Academia.eduAcademia.edu

MECANICA DE FLU

Universidad Nacional Mayor de San Marcos E.A.P Ingeniería Geológica Principios o Leyes fundamentales en Mecánica de Fluidos Alumno: Melgar Laura Marcelo Franky – 17160168 Profesor: Ing. Armando Romero Guerra Curso: Mecánica de Fluidos Semestre 2019 – I Principio de la Conservación de la Materia El químico francés Antoine Laurent De Lavoisier, contribuyó a establecer la “Ley de conservación de la materia”, que postula que la cantidad de materia antes y después de una transformación, es siempre la misma, si se considera adecuadamente todos los elementos que intervienen en esa transformación. En otras palabras, la materia no se crea ni se destruye, se transforma. Una salvedad que hay que tener en cuenta es la existencia de las reacciones nucleares, en las que la masa sí se modifica de forma sutil, en estos casos en la suma de masas hay que tener en cuenta la equivalencia entre masa y energía. Esta ley es fundamental para una adecuada comprensión de la química. Está detrás de la descripción habitual de las reacciones químicas mediante la ecuación química, y de los métodos gravimétricos de la química analítica. La Ley de la conservación de la materia señala que la cantidad de materia se mide por su peso; como el peso permanece constante durante cualquier reacción química, la materia también permanece constante. "En toda reacción química la masa se conserva, esto es, la masa total de los reactivos es igual a la masa total de los productos". Por ejemplo; cuando una vela arde no se gana ni se pierde masa. La masa total de la cera y del oxígeno molecular (O2) presente antes de la combustión es igual a la masa total de dióxido de carbono (CO2), vapor de agua (H2O) y cera sin quemar que quedan cuando la vela se apaga. Por lo tanto: Masa de cera + masa de O2 = Masa de CO2 + Masa de H2O + Masa de cera sin quemar.           Ecuación de la continuidad La ecuación de continuidad no es más que un caso particular del principio de conservación de la masa. Se basa en que el caudal (Q) del fluido ha de permanecer constante a lo largo de toda la conducción. Dado que el caudal es el producto de la superficie de una sección del conducto por la velocidad con que fluye el fluido, tendremos que en dos puntos de una misma tubería se debe cumplir que: Que es la ecuación de continuidad y donde: S es la superficie de las secciones transversales de los puntos 1 y 2 del conducto. v es la velocidad del flujo en los puntos 1 y 2 de la tubería. Se puede concluir que puesto que el caudal debe mantenerse constante a lo largo de todo el conducto, cuando la sección disminuye, la velocidad del flujo aumenta en la misma proporción y viceversa. En la imagen se puedes ver como la sección se reduce de A1 a A2. Teniendo en cuenta la ecuación anterior: Es decir la velocidad en el estrechamiento aumenta de forma proporcional a lo que se reduce la sección. Principio de la conservación de la Energía El Principio de conservación de la energía o Ley de conservación de la energía, también conocido como el Primer principio de la termodinámica, establece que la cantidad total de energía en un sistema físico aislado (es decir, sin interacción alguna con otros sistemas) permanecerá siempre igual, excepto cuando se transforme en otros tipos de energía. Esto se resume en el principio de que la energía no puede ni crearse ni destruirse en el universo, únicamente transformarse en otras formas de energía, como puede ser la energía eléctrica en energía calórica (así operan las resistencias) o en energía lumínica (así operan los bombillos). De allí que, al realizar ciertos trabajos o en presencia de ciertas reacciones químicas, la cantidad de energía inicial y final parecerá haber variado, si no se tienen en cuenta sus transformaciones. De acuerdo al Principio de conservación de la energía, al introducir en un sistema una cantidad de calor (Q) determinada, ésta será siempre igual a la diferencia entre el aumento de la cantidad de energía interna (ΔU) más el trabajo (W) efectuado por dicho sistema. De esa manera, tenemos la fórmula: Q = ΔU + W, de donde se desprende que ΔU = Q – W. Este principio aplica también al campo de la química, pues la energía involucrada en una reacción química tenderá a conservarse siempre, al igual que la masa, excepto en los casos en que esta última se transforme en energía, como lo indica la famosa fórmula de Albert Einstein de E = m.c2, donde E es energía, m es masa y c la velocidad de la luz. Con esta formulación, se dio inicio a la relatividad y se explica la creación de la materia en el universo. Ecuación de Bernoulli La ecuación de Bernoulli, se puede considerar como una apropiada declaración del principio de la conservación de la energía, para el flujo de fluidos. El comportamiento cualitativo que normalmente evocamos con el término "efecto de Bernoulli", es el descenso de la presión del líquido en las regiones donde la velocidad del flujo es mayor. Este descenso de presión por un estrechamiento de una vía de flujo puede parecer contradictorio, pero no tanto cuando se considera la presión como una densidad de energía. En el flujo de alta velocidad a través de un estrechamiento, se debe incrementar la energía cinética, a expensas de la energía de presión Ecuación Universal de los gases ideales Los gases ideales es una simplificación de los gases reales que se realiza para estudiarlos de manera más sencilla. En sí es un gas hipotético que considera: Formado por partículas puntuales sin efectos electromagnéticos. Las colisiones entre las moléculas y entre las moléculas y las paredes es de tipo elástica, es decir, se conserva el momento y la energía cinética. La energía cinética es directamente proporcional a la temperatura. Los gases se aproximan a un gas ideal cuando son un gas mono atómico, está a presión y temperatura ambiente. La ecuación del gas ideal  se basa en la ley de Boyle, la de Gay-Lussac, la de Charles y la ley de Avogadro. Ley de Charles Corresponden a las transformaciones que experimenta un gas cuando la presión es constante. Ley de Gay Lussac Corresponde a las trasformaciones que sufre un gas ideal cuando el volumen permanece constante. Ley de Boyle Corresponde a las transformaciones que experimenta un gas cuando su temperatura permanece constante. Ley de Avogadro Volúmenes iguales de distintas sustancias gaseosas, medidos en las mismas condiciones de presión y temperatura, contienen el mismo número de partículas. Ecuación de Cantidad de Movimiento Cuando a lo largo de un volumen de control, la velocidad de flujo varía, es porque actúan fuerzas sobre el que lo aceleran. Si estamos interesados en averiguar la cantidad de movimiento de, por ejemplo, un fluido que se mueve según un campo de velocidades es necesario sumar la cantidad de movimiento de cada partícula del fluido, es decir, de cada diferencial de masa o elemento infinitesimal: Ley de Entropía La entropía es el segundo principio de la termodinámica que puede definirse esquemáticamente como el "progreso para la destrucción" o "desorden inherente a un sistema. La entropía significa, expresado en términos vulgares, que todo va para peor o, lo que es lo mismo, que todo empeora o se arruina irremisiblemente. Los sistemas tienden a buscar su estado más probable (posible), es decir, busca un nivel mas estable que tiende a ser lo más caótico. La entropía está relacionada con la tendencia natural de los objetos a caer en un estado de desorden. Todos los sistemas no vivos tienden hacia el desorden; si los deja aislados, perderán con el tiempo todo movimiento y degenerarán, convirtiéndose en una masa inerte. La entropía de un sistema es el desgaste que el sistema presenta por el transcurso del tiempo o por el funcionamiento del mismo. Los sistemas altamente en trópicos tienden a desaparecer por el desgaste generado por su proceso sistémico. Los mismos deben tener rigurosos sistemas de control y mecanismos de revisión, reelaboración y cambio permanente, para evitar su desaparición a través del tiempo.