• ❚②♣❡✲■■ ❡rr♦r✿ ✇❤❡♥ H0 ✐s ✇r♦♥❣❧② ❛❝❝❡♣t❡❞✳
❊✣❝✐❡♥❝②
❆ s❡q✉❡♥❝❡ ♦❢ ❡st✐♠❛t♦rs θ̂n
❤②♣♦t❤❡s✐s t❡st✐♥❣ ✐s
H0 : θ ∈ Θ0 ✭t❤❡ ♥✉❧❧✮ ✈❡rs✉s H1 : θ ∈ Θ1 ✭t❤❡ ❛❧t❡r♥❛t✐✈❡✮
❆s②♠♣t♦t✐❝❛❧ Pr♦♣❡rt✐❡s
❆ s❡q✉❡♥❝❡ ♦❢ ❡st✐♠❛t♦rs θ̂n
✐♥t❡r✈❛❧ ❢♦r θ ❛t
❙✐❣♥✐✜❝❛♥❝❡ ❛♥❞ P♦✇❡r ♦❢ ❚❡sts
• ❆ t❡st δ (X) ✐s ♦❢
√
D
n θ̂n − θ −→ N (0, 1 /I (θ) )
s✐❣♥✐✜❝❛♥❝❡ ❧❡✈❡❧ α ✐❢
sup Eθ [δ (X)] ≤ α
θ∈Θ0
✇❤❡r❡ I (θ) ✐s t❤❡ ✐♥❢♦r♠❛t✐♦♥ ♦❢ ❛ s✐♥❣❧❡ ♦❜s❡r✈❛t✐♦♥ X ∼ Pθ ✳
• ❚❤❡
• ❙✉❝❤ ❛♥ ❡st✐♠❛t♦r ✐s ❛s②♠♣t♦t✐❝❛❧❧② ✉♥❜✐❛s❡❞ ❛♥❞ ❛❝❤✐❡✈❡s t❤❡ ❈❘▲❇ ✭♥♦t✐❝❡
t❤❡ ✈❛r✐❛♥❝❡ ♦❢ θ̂n ✐s 1 /nI (θ) ✮✳
♣♦✇❡r ❢✉♥❝t✐♦♥ ♦❢ δ (X) ✐s ❞❡✜♥❡❞ ❢♦r ❡✈❡r② θ ∈ Θ ❛s
β (θ) = Eθ [δ (X)]
• ❲❤❡♥ θ ∈ Θ1 ✱ t❤❡♥ β (θ) ✐s ❝❛❧❧❡❞ t❤❡ ♣♦✇❡r ♦❢ δ (X)✿ t❤❡ ♣r♦❜❛❜✐❧✐t② ♦❢
❝♦rr❡❝t❧② ❛❝❝❡♣t✐♥❣ H1 ✱ t❤❛t ✐s 1 − Pr {t②♣❡✲■■ ❡rr♦r}✳
▼▲❊ ♣r♦♣❡rt✐❡s
• ❲❤❡♥ θ ∈ Θ0 ✱ t❤❡♥ β (θ) ✐s t❤❡ ♣r♦❜❛❜✐❧✐t② ♦❢ t②♣❡✲■ ❡rr♦r✳
❚❇❉
✺
❈♦♥✜❞❡♥❝❡ ■♥t❡r✈❛❧ ❢♦r ❇✐♥♦♠✐❛❧ ❚r✐❛❧s ✕ ❚❇❉
●❡♥❡r❛❧✐③❡❞ ▲✐❦❡❧✐❤♦♦❞ ❘❛t✐♦ ❚❡sts ✭●▲❘❚✮
• ❯s✐♥❣ ❡st✐♠❛t❡❞ ✈❛r✐❛♥❝❡
❚❇❉
• ❯s✐♥❣ t❤❡ ❉❡❧t❛ ▼❡t❤♦❞
❲✐❧❦✬s ❚❤❡♦r❡♠
• ❇② s♦❧✈✐♥❣ q✉❛❞r❛t✐❝ ❡q✉❛t✐♦♥
◆❡②♠❛♥✲P❡❛rs♦♥
❚❇❉
❆♣♣r♦❛❝❤✿ ❝♦♥tr♦❧ t❤❡ t②♣❡✲■ ❡rr♦r ✇❤✐❧❡ ♠✐♥✐♠✐③✐♥❣ t❤❡ t②♣❡✲■■ ❡rr♦r✳
●♦♦❞♥❡ss ♦❢ ❋✐t
▲✐❦❡❧✐❤♦♦❞ ❘❛t✐♦
❋♦r s✐♠♣❧❡ ❤②♣♦t❤❡s✐s t❡st✐♥❣✱ H0 : θ = θ0 ✈s✳ H1 : θ = θ1 ✇✐t❤ θ1 > θ0 ✿
• ❚❤❡
❧✐❦❡❧✐❤♦♦❞ r❛t✐♦
T (X) =
• ❚❤❡ ❧✐❦❡❧✐❤♦♦❞
❚❇❉
✐s ❞❡✜♥❡❞ ❛s t❤❡ st❛t✐st✐❝
r❛t✐♦ t❡st
Pθ1 (X)
Pθ0 (X)
❙♦♠❡ ❯s❡❢✉❧ Pr♦♣❡rt✐❡s ✕ ❚❇❉
✐s ❞❡✜♥❡❞ ❜② δC (X) = I (T (X) > C)✱ ✇✐t❤ C > 0✳
• ❈❤✐✲❙q✉❛r❡❞
◆❡②♠❛♥✲P❡❛rs♦♥✬s ▲❡♠♠❛
• t✲❞✐str✐❜✉t✐♦♥
❚❤❡ ❧✐❦❡❧✐❤♦♦❞ r❛t✐♦ t❡st✱ δC ✱ ✐s ♦♣t✐♠❛❧ ✐♥ t❤❡ s❡♥s❡ t❤❛t ❡✈❡r② t❡st δ ✇✐t❤ t❤❡ s❛♠❡
s✐❣♥✐✜❝❛♥❝❡ ❧❡✈❡❧ ❤❛s ❛ s♠❛❧❧❡r ♣♦✇❡r✱ ✐✳❡✿
∀δ :
• ❋✲❞✐str✐❜✉t✐♦♥
Eθ0 [δ (X)] ≤ Eθ0 [δC (X)] ⇒ Eθ1 [δ (X)] ≤ Eθ1 [δC (X)]
❉✐str✐❜✉t✐♦♥s
❯♥✐❢♦r♠❧② ▼♦st P♦✇❡r❢✉❧ ✭❯▼P✮ ❚❡sts ✕ ❚❇❉
• ❉❡✜♥✐t✐♦♥
• ❙✐♥❣❧❡✲s✐❞❡❞ ❤②♣♦t❤❡s✐s t❡st✐♥❣
❇❡r♥♦✉❧❧✐
• ❯♥✐q✉❡♥❡ss
X ∼ Ber (θ) ✐s t❤❡ r❡s✉❧t ♦❢ ❛ ❇❡r♥♦✉❧❧✐ tr✐❛❧✿ s✉❝❝❡ss (X = 1) ✇✐t❤ ♣r♦❜❛❜✐❧✐t② θ
♦r ❢❛✐❧✉r❡ (X = 0) ✇✐t❤ ♣r♦❜❛❜✐❧✐t② 1 − θ✱ ✇❤❡r❡ θ ∈ [0, 1]✳
• ❑❛r❧✐♥✲❘✉❜✐♥ ❚❤❡♦r❡♠
❉✉❛❧✐t②
Pθ (x) = θx (1 − θ)
E (X) = θ
❚❇❉
1−x
· I (x ∈ {0, 1})
Var (X) = θ (1 − θ)
♣✲❱❛❧✉❡
i.i.d
• ■❢ X1 , . . . , Xn ∼ Ber (θ) ❛♥❞ T =
❚❇❉
✻
Pn
i=1
Xi t❤❡♥ T ∼ Bin (n, θ)✳
❇✐♥♦♠✐❛❧
s✐③❡ N ✇✐t❤ ❡①❛❝t❧② K = N θ ❞❡❢❡❝t✐✈❡ ✐t❡♠s✱ ✇❤❡r❡ θ ∈ 0, N1 , N2 , . . . , 1 ✳
X ∼ Bin (n, θ) ✐s t❤❡ ♥✉♠❜❡r ♦❢ s✉❝❝❡ss❡s ♦✉t ♦❢ n ✐♥❞❡♣❡♥❞❡♥t ❇❡r♥♦✉❧❧✐ tr✐❛❧s
✇✐t❤ s✉❝❝❡ss ♣r♦❜❛❜✐❧✐t② θ✳
n
n−x
· θx (1 − θ)
· I (x ∈ {0, 1, . . . , n})
Pθ (x) =
x
Pθ (x) =
Nθ
x
E (X) = nθ
·
N (1−θ)
n−x
N
n
Var (X) = nθ (1 − θ)
E (X) = nθ
Var (X) = nθ (1 − θ)
· I (max {0, n − N (1 − θ)} ≤ x ≤ min {n, N θ})
N −n
N −1
P♦✐ss♦♥
▼✉❧t✐♥♦♠✐❛❧
X ∼ P oisson (θ)✳ ❲❤❡♥ r❛♥❞♦♠ ❡✈❡♥ts ♦❝❝✉r ✐♥❞❡♣❡♥❞❡♥t❧② ❛♥❞ ❛t ❛ ❝♦♥st❛♥t
♠❡❛♥ r❛t❡ θ✱ t❤❡♥ X ✐s t❤❡ ♥✉♠❜❡r ♦❢ ❡✈❡♥ts ♣❡r ✉♥✐t ♦❢ t✐♠❡✳
●❡♥❡r❛❧✐③❛t✐♦♥ ♦❢ ❇✐♥♦♠✐❛❧✿
θx e−θ
· I (x ∈ {0, 1, 2, . . .})
x!
E (X) = θ
• ❊❛❝❤ tr✐❛❧ ❝❛♥ ❤❛✈❡ K ♣♦ss✐❜❧❡ ♦✉t❝♦♠❡s (v1 , . . . , vK ) ✇✐t❤ ♣r♦❜❛❜✐❧✐t✐❡s
PK
(θ1 , . . . , θK ) ≡ θ✱ ✇❤❡r❡ j=1 θj = 1 ❛♥❞ θj ∈ [0, 1] , j = 1, . . . , K ✳
Pθ (x) =
• ❋♦r n ✐♥❞❡♣❡♥❞❡♥t tr✐❛❧s✱ Nj ❝♦✉♥ts t❤❡ ♥✉♠❜❡r ♦❢ vj ✲♦✉t❝♦♠❡s✳
K
K
X
Y
n!
nj
nj = n
θ ·I
Pθ (n1 , . . . , nK ) =
n1 ! · . . . · nK ! j=1 j
j=1
Var (X) = θ
◆♦r♠❛❧ ✭●❛✉ss✐❛♥✮
X ∼ N µ, σ 2 ❤❛s ❛ ♣r♦❜❛❜✐❧✐t② ❞❡♥s✐t② ❢✉♥❝t✐♦♥
E (Nj ) = nθj
Var (Nj ) = nθj (1 − θj )
(x − µ)
exp −
f (x) = √
2
2σ 2
2πσ
1
Cov (Ni , Nj ) = −nθi θj , i 6= j
●❡♦♠❡tr✐❝
2
!
• ❋♦r ●❛✉ss✐❛♥ r❛♥❞♦♠ ✈❡❝t♦r✱ X ∼ N (µ, Σ)✱ ✇✐t❤ ❞✐♠❡♥s✐♦♥ K ✿
T
exp − 21 (x − µ) Σ−1 (x − µ)
q
f (x) =
K
(2π) det (Σ)
X ∼ G (θ) ✐s t❤❡ ♥✉♠❜❡r ♦❢ ❢❛✐❧✉r❡s ❜❡❢♦r❡ t❤❡ ✜rst s✉❝❝❡ss✱ ✐♥ ❛ s❡q✉❡♥❝❡ ♦❢
✐♥❞❡♣❡♥❞❡♥t ❇❡r♥♦✉❧❧✐ tr✐❛❧s ✇✐t❤ s✉❝❝❡ss ♣r♦❜❛❜✐❧✐t② θ✱
x
Pθ (x) = (1 − θ) θ · I (x ∈ {0, 1, 2, . . .})
1−θ
E (X) =
θ
1−θ
Var (X) =
θ2
• ❊rr♦r ❢✉♥❝t✐♦♥ ✕ ❞❡✜♥❡❞ ❢♦r Y ∼ N 0, 21 ✿
2
erf (y) = Pr {−y ≤ Y ≤ y} = √
π
❍②♣❡r✲●❡♦♠❡tr✐❝
Z
y
0
exp −t2 dt
• ❆♣♣r♦①✐♠❛t❡ ♣r♦❜❛❜✐❧✐t✐❡s ❢♦r X ∼ N µ, σ ✿
X ∼ HG (N, N θ, n) ✐s t❤❡ ♥✉♠❜❡r ♦❢ ❞❡❢❡❝t✐✈❡ ✐t❡♠s ✐♥ r❛♥❞♦♠ s❛♠♣❧❡ ♦❢ s✐③❡ n✱
t❤❛t ✇❛s ❞r❛✇♥ ✇✐t❤♦✉t r❡♣❧❛❝❡♠❡♥t ✭✐✳❡✳✱ ♥♦t ✐♥❞❡♣❡♥❞❡t❧②✮ ❢r♦♠ ❛ ♣♦♣✉❧❛t✐♦♥ ♦❢
Pr {−a ≤ X − µ ≤ a}
✼
a=σ
68.27%
2
a = 2σ
95.45%
a = 3σ
99.73%
❙t❛♥❞❛r❞ ◆♦r♠❛❧✿
❯♥✐❢♦r♠
Z ∼ N (0, 1)
X ∼ N µ, σ
2
•
❈❛♥ ❜❡ ♦❜t❛✐♥❡❞ ❢r♦♠
•
❈✉♠✉❧❛t✐✈❡ ❞✐str✐❜✉t✐♦♥ ❢✉♥❝t✐♦♥ ✭❈❉❋✮✿
1
Φ (z) = FZ (z) = √
2π
•
◗✉❛♥t✐❧❡ ❢✉♥❝t✐♦♥✱
Z
❜②
Z = (X − µ)/ σ
❈♦♥t✐♥✉♦✉s ✉♥✐❢♦r♠ ❞✐str✐❜✉t✐♦♥✱
❉✐s❝r❡t❡ ✉♥✐❢♦r♠ ❞✐str✐❜✉t✐♦♥✱
p ∈ (0, 1)✿
α = 0.05✱
✉s❡❢✉❧ q✉❛♥t✐❧❡s ❛r❡✿
z1− α2 ≃ 1.96
❛♥❞ z1−α
≃ 1.65✳
X ∼ ▲♦❣✲◆♦r♠❛❧ µ, σ 2
t❤❡♥
Y = log X ∼ N µ, σ 2
2
(log x − µ)
f (x) = √
exp −
2σ 2
x 2πσ 2
σ2
E (X) = exp µ +
2
2
Var (X) = exp σ − 1 exp 2µ + σ 2
1
❛♥❞
!
❇❡t❛ ✐s ❛ t✇♦✲♣❛r❛♠❡t❡r ❢❛♠✐❧② ♦❢ ❞✐str✐❜✉t✐♦♥s ♦✈❡r
X = exp (Y )✳
Beta (a, b)✱
X ∼ Gamma (a, b)✱
✇✐t❤
a>0
✭s❤❛♣❡✮ ❛♥❞
b>0
❛♥❞
b > 0✱
x ∈ [0, 1]✳
❲❤❡♥
X ∼
1
b−1
xa−1 (1 − x)
· I (0 < x < 1)
β (a, b)
a
E (X) =
a+b
ab
Var (X) =
2
(a + b) (a + b + 1)
· I (x > 0)
❊①♣♦♥❡♥t✐❛❧
X ∼ Exp (θ)✱
✇✐t❤
a>0
f (x) =
●❛♠♠❛
■❢
θ ∈ N+ ✿
❇❡t❛
▲♦❣✲◆♦r♠❛❧
■❢
✇✐t❤
1
· I (x ∈ {1, . . . , θ})
θ
θ−1
E (X) =
2
θ2 − 1
Var (X) =
12
Pr {|Z| ≤ zp } = 2p − 1
❋♦r t❤❡ ❝♦♠♠♦♥
X ∼ U {1, θ}✱
Pθ (x) =
Pr {Z ≤ zp } = p
•
θ ∈ R++ ✿
1
1
· I (0 ≤ x ≤ θ) = · I (x ≥ 0) · I (x ≤ θ)
θ
θ
1
E (X) = θ
2
1 2
θ
Var (X) =
12
z
1
1 + erf √
exp −t2 /2 dt =
2
2
−∞
❢♦r
✇✐t❤
fθ (x) =
z
Φ−1 (p) ≡ zp ✱
X ∼ U (0, θ)✱
❛ s♣❡❝✐❛❧ ❝❛s❡ ♦❢ t❤❡
Gamma (a, b)
❞✐str✐❜✉t✐♦♥ ✭a
=1
❛♥❞
b = θ✮✱
fθ (x) = θe−θx · I (x > 0)
1
E (X) =
θ
1
Var (X) = 2
θ
✭r❛t❡✮✱
ba a−1 −bx
x
e
· I (x > 0)
Γ (a)
a
E (X) =
b
a
Var (X) = 2
b
f (x) =
•
✽
❲❤❡♥ r❛♥❞♦♠ ❡✈❡♥ts ♦❝❝✉r ✐♥❞❡♣❡♥❞❡♥t❧② ❛♥❞ ❛t ❛ ❝♦♥st❛♥t ♠❡❛♥ r❛t❡ θ ✱ t❤❡♥
X
✐s t❤❡ t✐♠❡ ❡❧❛♣s❡❞ ❜❡t✇❡❡♥ t✇♦ ❡✈❡♥ts✳
❈❤✐✲❙q✉❛r❡❞
D
✷✳ Xn −→ X ✭❝♦♥✈❡r❣❡♥❝❡ ✐♥ ❞✐str✐❜✉t✐♦♥✮ ✐❢
i.i.d
■❢ Z1 , . . . , Zk ∼ N (0, 1) t❤❡♥ X =
❞❡❣r❡❡s✲♦❢✲❢r❡❡❞♦♠✱ X ∼ χ2k ✳
Pk
i=1
Zk2 ❤❛s ❛ ❝❤✐✲sq✉❛r❡❞ ❞✐str✐❜✉t✐♦♥ ✇✐t❤ k
lim Pr {Xn ≤ t} = Pr {X ≤ t}
n→∞
❢♦r ❛❧❧ ❝♦♥t✐♥✉♦✉s ♣♦✐♥ts t ♦❢ FX (t) = Pr {X ≤ t} ✭♥♦t❡ t❤❛t FX ✐s ❞❡✜♥❡❞
♦✈❡r R ❡✈❡♥ ✇❤❡♥ X ✐s ❛ ❞✐s❝r❡t❡ r❛♥❞♦♠ ✈❛r✐❛❜❧❡✮✳
1
x(k/2)−1 e−x/2 · I (x > 0)
2k/2 · Γ (k/2)
E (X) = k
f (x) =
✸✳ Xn −→ X ✭♥❛♠❡❧②✱ Xn ❝♦♥✈❡r❣❡s ❛❧♠♦st✲s✉r❡❧② t♦ X ✮ ✐❢
❛✳s✳
Var (X) = 2k
Pr
• χ2k ✐s ❛ s♣❡❝✐❛❧ ❝❛s❡ ♦❢ t❤❡ Gamma (a, b) ❞✐str✐❜✉t✐♦♥ ✇✐t❤ a = 21 k ❛♥❞ b = 21 ✳
2
Pk
i.i.d
• ■❢ Y1 , . . . , Yk ∼ N µ, σ 2 t❤❡♥ X = σ12 i=1 Yi − Ȳk ∼ χ2k−1 ✳
❚❤❡♦r❡♠s ✫ Pr♦♣❡rt✐❡s
❛✳s✳
• Xn −→ X
t✲❉✐str✐❜✉t✐♦♥
i.i.d
• ■❢ Y1 , . . . , Yk ∼ N µ, σ
2
Z
❛♥❞ σ̂ 2 =
X=
√
1
k−1
Pk
i=1
⇒
o
=1
D
Xn −→ X
P
• ❲❤❡♥ E (X) ✐s ✜♥✐t❡✱ Xn −→ X ❞♦❡s ◆❖❚ ✐♠♣❧② E (Xn ) ✐s ✜♥✐t❡✳
❛✳s✳
Yi − Ȳk
n→∞
D
∼ tk
W/k
P
Xn −→ X
lim Xn = X
• ■❢ Xn −→ C ❢♦r ❛ ❝♦♥st❛♥t C ✱ t❤❡♥ Xn −→ C ✳
❲❤❡♥ Z ∼ N (0, 1) ❛♥❞ W ∼ χ2k ❛r❡ ✐♥❞❡♣❡♥❞❡♥t✱ t❤❡♥
X=p
⇒
n
k Ȳk − µ
∼ tk−1
σ̂
2
▲❛✇ ♦❢ ▲❛r❣❡ ◆✉♠❜❡rs
t❤❡♥
▲❡t X1 , . . . , Xn ❜❡ ✐✳✐✳❞ ✇✐t❤ ✜♥✐t❡ ♠❡❛♥ µ ❛♥❞ ❧❡t X̄n =
P
• X̄n −→ µ ✭❲❡❛❦ ▲❛✇ ♦❢ ▲❛r❣❡ ◆✉♠❜❡rs✮
1
n
Pn
i=1
Xi ✱ t❤❡♥
• X̄n −→ µ ✭❙tr♦♥❣ ▲❛✇ ♦❢ ▲❛r❣❡ ◆✉♠❜❡rs✮
❛✳s✳
❋✲❉✐str✐❜✉t✐♦♥
▼♦r❡ ❣❡♥❡r❛❧❧②✱ ✐❢ t❤❡ kth ✲♠♦♠❡♥t ♦❢ X ∼ Pθ ❡①✐sts✱ t❤❡♥
■❢ W ∼ χ2k ❛♥❞ V ∼ χ2m ❛r❡ ✐♥❞❡♣❡♥❞❡♥t✱ t❤❡♥
X=
W/k
∼ Fk,m
V /m
Pr♦❜❛❜✐❧✐t②
•
1
n
•
1
n
Pn
i=1
Pn
i=1
P
Xik −→ Eθ X k ✭❲❡❛❦ ▲❛✇ ♦❢ ▲❛r❣❡ ◆✉♠❜❡rs✮
a.s.
Xik −→ Eθ X k ✭❙tr♦♥❣ ▲❛✇ ♦❢ ▲❛r❣❡ ◆✉♠❜❡rs✮
❈❡♥tr❛❧ ▲✐♠✐t ❚❤❡♦r❡♠ ✭❈▲❚✮
▲❡t X1 , . . . , Xn ❜❡ ✐✳✐✳❞ ✇✐t❤ ♠❡❛♥ µ ❛♥❞ ✈❛r✐❛♥❝❡ σ 2 s✉❝❤ t❤❛t 0 < σ 2 < ∞✱ t❤❡♥
❆s②♠♣t♦t✐❝s
√
❈♦♥✈❡r❣❡♥❝❡ ❉❡✜♥✐t✐♦♥s
P
✶✳ Xn −→ X ✭❝♦♥✈❡r❣❡♥❝❡ ✐♥ ♣r♦❜❛❜✐❧✐t②✮ ✐❢
lim Pr {|Xn − X| < ε} = 1,
n→∞
D
n X̄n − µ −→ N 0, σ 2
❈♦♥t✐♥✉♦✉s ▼❛♣♣✐♥❣ ❚❤❡♦r❡♠ ✭❈▼❚✮
P
P
■❢ Xn −→ X ❛♥❞ g ✐s ❛ ❝♦♥t✐♥✉♦✉s ❢✉♥❝t✐♦♥✱ t❤❡♥ g (Xn ) −→ g (X)✳
∀ε > 0
✾
❙❧✉ts❦②✬s ▲❡♠♠❛
D
❏❡♥s❡♥✬s ■♥❡q✉❛❧✐t②
■❢ ϕ ✐s ❛ ❝♦♥✈❡① ❢✉♥❝t✐♦♥ t❤❡♥ ϕ (E [X]) ≤ E [ϕ (X)]✳
P
■❢ Xn −→ X ❛♥❞ Yn −→ C ❢♦r ❛ ❝♦♥st❛♥t C ✱ t❤❡♥
❇✐♥♦♠✐❛❧ ❈♦❡✣❝✐❡♥ts
D
Xn + Yn −→ X + C
D
❚❤❡ ❉❡❧t❛ ▼❡t❤♦❞
■❢
√
n!
n
=
k! (n − k)!
k
Xn · Yn −→ X · C
●❛♠♠❛ ❋✉♥❝t✐♦♥
D
n (Xn − C) −→ X ❛♥❞ g ❤❛s ❝♦♥t✐♥✉♦✉s ❞❡r✐✈❛t✐✈❡✱ t❤❡♥
√
D
n (g (Xn ) − g (C)) −→ X · g ′ (C)
❋♦r ❛ ♥✉♠❜❡r z ✇✐t❤ ♣♦s✐t✐✈❡ r❡❛❧ ♣❛rt✱ t❤❡ ●❛♠♠❛ ❋✉♥❝t✐♦♥ ✐s ❞❡✜♥❡❞ ❜②
Γ (z) =
❊❧❡♠❡♥t❛r② Pr♦♣❡rt✐❡s
PX,Y (x, y) = PX|Y (x |y ) · PY (y) = PY |X (y |x ) · PX (x)
i
❲❤❡♥ y > 0 ✐s ❛❧s♦ ❛♥ ✐♥t❡❣❡r✱ Γ (y) = (y − 1)!✳
Pr (A) =
X
i
❱❛r✐❛♥❝❡✿ Var (X) = E
(X − EX)
2
i
❇❡t❛ ❋✉♥❝t✐♦♥
Pr (A |Bi ) · Pr (Bi )
❋♦r r❡❛❧ ♥✉♠❜❡rs a > 0 ❛♥❞ b > 0✱ t❤❡ ❜❡t❛ ❢✉♥❝t✐♦♥ ✐s ❞❡✜♥❡❞ ❛s
=E X
2
− (EX)
2
β (a, b) =
■❢ X ❛♥❞ Y ❛r❡ ✐♥❞❡♣❡♥❞❡♥t ❛♥❞ c ✐s ❛ ❝♦♥st❛♥t✱ t❤❡♥
2
Var (cX) = c Var (X)
2
2
2
hu, vi ≤ hu, ui · hv, vi = kuk · kvk
❈❤❡❜②s❤❡✈✬s ■♥❡q✉❛❧✐t②
• ❊q✉❛❧✐t② ❤♦❧❞s ✐❢✲❛♥❞✲♦♥❧②✲✐❢ ∃α ∈ R s✳t✳ u = αv ✳
❲❤❡♥ E (X) = µ ✐s ✜♥✐t❡ ❛♥❞ Var (X) = σ 2 > 0 ✐s ✜♥✐t❡✱ t❤❡♥ ❢♦r ❛♥② ε > 0
n
Γ (a) Γ (b)
Γ (a + b)
❈❛✉❝❤②✲❙❝❤✇❛r③ ■♥❡q✉❛❧✐t②
Var (X + Y ) = Var (X) + Var (Y )
2
o
Pr {|X − µ| ≥ ε} = Pr (X − µ) ≥ ε2 ≤
▼❛r❦♦✈✬s ■♥❡q✉❛❧✐t②
0
Γ (y + 1) = y · Γ (y)
Pr {Bi } = 1✿
h
xz−1 e−x dx
Γ (1) = 1
▲❛✇ ♦❢ ❚♦t❛❧ Pr♦❜❛❜✐❧✐t②
P
∞
❛♥❞ ❤❛s t❤❡ ❢♦❧❧♦✇✐♥❣ r❡❝✉rr❡♥❝❡ r❡❧❛t✐♦♥ ❢♦r ♣♦s✐t✐✈❡ r❡❛❧ ♥✉♠❜❡rs y
❇❛②❡s ❘✉❧❡
❆ss✉♠✐♥❣
Z
• ❚r✐❛♥❣❧❡ ✐♥❡q✉❛❧✐t② r❡s✉❧ts ❢r♦♠ ✐t✿ ku + vk ≤ kuk + kvk✳
2
σ
ε2
■❢ X ✐s ❛ ♥♦♥✲♥❡❣❛t✐✈❡ r❛♥❞♦♠ ✈❛r✐❛❜❧❡ ❛♥❞ a > 0✱ t❤❡♥
Pr {X ≥ a} ≤ E (X)
✶✵