Math Ha d ook
of For ulas, Pro esses a d Tri ks
www. athguy.us
Trigo o etry
Prepared y: Earl L. Whit ey, FSA, MAAA
Versio
April
Cop ight
‐
.
,
7
7, Ea l Whit e , Re o NV. All Rights Rese ed
Note to Stude ts
This T igo o et Ha d ook as de eloped p i a il th ough o k ith a u e of High
“ hool a d College T igo o et lasses. I additio , a u e of o e ad a ed topi s ha e
ee added to the ha d ook to het the stude t’s appetite fo highe le el stud .
O e of the ai easo s h I ote this ha d ook as to e ou age the stude t to o de ;
to ask hat a out … o
hat if … . I fi d that stude ts a e so us toda that the do ’t
ha e the ti e, o do ’t take the ti e, to seek out the eaut a d ajest that e ists i
Mathe ati s. A d, it is the e, just elo the su fa e. “o e u ious a d go fi d it.
The a s e s to
ost of the uestio s elo a e i side this ha d ook, ut a e seldo
taught.
Is the e a ethod I a lea that ill help e e all the ke poi ts o a u it i le
ithout e o izi g the u it i le?
What’s the fastest a to g aph a T ig fu tio ?
Ca I o e t the su of t o t ig fu tio s to a p odu t of t ig fu tio s? Ho a out
the othe a a ou d, ha gi g a p odu t to a su ?
Is the e a eas a to al ulate the a ea of a t ia gle if I a gi e its e ti es as poi ts
o a Ca tesia pla e?
Do ’t so e of the Pola g aphs i Chapte 9 look like the ha e ee d a
ith a
“pi og aph? Wh is that?
A
loid is oth a ra histo hrone a d a tauto hrone. What a e these a d h a e
the i po ta t? ou ill ha e to look this o e up, ut it is ell o th ou ti e
What is a e to oss p odu t a d ho is it used?
Ho do the p ope ties of e to s e te d to di e sio s, he e the eall atte ?
Additio all , ask ou self:
What t ig ide tities a I eate that I ha e ot et see ?
What Pola g aphs a I eate
essi g ith t ig fu tio s? What akes a p ett
g aph i stead of o e that just looks essed up?
Ca I o e up ith a si ple ethod of doi g thi gs tha I a
ei g taught?
What p o le s a I o e up ith to stu p
f ie ds?
Those ho app oa h
ath i this
Please feel f ee to o ta t
a
e
ill e to o o ’s leade s. A e ou o e of the ?
e at ea l@ athgu .us if ou ha e a
Tha k ou a d est ishes!
Ea l
Version 2.1
uestio s o o
e ts.
Co e a t Re e a Willia s,
T itte ha dle: @jolteo kitt
Page 2 of 109
April 10, 2017
Trigonometry Handbook
Table of Contents
Page
7
9
9
9
9
9
1
11
11
11
1
1
14
1
17
19
4
4
Version 2.1
Descriptio
Chapter : Fu ctio s a d Special A gles
I troductio
A gle Defi itio s
Fu ctio Defi itio s o the x‐ a d y‐ A es
Pythagorea Ide tities
Si e‐Cosi e Relatio ship
Key A gles i Radia s a d Degrees
Cofu ctio s
U it Circle
Fu ctio Defi itio s i a Right Tria gle
SOH‐CAH‐TOA
Trigo o etric Fu ctio s of Special A gles
Trigo o etric Fu ctio Values i Quadra ts II, III, a d IV
Pro le s I volvi g Trig Fu ctio Values i Quadra ts II, III, a d IV
Pro le s I volvi g A gles of Depressio a d I cli atio
Chapter 2: Graphs of Trig Fu ctio s
Basic Trig Fu ctio s
Characteristics of Trigo o etric Fu ctio Graphs
Ta le of Trigo o etric Fu ctio Characteristics
Si e Fu ctio
Cosi e Fu ctio
Ta ge t Fu ctio
Cota ge t Fu ctio
Seca t Fu ctio
Coseca t Fu ctio
Applicatio : Si ple Har o ic Motio
Chapter : I verse Trigo o etric Fu ctio s
Defi itio s
Pri cipal Values a d Ra ges
Graphs of I verse Trig Fu ctio s
Pro le s I volvi g I verse Trigo o etric Fu ctio s
Page 3 of 109
April 10, 2017
Trigonometry Handbook
Table of Contents
Page
Descriptio
41
41
41
4
Chapter : Key A gle For ulas
A gle Additio , Dou le A gle, Half A gle For ulas
E a ples
Po er Reduci g For ulas
Product‐to‐Su For ulas
Su ‐to‐Product For ulas
E a ples
4
44
47
4
Chapter : Trigo o etric Ide tities a d E uatio s
Verifyi g Ide tities
Verifyi g Ide tities ‐ Tech i ues
Solvi g Trigo etic E uatio s
Solvi g Trigo etic E uatio s ‐ E a ples
7
1
4
7
9
1
1
4
4
7
Version 2.1
Chapter : Solvi g a O li ue Tria gle
Su
ary of Methods
La s of Si es a d Cosi es
La s of Si es a d Cosi es ‐ E a ples
The A iguous Case
Flo chart for the A iguous Case
A iguous Case ‐ E a ples
Beari gs
Beari gs ‐ E a ples
Chapter 7: Area of a Tria gle
Geo etry For ula
Hero 's For ula
Trigo o etric For ulas
Coordi ate Geo etry For ula
E a ples
Chapter : Polar Coordi ates
I troductio
Co versio et ee Recta gular a d Polar Coordi ates
E pressi g Co ple Nu ers i Polar For
Operatio s o Co ple Nu ers i Polar For
DeMoivre's Theore
DeMoivre's Theore for Roots
Page 4 of 109
April 10, 2017
Trigonometry Handbook
Table of Contents
Page
9
9
7
7
71
74
7
7
77
Descriptio
Chapter 9: Polar Fu ctio s
Parts of the Polar Graph
Sy
etry
Graphi g Methods
Graphi g ith the TI‐ 4 Plus Calculator
Graph Types Circles, Roses, Li aço s, Le iscates, Spirals
Rose
Cardioid
Co verti g Bet ee Polar a d Recta gular For s of E uatio s
Para etric E uatio s
7
9
9
Chapter : Vectors
I troductio
Special U it Vectors
Vector Co po e ts
Vector Properties
Vector Properties ‐ E a ples
Dot Product
Dot Product ‐ E a ples
Vector Projectio
Orthogo al Co po e ts of a Vector
Work
Applicatio s of Vectors – E a ples
Vector Cross Product
Vector Triple Products
9
1
1
Appe dices
Appe di A ‐ Su
ary of Trigo o etric For ulas
Appe di B ‐ Solvi g The A iguous Case ‐ Alter ative Method
Appe di C ‐ Su
ary of Polar a d Recta gular For s
1
I dex
79
79
79
1
4
Version 2.1
Page 5 of 109
April 10, 2017
Trigonometry Handbook
Table of Contents
Useful We sites
Mathguy.us – Developed specifically for ath stude ts fro Middle School to College, ased
o the author's e te sive e perie ce i professio al athe atics i a usi ess setti g a d i
ath tutori g. Co tai s free do loada le ha d ooks, PC Apps, sa ple tests, a d ore.
http://
. athguy.us/
Wolfra Math World – Perhaps the pre ier site for athe atics o the We . This site
co tai s defi itio s, e pla atio s a d e a ples for ele e tary a d adva ced ath topics.
http:// ath orld. olfra .co /
Kha Acade y – Supplies a free o li e collectio of thousa ds of icro lectures via YouTu e
o u erous topics. It's ath a d scie ce li raries are e te sive.
.kha acade y.org
A alyze Math Trigo o etry – Co tai s free Trigo o etry tutorials a d pro le s. Uses Java
applets to e plore i porta t topics i teractively.
http://
.a alyze ath.co /Trigo o etry.ht l
Schau ’s Outli e
A i porta t stude t resource for a y high school or college ath stude t is a Schau ’s
Outli e. Each ook i this series provides e pla atio s of the various topics i the course a d
a su sta tial u er of pro le s for the stude t to try. Ma y of the pro le s are orked
out i the ook, so the stude t ca see e a ples of ho they should e solved.
Schau ’s Outli es are availa le at A azo .co , Bar es & No le a d other ooksellers.
Version 2.1
Page 6 of 109
April 10, 2017
Chapter 1
Fu ctio s a d Special A gles
I troductio
What is Trigo o etry?
The ord Trigo o etry co es fro the Greek trigo o
ea i g tria gle
a d etro
ea i g easure . So, si ply put, Trigo o etry is the study of
the easures of tria gles. This i cludes the le gths of the sides, the easures
of the a gles a d the relatio ships et ee the sides a d a gles.
The oder approach to Trigo o etry also deals ith ho right tria gles i teract ith circles,
especially the U it Circle, i.e., a circle of radius 1. Although the asic co cepts are si ple, the
applicatio s of Trigo o etry are far reachi g, fro cutti g the re uired a gles i kitche tiles to
deter i i g the opti al trajectory for a rocket to reach the outer pla ets.
Radia s a d Degrees
A gles i Trigo o etry ca
e
easured i either radia s or degrees:
degrees i.e.,
° i o e rotatio arou d a circle. Although there are various
There are
accou ts of ho a circle ca e to have
degrees, ost of these are ased o the fact that
early civilizatio s co sidered a co plete year to have
days.
There are
~ .
radia s i o e rotatio arou d a circle. The
a cie t Greeks defi ed
to e the ratio of the circu fere ce of a
circle to its dia eter i.e.,
. Si ce the dia eter is dou le the
radius, the circu fere ce is
ti es the radius i.e.,
. O e
radia is the easure of the a gle ade fro
rappi g the radius of a
circle alo g the circle’s e terior.
r
1 rad
r
Measure of a Arc
O e of the si plest a d ost asic for ulas i Trigo o etry provides the easure of a arc i ter s
of the radius of the circle, , a d the arc’s ce tral a gle θ, e pressed i radia s. The for ula is easily
derived fro the portio of the circu fere ce su te ded y θ.
Si ce there are
radia s i o e full rotatio arou d the circle, the
of a arc ith ce tral a gle θ, e pressed i radia s, is:
∙
Version 2.1
θ
∙
θ
easure
so
Page 7 of 109
April 10, 2017
Chapter 1
Fu ctio s a d Special A gles
A gle Defi itio s
Basic Defi itio s
A fe defi itio s relati g to a gles are useful he
egi
A gle: A easure of the space et ee rays ith a co
easured y the a ou t of rotatio re uired to get fro
side to its ter i al side.
I itial Side: The side of a a gle fro
easure egi s.
i g the study of Trigo o etry.
o e dpoi t. A a gle is typically
its i itial
hich its rotatio al
Ter i al Side: The side of a a gle at hich its rotatio al
easure e ds.
Vertex: The verte of a a gle is the co
Defi itio s i the Cartesia
o e dpoi t of the t o rays that defi e the a gle.
Pla e
Whe a gles are graphed o a coordi ate
syste Recta gular or Polar , a u er of
additio al ter s are useful.
Sta dard Positio : A a gle is i sta dard
positio if its verte is the origi i.e., the
poi t ,
a d its i itial side is the
positive ‐a is.
Polar Axis: The Polar A is is the positive ‐a is. It is the i itial side of all a gles i sta dard positio .
Polar A gle: For a a gle i sta dard positio , its polar a gle is the a gle easured fro the polar
a is to its ter i al side. If easured i a cou ter‐clock ise directio , the polar a gle is positive; if
easured i a clock ise directio , the polar a gle is egative.
Refere ce A gle: For a a gle i sta dard positio , its refere ce a gle is the a gle et ee ° a d
9 ° easured fro the ‐a is positive or egative to its ter i al side. The refere ce a gle ca e
°; it ca e 9 °; it is ever egative.
Coter i al A gle: T o a gles are coter i al if they are i sta dard positio a d have the sa e
ter i al side. For e a ple, a gles of easure ° a d
° are coter i al ecause
° is o e full
rotatio arou d the circle i.e.,
° , plus °, so they have the sa e ter i al side.
Quadra tal A gle: A a gle i sta dard positio is a uadra tal a gle if its ter i al side lies o
either the ‐a is or the ‐a is.
Version 2.1
Page 8 of 109
April 10, 2017
Chapter 1
Fu ctio s a d Special A gles
Trigo o etric Fu ctio s
Trigo o etric Fu ctio s
o the ‐ a d ‐axes
sin θ
sin θ
cos θ
cos θ
tan θ
tan θ
cot θ
cot θ
sec θ
sec θ
csc θ
Si e‐Cosi e Relatio ship
Pythagorea Ide tities
for a y a gle θ
sin
cos
sec
csc
sin θ
sin θ
tan
cot
Cofu ctio s i Quadra t I
cos
⇔
cos
sec
csc
⇔
csc
Version 2.1
cot
⇔
cos θ
cos θ
sec θ
cot θ
tan θ
tan θ
cot θ
cot
sin
sin θ
cos θ
cos θ
sin θ
cos θ
sin θ
Key A gles
°
°
radians
°
radians
°
°
sin
tan
csc θ
csc θ
9 °
radians
radians
radians
tan
sec
Page 9 of 109
April 10, 2017
Chapter 1
Fu ctio s a d Special A gles
The U it Circle
The U it Circle diagra
elo provides ‐ a d ‐values o a circle of radius at key a gles. At a y
poi t o the u it circle, the ‐coordi ate is e ual to the cosi e of the a gle a d the ‐coordi ate is
e ual to the si e of the a gle. Usi g this diagra , it is easy to ide tify the si es a d cosi es of a gles
that recur fre ue tly i the study of Trigo o etry.
Version 2.1
Page 10 of 109
April 10, 2017
Chapter 1
Fu ctio s a d Special A gles
Trigo o etric Fu ctio s a d Special A gles
Trigo o etric Fu ctio s Right Tria gle
SOH‐CAH‐TOA
sin
sin
tan
tan
cos
sin
cos
cos
tan
Special A gles
Trig Fu ctio s of Special A gles
Radia s
Degrees
⁰
√
√
√
⁰
√
√
√
⁰
√
√
√
⁰
√
√
9 ⁰
√
√
Note the patter s i the a ove ta le: I the si e colu
is the si e colu
u der the radical! The cosi e colu
Version 2.1
Page 11 of 109
√
√
√
√
√
√
√
undefined
, the u ers to occur i se ue ce
reversed. Ta ge t si e cosi e.
April 10, 2017
Chapter 1
Fu ctio s a d Special A gles
Trigo o etric Fu ctio Values i Quadra ts II, III, a d IV
I
uadra ts other tha Quadra t I, trigo o etric values for a gles are calculated i the follo i g
a er:
Dra the a gle θ o the Cartesia Pla e.
Calculate the easure of the refere ce a gle
fro the ‐a is to θ.
Fi d the value of the trigo o etric fu ctio of
the a gle i the previous step.
Assig a
or
sig to the trigo o etric
value ased o the fu ctio used a d the
uadra t θ is i fro the ta le at right .
Exa ples:
Θ i Quadra t II – Calculate:
For
sin
Θ i Quadra t III – Calculate:
For
cos
°
√
∠
⁰, the refere ce a gle is
, so:
°
√
°
°
⁰
√
⁰, the refere ce a gle is
, so:
°
°
tan
Version 2.1
°
√
∠
°
°
°
°
°
°
Θ i Quadra t IV – Calculate:
For
⁰
⁰
⁰, the refere ce a gle is
, so:
Page 12 of 109
°
°
∠
April 10, 2017
Chapter 1
Fu ctio s a d Special A gles
Pro le s I volvi g Trig Fu ctio Values i Quadra ts II, III, a d IV
A typical pro le i Trigo o etry is to fi d the value of o e or ore Trig fu ctio s ased o a set of
co strai ts. Ofte , the co strai ts i volve the value of a other Trig fu ctio a d the sig of yet a
third Trig Fu ctio . The key to solvi g this type of pro le is to dra the correct tria gle i the
correct uadra t.
A couple of e a ples ill illustrate this process.
Exa ple . : sin
Notice that sin
I
,
. Fi d the values of sec
, tan
is egative;
. Therefore,
, tan
is i
a d cot .
, so e dra the a gle i that uadra t.
is al ays positive. Si ce sin
e let
,
,
Usi g the Pythagorea Theore , e calculate the le gth of the horizo tal
leg of the tria gle:
egative, so e
√ . Si ce the a gle is i
√ .
ust have
The , sec
√
√
A d, cot
Exa ple .2: cot
Notice that cot
I
,
is egative, a d
√
. Therefore,
, cos
is
√
. Fi d the value of csc
, cos
,
is i
is positive. Si ce cot
a d cos .
, so e dra the a gle i that uadra t.
,
e let
Usi g the Pythagorea Theore , e ca calculate the le gth of the
hypote use of the tria gle:
√
The , csc
A d, cos
Version 2.1
√
.
9
9,
.
√97.
√
Page 13 of 109
April 10, 2017
Chapter 1
Fu ctio s a d Special A gles
Pro le s I volvi g A gles of Depressio a d I cli atio
A co
o pro le i Trigo o etry deals ith a gles of depressio or i cli atio . A a gle of
depressio is a a gle elo the horizo tal at hich a o server ust look to see a o ject. A
a gle of i cli atio is a a gle a ove the horizo tal at hich a o server ust look to see a o ject.
Exa ple . : A uildi g
feet tall casts a
foot lo g shado . If a perso looks do fro the
top of the uildi g, hat is the easure of the a gle of depressio ? Assu e the perso 's eyes are
feet a ove the top of the uildi g.
The total height fro
hich the perso looks do upo the shado is:
egi y dra i g the diagra
elo , the co sider the trigo o etry i volved.
tan x°
tan
9
.
.
9 ft. We
7. °
The a gle of depressio is the co ple e t of °.
θ
9 °
7. °
7 . °
Exa ple . : A ship is
eters fro a vertical cliff. The avigator uses a se ta t to deter i e the
a gle of i cli atio fro the deck of the ship to the top of the cliff to e . °. Ho far a ove the
deck of the ship is the top of the cliff? What is the dista ce fro the deck to the top of the cliff?
We egi
y dra i g the diagra
a
elo , the co sider the trigo o etry i volved.
To fi d ho
tan
. °
far a ove the deck the top of the cliff is
tan
. °
To fi d the dista ce fro
cos
. °
. °
Version 2.1
7.
Page 14 of 109
7 .
:
eters
the deck to the top of the cliff
:
eters
April 10, 2017
Chapter
Graphs of Trig Fu ctio s
Graphs of Basic Pare t Trigo o etric Fu ctio s
The si e a d coseca t fu ctio s are reciprocals. So:
sin
csc
and
csc
sin
The cosi e a d seca t fu ctio s are reciprocals. So:
cos
sec
and
sec
cos
The ta ge t a d cota ge t fu ctio s are reciprocals. So:
tan
Version 2.1
cot
and
cot
Page 15 of 109
tan
April 10, 2017
Chapter
Graphs of Trig Fu ctio s
Graphs of Basic Pare t Trigo o etric Fu ctio s
It is i structive to vie the pare t trigo o etric fu ctio s o the sa e a es as their reciprocals.
Ide tifyi g patter s et ee the t o fu ctio s ca e helpful i graphi g the .
Looki g at the si e a d coseca t fu ctio s,
e see that they i tersect at their a i u
a d i i u values i.e., he
. The
vertical asy ptotes ot sho
of the
coseca t fu ctio occur he the si e
fu ctio is zero.
Looki g at the cosi e a d seca t fu ctio s,
e see that they i tersect at their a i u
a d i i u values i.e., he
. The
vertical asy ptotes ot sho
of the seca t
fu ctio occur he the cosi e fu ctio is
zero.
Looki g at the ta ge t a d cota ge t
fu ctio s, e see that they i tersect he
sin
cos
i.e., at
,
a
i teger . The vertical asy ptotes ot
sho
of the each fu ctio occur he the
other fu ctio is zero.
Version 2.1
Page 16 of 109
April 10, 2017
Chapter
Graphs of Trig Fu ctio s
Characteristics of Trigo o etric Fu ctio Graphs
All trigo o etric fu ctio s are periodic, ea i g that they repeat the patter of the curve called a
cycle o a regular asis. The key characteristics of each curve, alo g ith k o ledge of the pare t
curves are sufficie t to graph a y trigo o etric fu ctio s. Let’s co sider the ge eral fu ctio :
here A, B, C a d D are co sta ts a d
ta ge t, cota ge t, seca t, coseca t .
A∙
B
C
D
is a y of the si trigo o etric fu ctio s si e, cosi e,
A plitude
A plitude is the easure of the dista ce of peaks a d troughs
fro the idli e i.e., ce ter of a sine or cosine function;
a plitude is al ays positive. The other four fu ctio s do ot
have peaks a d troughs, so they do ot have a plitudes. For
|A|.
the ge eral fu ctio ,
, defi ed a ove, amplitude
Period
Period is the horizo tal idth of a si gle cycle or ave, i.e., the dista ce it travels efore it repeats.
Every trigo o etric fu ctio has a period. The periods of the parent functions are as follo s: for
si e, cosi e, seca t a d coseca t, period
π; for ta ge t a d cota ge t, period
π.
For the ge eral fu ctio ,
, defi ed a ove,
.
period
Fre ue cy
Fre ue cy is ost useful he used ith the si e a d
cosi e fu ctio s. It is the reciprocal of the period, i.e.,
frequency
.
Fre ue cy is typically discussed i relatio to the si e a d cosi e fu ctio s he co sideri g
har o ic otio or aves. I Physics, fre ue cy is typically easured i Hertz, i.e., cycles per
seco d. 1 Hz
1 cycle per seco d.
For the ge eral si e or cosi e fu ctio ,
Version 2.1
, defi ed a ove, frequency
Page 17 of 109
.
April 10, 2017
Chapter
Graphs of Trig Fu ctio s
Phase Shift
Phase shift is ho far has the fu ctio ee shifted horizo tally
left or right fro its pare t fu ctio . For the ge eral fu ctio ,
, defi ed a ove,
phase shift
.
A positive phase shift i dicates a shift to the right relative to the
graph of the pare t fu ctio ; a egative phase shift i dicates a shift
to the left relative to the graph of the pare t fu ctio .
A trick for calculati g the phase shift is to set the argu e t of the trigo o etric fu ctio e ual to
zero: B
C
, a d solve for . The resulti g value of is the phase shift of the fu ctio .
Vertical Shift
Vertical shift is the vertical dista ce that the idli e of a curve lies
a ove or elo the idli e of its pare t fu ctio i.e., the ‐a is .
For the ge eral fu ctio ,
, defi ed a ove, vertical shift D.
The value of D ay e positive, i dicati g a shift up ard, or
egative, i dicati g a shift do
ard relative to the graph of the
pare t fu ctio .
Putti g it All Together
The illustratio
Version 2.1
elo sho s ho all of the ite s descri ed a ove co
Page 18 of 109
i e i a si gle graph.
April 10, 2017
Chapter
Su
Fu ctio :
Graphs of Trig Fu ctio s
ary of Characteristics a d Key Poi ts – Trigo o etric Fu ctio Graphs
Si e
Cosi e
Ta ge t
Cota ge t
Seca t
Coseca t
Pare t Fu ctio
sin
cos
tan
cot
sec
csc
Do ai
∞, ∞
∞, ∞
Vertical Asy ptotes
o e
o e
,
,
Ra ge
Period
‐i tercepts
Odd or Eve Fu ctio
1
, here is a I teger
Ge eral For
A plitude/Stretch, Period,
Phase Shift, Vertical Shift
2
whe
Odd Fu ctio
sin
| |,
,
here
here
,
is odd
Eve Fu ctio
cos
,
,
| |,
,
∞, ∞ e cept
∞, ∞ e cept ,
here is a I teger
is odd
here
, here
I teger
is odd
∞, ∞
id ay et ee
asy ptotes
id ay et ee
asy ptotes
Odd Fu ctio
Odd Fu ctio
tan
,
,
| |,
cot
,
,
,
∞,
here
∪
∞, ∞ e cept ,
here is a I teger
, here is a
is odd
,∞
I teger
∞,
o e
Eve Fu ctio
| |,
∪
,∞
o e
Odd Fu ctio
csc
,
| |,
,
vertical asy ptote
whe
,
,
vertical asy ptote
vertical asy ptote
whe
vertical asy ptote
vertical asy ptote
whe
vertical asy ptote
whe
Notes:
1
,
is odd
sec
| |,
,
here
is a
∞, ∞
,
∞, ∞ e cept
vertical asy ptote
A odd fu ctio is sy
etric a out the origi , i.e.
. A eve fu ctio is sy
etric a out the ‐a is, i.e.,
All Phase Shifts are defi ed to occur relative to a starti g poi t of the ‐a is i.e., the vertical li e
Version 2.1
Page 19 of 109
vertical asy ptote
.
.
April 10, 2017
Chapter
Graphs of Trig Fu ctio s
Graph of a Ge eral Si e Fu ctio
Ge eral For
The ge eral for
.
of a si e fu ctio is:
I this e uatio , e fi d several para eters of the fu ctio
A plitude:
fu ctio fro
Period:
| |. The a plitude is the
its pare t fu ctio :
sin .
hich ill help us graph it. I particular:
ag itude of the stretch or co pressio of the
. The period of a trigo o etric fu ctio is the horizo tal dista ce over hich
the curve travels efore it egi s to repeat itself i.e., egi s a e cycle . For a si e or cosi e
fu ctio , this is the le gth of o e co plete ave; it ca e easured fro peak to peak or
sin .
fro trough to trough. Note that π is the period of
Phase Shift:
. The phase shift is the dista ce of the horizo tal tra slatio of the
fu ctio . Note that the value of i the ge eral for has a i us sig i fro t of it, just like
does i the verte for of a uadratic e uatio :
. So,
o A i us sig i fro t of the i plies a tra slatio to the right, a d
o A plus sig i fro t of the i plies a i plies a tra slatio to the left.
Vertical Shift:
e uivale t to
. This is the dista ce of the vertical tra slatio of the fu ctio . This is
i the verte for of a uadratic e uatio :
.
Exa ple 2. :
The idli e has the e uatio y D. I this e a ple, the idli e
is: y
. O e ave, shifted to the right, is sho i ora ge elo .
For this exa ple:
;
A plitude:
Period:
;
| |
;
| |
Phase Shift:
Vertical Shift:
Version 2.1
Page 20 of 109
April 10, 2017
Chapter
Graphs of Trig Fu ctio s
Graphi g a Si e Fu ctio with No Vertical Shift:
A ave cycle of the si e fu ctio has three zero poi ts poi ts o the ‐a is –
at the egi i g of the period, at the e d of the period, a d half ay i ‐ et ee .
Step : Phase Shift:
.
.
.
The first ave egi s at the
poi t
u its to the right of
the Origi .
Step 2: Period:
Exa ple:
The poi t is:
. The first
.
ave e ds at the poi t:
The first ave e ds at the
poi t u its to the right of
where the wave egi s.
,
Step : The third zero poi t
is located half ay et ee
the first t o.
The poi t is:
Step : The ‐value of the
poi t half ay et ee the
left a d ce ter zero poi ts is
" ".
The poi t is:
Step : The ‐value of the
poi t half ay et ee the
ce ter a d right zero poi ts
The poi t is:
is –
,
,
,
,
.
Step : Dra a s ooth
curve through the five key
poi ts.
,
,
,
This ill produce the graph
of o e ave of the fu ctio .
Step 7: Duplicate the ave
to the left a d right as
desired.
Version 2.1
,
Note: If
, all poi ts
o the curve are shifted
vertically y u its.
Page 21 of 109
April 10, 2017
Chapter
Graphs of Trig Fu ctio s
Graph of a Ge eral Cosi e Fu ctio
Ge eral For
The ge eral for
.
of a cosi e fu ctio is:
I this e uatio , e fi d several para eters of the fu ctio
A plitude:
fu ctio fro
Period:
| |. The a plitude is the
its pare t fu ctio :
cos .
hich ill help us graph it. I particular:
ag itude of the stretch or co pressio of the
. The period of a trigo o etric fu ctio is the horizo tal dista ce over hich
the curve travels efore it egi s to repeat itself i.e., egi s a e cycle . For a si e or cosi e
fu ctio , this is the le gth of o e co plete ave; it ca e easured fro peak to peak or
cos .
fro trough to trough. Note that π is the period of
Phase Shift:
. The phase shift is the dista ce of the horizo tal tra slatio of the
fu ctio . Note that the value of i the ge eral for has a i us sig i fro t of it, just like
does i the verte for of a uadratic e uatio :
. So,
o A i us sig i fro t of the i plies a tra slatio to the right, a d
o A plus sig i fro t of the i plies a i plies a tra slatio to the left.
Vertical Shift:
e uivale t to
. This is the dista ce of the vertical tra slatio of the fu ctio . This is
i the verte for of a uadratic e uatio :
.
Exa ple 2.2:
The idli e has the e uatio y D. I this e a ple, the idli e
is: y
. O e ave, shifted to the right, is sho i ora ge elo .
For this exa ple:
;
A plitude:
Period:
;
| |
;
| |
Phase Shift:
Vertical Shift:
Version 2.1
Page 22 of 109
April 10, 2017
Chapter
Graphs of Trig Fu ctio s
Graphi g a Cosi e Fu ctio with No Vertical Shift:
A ave cycle of the cosi e fu ctio has t o a i a or i i a if
–
o e at the egi i g of the period a d o e at the e d of the period – a d a
i i u or a i u if
half ay i ‐ et ee .
Step : Phase Shift:
.
.
,
The first ave egi s at the
poi t
u its to the right of
the poi t , .
Step 2: Period:
Exa ple:
The poi t is:
. The first
.
ave e ds at the poi t:
The first ave e ds at the
poi t u its to the right of
where the wave egi s.
,
Step : The ‐value of the
poi t half ay et ee those
i the t o steps a ove is
"
".
The poi t is:
Step : The ‐value of the
poi t half ay et ee the
left a d ce ter e tre a is
" ".
The poi t is:
Step : The ‐value of the
poi t half ay et ee the
ce ter a d right e tre a is
" ".
The poi t is:
,
,
,
,
Step : Dra a s ooth
curve through the five key
poi ts.
,
,
,
This ill produce the graph
of o e ave of the fu ctio .
Step 7: Duplicate the ave
to the left a d right as
desired.
Version 2.1
,
Note: If
, all poi ts
o the curve are shifted
vertically y u its.
Page 23 of 109
April 10, 2017
Chapter
Graphs of Trig Fu ctio s
Graph of a Ge eral Ta ge t Fu ctio
Ge eral For
The ge eral for
.
of a ta ge t fu ctio is:
I this e uatio , e fi d several para eters of the fu ctio
hich ill help us graph it. I particular:
Scale factor: | |. The ta ge t fu ctio does ot have a plitude. | | is the
stretch or co pressio of the fu ctio fro its pare t fu ctio :
tan .
Period:
ag itude of the
. The period of a trigo o etric fu ctio is the horizo tal dista ce over hich
the curve travels efore it egi s to repeat itself i.e., egi s a e cycle . For a ta ge t or
cota ge t fu ctio , this is the horizo tal dista ce et ee co secutive asy ptotes it is also
the dista ce et ee ‐i tercepts . Note that π is the period of
tan .
Phase Shift:
. The phase shift is the dista ce of the horizo tal tra slatio of the
fu ctio . Note that the value of i the ge eral for has a i us sig i fro t of it, just like
does i the verte for of a uadratic e uatio :
. So,
o A i us sig i fro t of the i plies a tra slatio to the right, a d
o A plus sig i fro t of the i plies a i plies a tra slatio to the left.
Vertical Shift:
e uivale t to
. This is the dista ce of the vertical tra slatio of the fu ctio . This is
i the verte for of a uadratic e uatio :
.
Exa ple 2. :
The idli e has the e uatio y D. I this e a ple, the idli e
is: y
. O e cycle, shifted to the right, is sho i ora ge elo .
Note that, for the
ta ge t curve, e
typically graph half
of the pri cipal
cycle at the poi t
of the phase shift,
a d the fill i the
other half of the
cycle to the left
see e t page .
Version 2.1
For this exa ple:
;
;
Scale Factor: | |
Period:
| |
;
Phase Shift:
Vertical Shift:
Page 24 of 109
April 10, 2017
Chapter
Graphs of Trig Fu ctio s
Graphi g a Ta ge t Fu ctio with No Vertical Shift:
A cycle of the ta ge t fu ctio has t o asy ptotes a d a zero poi t half ay i ‐
et ee . It flo s up ard to the right if
a d do
ard to the right if
Step : Phase Shift:
.
.
The poi t is:
.
,
.
.
Place a vertical asy ptote
The right asy ptote is at:
u its to the right of the
egi
.
.
The first cycle egi s at the
zero poi t
u its to the
right of the Origi .
Step 2: Period:
Exa ple:
i g of the cycle.
Step : Place a vertical
asy ptote
left of the egi
cycle.
The left asy ptote is at:
u its to the
i g of the
Step : The ‐value of the
poi t half ay et ee the
zero poi t a d the right
asy ptote is " ".
The poi t is:
Step : The ‐value of the
poi t half ay et ee the
left asy ptote a d the zero
poi t is "
".
The poi t is:
,
,
Step : Dra a s ooth
curve through the three key
poi ts, approachi g the
asy ptotes o each side.
,
This ill produce the graph
of o e cycle of the fu ctio .
Step 7: Duplicate the cycle
to the left a d right as
desired.
Version 2.1
,
Note: If
, all poi ts
o the curve are shifted
vertically y u its.
Page 25 of 109
April 10, 2017
Chapter
Graphs of Trig Fu ctio s
Graph of a Ge eral Cota ge t Fu ctio
Ge eral For
The ge eral for
.
of a cota ge t fu ctio is:
I this e uatio , e fi d several para eters of the fu ctio
hich ill help us graph it. I particular:
Scale factor: | |. The cota ge t fu ctio does ot have a plitude. | | is the ag itude of
the stretch or co pressio of the fu ctio fro its pare t fu ctio :
cot .
Period:
. The period of a trigo o etric fu ctio is the horizo tal dista ce over hich
the curve travels efore it egi s to repeat itself i.e., egi s a e cycle . For a ta ge t or
cota ge t fu ctio , this is the horizo tal dista ce et ee co secutive asy ptotes it is also
the dista ce et ee ‐i tercepts . Note that π is the period of
cot .
Phase Shift:
. The phase shift is the dista ce of the horizo tal tra slatio of the
fu ctio . Note that the value of i the ge eral for has a i us sig i fro t of it, just like
does i the verte for of a uadratic e uatio :
. So,
o A i us sig i fro t of the i plies a tra slatio to the right, a d
o A plus sig i fro t of the i plies a i plies a tra slatio to the left.
Vertical Shift:
e uivale t to
. This is the dista ce of the vertical tra slatio of the fu ctio . This is
i the verte for of a uadratic e uatio :
.
Exa ple 2. :
The idli e has the e uatio y D. I this e a ple, the idli e
is: y
. O e cycle, shifted to the right, is sho i ora ge elo .
Note that, for the
cota ge t curve,
e typically graph
the asy ptotes
first, a d the
graph the curve
et ee the see
e t page .
For this exa ple:
;
;
Scale Factor: | |
Period:
| |
;
Phase Shift:
Vertical Shift:
Version 2.1
Page 26 of 109
April 10, 2017
Chapter
Graphs of Trig Fu ctio s
Graphi g a Cota ge t Fu ctio with No Vertical Shift:
A cycle of the cota ge t fu ctio has t o asy ptotes a d a zero poi t half ay i ‐
et ee . It flo s do
ard to the right if
a d up ard to the right if
.
Step : Phase Shift:
.
.
. The left
Place a vertical asy ptote
u its to the right of the
‐axis.
Step 2: Period:
Exa ple:
asy ptote is at:
.
.
Place a other vertical
asy ptote u its to the
right of the first o e.
The right asy ptote is at:
Step : A zero poi t e ists
half ay et ee the t o
asy ptotes.
,
Step : The ‐value of the
poi t half ay et ee the
left asy ptote a d the zero
poi t is " ".
The poi t is:
Step : The ‐value of the
poi t half ay et ee the
zero poi t a d the right
asy ptote is "
".
The poi t is:
,
,
Step : Dra a s ooth
curve through the three key
poi ts, approachi g the
asy ptotes o each side.
,
,
This ill produce the graph
of o e cycle of the fu ctio .
Step 7: Duplicate the cycle
to the left a d right as
desired.
Version 2.1
,
The poi t is:
Note: If
, all poi ts
o the curve are shifted
vertically y u its.
Page 27 of 109
April 10, 2017
Chapter
Graphs of Trig Fu ctio s
Graph of a Ge eral Seca t Fu ctio
Ge eral For
The ge eral for
.
of a seca t fu ctio is:
I this e uatio , e fi d several para eters of the fu ctio
hich ill help us graph it. I particular:
Scale factor: | |. The seca t fu ctio does ot have a plitude. | | is the ag itude of the
stretch or co pressio of the fu ctio fro its pare t fu ctio :
sec .
Period:
. The period of a trigo o etric fu ctio is the horizo tal dista ce over hich
the curve travels efore it egi s to repeat itself i.e., egi s a e cycle . For a seca t or
coseca t fu ctio , this is the horizo tal dista ce et ee co secutive a i a or i i a it is
sec .
also the dista ce et ee every seco d asy ptote . Note that π is the period of
Phase Shift:
. The phase shift is the dista ce of the horizo tal tra slatio of the
fu ctio . Note that the value of i the ge eral for has a i us sig i fro t of it, just like
does i the verte for of a uadratic e uatio :
. So,
o A i us sig i fro t of the i plies a tra slatio to the right, a d
o A plus sig i fro t of the i plies a i plies a tra slatio to the left.
Vertical Shift:
e uivale t to
. This is the dista ce of the vertical tra slatio of the fu ctio . This is
i the verte for of a uadratic e uatio :
.
Exa ple 2. :
The idli e has the e uatio y D. I this e a ple, the idli e
is: y
. O e cycle, shifted to the right, is sho i ora ge elo .
O e cycle of the seca t curve co tai s t o U‐shaped curves, o e
ope i g up a d o e ope i g do .
For this exa ple:
;
;
Scale Factor: | |
Period:
| |
;
Phase Shift:
Vertical Shift:
Version 2.1
Page 28 of 109
April 10, 2017
Chapter
Graphs of Trig Fu ctio s
Graphi g a Seca t Fu ctio with No Vertical Shift:
A cycle of the seca t fu ctio ca
correspo di g cosi e fu ctio
e developed y first plotti g a cycle of the
ecause sec
The cosi e fu ctio ’s zero poi ts produce asy
Ma i a for the cosi e fu ctio produce i i
Mi i a for the cosi e fu ctio produce a i
Seca t curves are U‐shaped, alter ately ope i
.
ptotes for the seca t fu ctio .
a for the seca t fu ctio .
a for the seca t fu ctio .
g up a d ope i g do .
Exa ple:
.
Step : Graph o e ave of
the correspo di g cosi e
fu ctio .
The e uatio of the
correspo di g cosi e
fu ctio for the e a ple is:
Step 2: Asy ptotes for the
seca t fu ctio occur at the
zero poi ts of the cosi e
fu ctio .
The zero poi ts occur at:
Step : Each
the cosi e fu
represe ts a
the seca t fu
a i u of
ctio
i i u for
ctio .
Cosi e a i a a d,
therefore, seca t i i a are
Step : Each
the cosi e fu
represe ts a
the seca t fu
i i u
ctio
a i u
ctio .
The cosi e i i u a d,
therefore, the seca t
,
Seca t asy ptotes are:
at:
of
for
a d
,
a i u
Step : Dra s ooth U‐
shaped curves through each
key poi t, approachi g the
asy ptotes o each side.
a d
is at:
,
,
This ill produce the graph
of o e cycle of the fu ctio .
Step : Duplicate the cycle
to the left a d right as
desired. Erase the cosi e
fu ctio if ecessary.
Version 2.1
a d
,
Note: If
, all poi ts
o the curve are shifted
vertically y u its.
Page 29 of 109
April 10, 2017
Chapter
Graphs of Trig Fu ctio s
Graph of a Ge eral Coseca t Fu ctio
Ge eral For
The ge eral for
.
of a coseca t fu ctio is:
I this e uatio , e fi d several para eters of the fu ctio
hich ill help us graph it. I particular:
Scale factor: | |. The coseca t fu ctio does ot have a plitude. | | is the ag itude of
the stretch or co pressio of the fu ctio fro its pare t fu ctio :
csc .
Period:
. The period of a trigo o etric fu ctio is the horizo tal dista ce over hich
the curve travels efore it egi s to repeat itself i.e., egi s a e cycle . For a seca t or
coseca t fu ctio , this is the horizo tal dista ce et ee co secutive a i a or i i a it is
csc .
also the dista ce et ee every seco d asy ptote . Note that π is the period of
Phase Shift:
. The phase shift is the dista ce of the horizo tal tra slatio of the
fu ctio . Note that the value of i the ge eral for has a i us sig i fro t of it, just like
does i the verte for of a uadratic e uatio :
. So,
o A i us sig i fro t of the i plies a tra slatio to the right, a d
o A plus sig i fro t of the i plies a i plies a tra slatio to the left.
Vertical Shift:
e uivale t to
. This is the dista ce of the vertical tra slatio of the fu ctio . This is
i the verte for of a uadratic e uatio :
.
Exa ple 2. :
The idli e has the e uatio y D. I this e a ple, the idli e
is: y
. O e cycle, shifted to the right, is sho i ora ge elo .
O e cycle of the coseca t curve co tai s t o U‐shaped curves, o e
ope i g up a d o e ope i g do .
For this exa ple:
;
;
Scale Factor: | |
Period:
| |
;
Phase Shift:
Vertical Shift:
Version 2.1
Page 30 of 109
April 10, 2017
Chapter
Graphs of Trig Fu ctio s
Graphi g a Coseca t Fu ctio with No Vertical Shift:
A cycle of the coseca t fu ctio ca
correspo di g si e fu ctio
e developed y first plotti g a cycle of the
ecause csc
.
The si e fu ctio ’s zero poi ts produce asy ptotes for the coseca t fu ctio .
Ma i a for the si e fu ctio produce i i a for the coseca t fu ctio .
Mi i a for the si e fu ctio produce a i a for the coseca t fu ctio .
Coseca t curves are U‐shaped, alter ately ope i g up a d ope i g do .
Exa ple:
.
Step : Graph o e ave of
the correspo di g si e
fu ctio .
The e uatio of the
correspo di g si e fu ctio
for the e a ple is:
Step 2: Asy ptotes for the
coseca t fu ctio occur at
the zero poi ts of the si e
fu ctio .
The zero poi ts occur at:
Step : Each a i u of
the si e fu ctio represe ts
a i i u for the coseca t
fu ctio .
The si e a i u a d,
therefore, the coseca t
i i u is at: ,
Step : Each i i u of
the si e fu ctio represe ts
a a i u for the coseca t
fu ctio .
The si e i i u a d,
therefore, the coseca t
,
,
,
,
Coseca t asy ptotes are:
a i u
Step : Dra s ooth U‐
shaped curves through each
key poi t, approachi g the
asy ptotes o each side.
,
is at:
,
,
This ill produce the graph
of o e cycle of the fu ctio .
Step : Duplicate the cycle
to the left a d right as
desired. Erase the si e
fu ctio if ecessary.
Version 2.1
,
Note: If
, all poi ts
o the curve are shifted
vertically y u its.
Page 31 of 109
April 10, 2017
Chapter
Graphs of Trig Fu ctio s
Si ple Har o ic Motio
otio
I Physics, Si ple Har o ic Motio is a oscillati g otio thi k: repeati g up a d do
here the force applied to a o ject is proportio al to a d i the opposite directio of its
displace e t. A co
o e a ple is the actio of a coiled spri g, hich oscillates up a d do
he released. Such otio ca e odeled y the si e a d cosi e fu ctio s, usi g the follo i g
e uatio s ote: is the lo er case Greek letter o ega, ot the E glish letter w :
Har o ic
otio e uatio s:
Period:
Fre ue cy:
or
cos
or
sin
with
Situatio s i hich a o ject starts at rest at the ce ter of its oscillatio , or at rest, use the si e
fu ctio
ecause sin
; situatio s i hich a o ject starts i a up or do positio prior to its
release use the cosi e fu ctio
ecause cos
.
Exa ple 2.7: A o ject is attached to a coiled spri g. The o ject is pulled up a d the released. If
the a plitude is c a d the period is 7 seco ds, rite a e uatio for the dista ce of the o ject
fro its starti g positio after seco ds.
The spri g ill start at a ‐value of
si ce it is pulled up , a d oscillate et ee
a d
a se t a y other force over ti e. A good represe tatio of this ould e a cosi e curve ith
lead coefficie t
.
The period of the fu ctio is 7 seco ds. So, e get:
period
7
and
The resulti g e uatio , the , is:
cos
∙
7
7
Exa ple 2. : A o ject i si ple har o ic otio has a fre ue cy of . oscillatio s per seco d a d
a a plitude of 1 c . Write a e uatio for the dista ce of the o ject fro its rest positio after
seco ds.
Assu i g that dista ce
at ti e
, it akes se se to use a si e fu ctio for this
pro le . Si ce the a plitude is
c , a good represe tatio of this ould e a si e curve ith
lead coefficie t
. Note that a lead coefficie t
ould ork as ell.
Recalli g that
,
ith
The resulti g e uatio s, the , are:
Version 2.1
.
e get:
sin
Page 32 of 109
∙ .
or
.
sin
April 10, 2017
Chapter
I verse Trigo o etric Fu ctio s
I verse Trigo o etric Fu ctio s
I verse Trigo o etric Fu ctio s
I verse trigo o etric fu ctio s are sho
ith a "
" e po e t or a arc prefi . So, the i verse
si e of
ay e sho as sin
or arcsin . I verse trigo o etric fu ctio s ask the uestio :
hich a gle has a fu ctio value of ? For e a ple:
sin
arctan
.
asks hich a gle has a si e value of . . It is e uivale t to: sin
. .
asks hich a gle has a ta ge t value of 1. It is e uivale t to: tan
.
Pri cipal Values of I verse Trigo o etric Fu ctio s
There are a i fi ite u er of a gles that a s er the a ove
uestio s, so the i verse trigo o etric fu ctio s are referred to as
ulti‐valued fu ctio s. Because of this, athe aticia s have defi ed
a pri cipal solutio for pro le s i volvi g i verse trigo o etric
fu ctio s. The a gle hich is the pri cipal solutio or pri cipal value
is defi ed to e the solutio that lies i the uadra ts ide tified i the
figure at right. For e a ple:
The solutio s to the e uatio
i tervals
sin
.
are all ‐values i the
. That is, the set of all
∪
solutio s to this e uatio co tai s the t o solutio s i the i terval
,
, as ell as all a gles that are i teger ultiples of
less
tha or greater tha those t o a gles. Give the co fusio this ca create,
defi ed a pri cipal value for the solutio to these ki ds of e uatio s.
The pri cipal value of
for hich
. lies i Q1 ecause . is positive, a d is
sin
Ra ges of I verse Trigo o etric
Fu ctio s
.
Ra ges of I verse Trigo o etric Fu ctio s
The ra ges of i verse trigo o etric fu ctio s
are ge erally defi ed to e the ra ges of the
pri cipal values of those fu ctio s. A ta le
su
arizi g these is provided at right.
Fu ctio
A gles i Q4 are e pressed as egative a gles.
Version 2.1
athe aticia s have
Page 33 of 109
Ra ge
sin
cos
tan
April 10, 2017
Chapter
I verse Trigo o etric Fu ctio s
Graphs of I verse Trigo o etric Fu ctio s
Pri cipal values are sho
Version 2.1
Page 34 of 109
i gree .
April 10, 2017
Chapter
I verse Trigo o etric Fu ctio s
Pro le s I volvi g I verse Trigo o etric Fu ctio s
or
It is te pti g to elieve, for e a ple, that sin sin
. The t o fu ctio s are, after all i verses. Ho ever,
tan tan
this is ot al ays the case ecause the i verse fu ctio value desired
is typically its pri cipal value, hich the stude t ill recall is defi ed
o ly i certai uadra ts see the ta le at right .
Let’s look at a couple of pro le s to see ho they are solved.
Exa ple . : Calculate the pri cipal value of tan
Begi
y otici g that tan
solutio to this pro le
tan
.
a d tan are i verse fu ctio s, so the
is related to the a gle give :
. This
a gle is i Q , ut the i verse ta ge t fu ctio is defi ed o ly i
Q1 a d Q4, o the i terval
,
.
We seek the a gle i Q1 or Q4 that has the sa e ta ge t value as
.
Si ce the ta ge t fu ctio has period , e ca calculate:
tan
i Q4 as our solutio .
tan
Exa ple .2: Calculate the pri cipal value of sin
cos
.
We are looki g for the a gle hose si e value is cos
i the i terval
Method 2: Recall: sin θ
sin
Method
:
sin
cos
The , sin
cos
sin
sin
sin
sin
sin
√
si ce si e values are egative i Q4.
cos θ. The , cos
ecause cos
ecause
.
,
≡
sin
a d
sin
sin
.
is i the i terval
ecause i verse fu ctio s ork icely i
.
,
uadra ts i
hich the
pri cipal values of the i verse fu ctio s are defi ed.
Version 2.1
Page 35 of 109
April 10, 2017
Chapter
I verse Trigo o etric Fu ctio s
Pro le s I volvi g I verse Trigo o etric Fu ctio s
Whe the i verse trigo o etric fu ctio is the i er fu ctio i a co positio of fu ctio s, it ill
usually e ecessary to dra a tria gle to solve the pro le . I these cases, dra the tria gle
defi ed y the i er i verse trig fu ctio . The derive the value of the outer trig fu ctio .
√
Exa ple . : Calculate the value of cot sin
Recall that the argu e t of the sin
.
√
fu ctio ,
. Dra the tria gle ased o this.
Ne t, calculate the value of the tria gle’s horizo tal leg:
√
√
.
Based o the diagra , the ,
√
cot sin
Exa ple . : Calculate the value of tan cos
Recall that the argu e t of the cos
√
fu ctio ,
√
√
.
√
. Dra the tria gle ased o this.
Ne t, calculate the value of the tria gle’s vertical leg:
√ .
√
Based o the diagra , the ,
√
tan cos
fu ctio ,
√
√
Exa ple . : Calculate a alge raic e pressio for sin sec
Recall that the argu e t of the sec
√
√
.
. Dra the tria gle ased o this.
Ne t, calculate the value of the tria gle’s vertical leg:
√
9
Based o the diagra , the ,
sin sec
Version 2.1
Page 36 of 109
√
9
√
9
√
April 10, 2017
Chapter 4
Key A gle For ulas
Key A gle For ulas
A gle Additio For ulas
sin
sin
sin cos
sin cos
tan
cos sin
cos sin
cos
cos
cos cos
cos cos
sin sin
sin sin
tan
Dou le A gle For ulas
sin
sin cos
cos
tan
Half A gle For ulas
cos
cos
sin
The use of a + or
‐
sin
sig i the half a gle
for ulas depe ds o the uadra t i
sin
the a gle
resides. See chart elo .
Sig s of Trig Fu ctio s
By Quadra t
cos
tan
Version 2.1
hich
Page 37 of 109
si +
cos ‐
ta ‐
si +
cos +
ta +
si ‐
cos ‐
ta +
si ‐
cos +
ta –
April 10, 2017
Chapter 4
Key A gle For ulas
Key A gle For ulas – Exa ples
Exa ple . : Fi d the e act value of: cos 7 ˚ cos
Recall: cos
cos 7 ˚ cos
cos cos
˚
sin sin
sin 7 ˚ sin
˚
˚
cos 7 ˚
cos
cos
Exa ple .2: Fi d the e act value of: tan
tan
°
tan
°
°
°
°
√
√
°
°∙
√
∙ √
°
sin
sin
√
°
∙
√ ∙ √
Version 2.1
√
Recall: tan
∙
Co verti g to Q1 a gles
°
√
√
√
√
° . Recall: sin
Note: oth a gles are i Q1, hich
°
° ∙ cos
Co verti g to a a gle i Q1
˚
A gles i Q4 a d Q1
Exa ple . : Fi d the e act value of: sin
sin
˚
√
√
∙
°
√
or
°
˚ .
˚
°
°
° ∙
sin 7 ˚ sin
∙
sin
√
° ∙ cos
sin cos
sin cos
akes thi gs easier.
°
√
Page 38 of 109
April 10, 2017
Chapter 4
Key A gle For ulas
Exa ple . : sin
,
lies i
uadra t II, a d cos
,
lies i
uadra t I. Fi d cos
Co struct tria gles for the t o a gles, ei g careful to co sider the sig s of the values i each
uadra t:
The , cos
cos
∙
Exa ple . : Give the diagra
tan
∙ 7
7
Exa ple . : tan
cos
√
√
∙
7
, a d
∙
sin
at right, fi d: tan
7
7
sin
lies i
uadra t III. Find sin
, cos
Dra the tria gle elo , the apply the appropriate for ulas.
sin
cos
tan
Version 2.1
sin cos
cos
sin
cos
sin
Page 39 of 109
∙
7
7
∙
, tan
7
.
7
April 10, 2017
.
Chapter 4
Key A gle For ulas
Exa ple .7: Fi d the e act value of: cos
Note that
cos
cos
is i Q1, so the value of cos
Recall: cos
is positive.
Usi g the half‐a gle for ula a ove
Co verti g to a a gle i Q1
√
Exa ple . : csc
Note that if
cos
sin
,
√
uadra t IV. Fi d sin .
is i Q , so the value of sin
cos
√
Recall: sin
is positive.
Note: cosi e is positive i Q4
sin
Usi g the half‐a gle for ula a ove
–√
√
Version 2.1
lies i
is i Q4, the
so, sin
sin
√
√
∙
√
√
Page 40 of 109
April 10, 2017
Chapter 4
Key A gle For ulas
Key A gle For ulas
Power Reduci g For ulas
sin
cos
tan
Product‐to‐Su
For ulas
∙
∙
∙
∙
Su ‐to‐Product For ulas
∙
∙
∙
∙
∙
∙
∙
Version 2.1
∙
Page 41 of 109
April 10, 2017
Chapter 4
Key A gle For ulas
Key A gle For ulas – Exa ples
Exa ple .9: Co vert to a su
Use:
sin
∙
∙ cos
Exa ple .
Use:
cos
∙ cos
sin
sin
: Co vert to a su
for ula: cos
∙
∙ cos
Exa ple .
for ula: sin
cos
cos
Use:
: Co vert to a product for ula: sin
sin
sin
∙
∙ sin
∙
Use:
Version 2.1
cos
∙
∙ cos
∙
∙ sin
∙
sin
∙
Exa ple . 2: Co vert to a product for ula: cos
cos
∙ cos
∙
∙
cos
∙ sin
Page 42 of 109
April 10, 2017
Chapter
Ide tities a d E uatio s
Verifyi g Ide tities
A sig ifica t portio of a y trigo o etry course deals ith verifyi g Trigo o etric Ide tities, i.e.,
state e ts that are al ays true assu i g the trigo o etric values i volved e ist . This sectio
deals ith ho the stude t ay approach verificatio of ide tities such as:
tan
∙
sin
I verifyi g a Trigo o etric Ide tity, the stude t is asked to ork ith o ly o e side of the ide tity
a d, usi g the sta dard rules of athe atical a ipulatio , derive the other side. The stude t ay
ork ith either side of the ide tity, so ge erally it is est to ork o the side that is ost co ple .
The steps elo prese t a strategy that ay e useful i verifyi g ide tities.
Verificatio Steps
1. Ide tify which side you wa t to work o . Let’s call this Side A. Let’s call the side you are ot
orki g o Side B. So, you ill e orki g o Side A to ake it look like Side B.
a. If o e side has a ultiple of a a gle e.g., tan
a d the other side does ot e.g.,
cos , ork ith the side that has the ultiple of a a gle.
. If o e side has o ly si es a d cosi es a d the other does ot, ork ith the side that
does ot have o ly si es a d cosi es.
c. If you get part ay through the e ercise a d realize you should have started ith the
other side, start over a d ork ith the other side.
. If ecessary, i vestigate Side B y orki g o it a little. This is ot a violatio of the rules as
lo g as, i your verificatio , you co pletely a ipulate Side A to look like Side B. If you
choose to i vestigate Side B, ove your ork off a little to the side so it is clear you are
i vestigati g a d ot actually orki g side B.
. Si plify Side A as uch as possi le, ut re e er to look at the other side to ake sure you
are ovi g i that directio . Do this also at each step alo g the ay, as lo g as it akes Side
A look ore like Side B.
a. Use the Pythagorea Ide tities to si plify, e.g., if o e side co tai s
sin
a d
the other side co tai s cosi es ut ot si es, replace
sin
ith cos .
. Cha ge a y ultiples of a gles, half a gles, etc. to e pressio s ith si gle a gles e.g.,
replace sin
ith sin cos .
c. Look for ’s. Ofte cha gi g a i to sin
cos
or vice versa ill e helpful.
4. Rewrite Side A i ter s of si es a d cosi es.
. Factor here possi le.
. Separate or co
i e fractio s to
The follo i g pages illustrate a u
Version 2.1
ake Side A look
ore like Side B.
er of tech i ues that ca
Page 43 of 109
e used to verify ide tities.
April 10, 2017
Chapter
Ide tities a d E uatio s
Verifyi g Ide tities – Tech i ues
Tech i ue: I vestigate O e or Both Sides
Ofte , he looki g at a ide tity, it is ot i
ediately o vious ho to proceed. I
i vestigati g oth sides ill provide the ecessary hi ts to proceed.
a y cases,
Exa ple . :
sin
cot
cot
cos
sin
cos
Yuk! This ide tity looks difficult to deal ith – there are lots of fractio s. Let’s i vestigate it y
co verti g the right side to si es a d cosi es. Note that o the right, e ove the e fractio
off to the side to i dicate e are i vestigati g o ly. We do this ecause e ust verify a
ide tity y orki g o o ly o e side u til e get the other side.
sin
I
cot
cot
cos
sin
cos
a ipulati g the right side, e cha ged each
a t so ethi g that looks
cos
sin
cos
sin
cos
cos
cos
cos
i the gree e pressio to
ecause e
ore like the e pressio o the left.
Notice that the ora ge e pressio looks a lot like the e pressio o the left, e cept that every
place e have a i the e pressio o the left e have cos i the ora ge e pressio .
What is our e t step? We eed to cha ge all the ’s i the e pressio o the left to cos . We
ca do this y
cos
cos
cot
cot
Version 2.1
ultiplyi g the e pressio o the left y
∙ sin
sin
, as follo s:
cos
cos
Notice that this
atches the ora ge e pressio a ove.
cot
cot
Page 44 of 109
April 10, 2017
Chapter
Ide tities a d E uatio s
Verifyi g Ide tities – Tech i ues co t’d
Tech i ue: Break a Fractio i to Pieces
Whe a fractio co tai s ultiple ter s i the u erator, it is so eti es useful to reak it i to
separate ter s. This orks especially ell he the resulti g u erator has the sa e u er of
ter s as e ist o the other side of the e ual sig .
Exa ple .2:
cos
cos cos
First, it’s a good idea to replace cos
cos cos
sin sin
cos cos
tan tan
ith cos cos
sin sin :
Ne t, reak the fractio i to t o pieces:
cos cos
cos cos
sin sin
cos cos
Fi ally, si plify the e pressio :
sin
cos
Version 2.1
∙
sin
cos
tan tan
tan tan
Page 45 of 109
April 10, 2017
Chapter
Ide tities a d E uatio s
Verifyi g Ide tities – Tech i ues co t’d
Tech i ue: Get a Co
o De o i ator o O e Side
If it looks like you ould e efit fro getti g a co
o de o i ator for the t o sides of a ide tity,
try co verti g o e side so that it has that de o i ator. I
a y cases, this ill result i a
e pressio that ill si plify i to a ore useful for .
Exa ple . :
cos
sin
sin
cos
If e ere to solve this like a e uatio , e ight create a co
o de o i ator. Re e er,
ho ever, that e ca o ly ork o o e side, so e ill o tai the co
o de o i ator o o ly
sin .
o e side. I this e a ple, the co
o de o i ator ould e: cos
cos
cos
cos
∙
cos
sin
cos
sin
O ce e have a ipulated o e side of the ide tity to have the co
o de o i ator, the rest of
the e pressio should si plify. To keep the cos i the de o i ator of the e pressio o the
left, e eed to ork ith the u erator. A co
o su stitutio is to co vert et ee sin
usi g the Pythagorea ide tity sin
cos
.
a d cos
cos
sin
sin
Notice that the u erator is a differe ce of s uares. Let’s factor it.
sin
cos
sin
sin
Fi ally, e si plify y eli i ati g the co
sin
cos
Version 2.1
o factor i the u erator a d de o i ator.
sin
cos
Page 46 of 109
April 10, 2017
Chapter
Ide tities a d E uatio s
Solvi g Trigo o etric E uatio s
Solvi g trigo o etric e uatio s i volves a y of the sa e skills as solvi g e uatio s i ge eral.
So e specific thi gs to atch for i solvi g trigo o etric e uatio s are the follo i g:
A u
Arra ge e t. It is ofte a good idea to get arra ge the e uatio so that all ter s are o o e
side of the e ual sig , a d zero is o the other. For e a ple, tan sin
tan ca e
rearra ged to eco e tan sin
tan
.
Quadratics. Look for uadratic e uatio s. A y ti e a e uatio co tai s a si gle Trig
fu ctio ith ultiple e po e ts, there ay e a ay to factor it like a uadratic e uatio .
cos
cos
.
For e a ple, cos
Factori g. Look for ays to factor the e uatio a d solve the i dividual ter s separately. For
e a ple, tan sin
tan
tan
sin
.
Ter s with No Solutio . After factori g, so e ter s ill have o solutio a d ca e
re uires sin
, hich has o solutio si ce the
discarded. For e a ple, sin
si e fu ctio ever takes o a value of .
Replace e t. Havi g ter s ith differe t Trig fu ctio s i the sa e e uatio is ot a
pro le if you are a le to factor the e uatio so that the differe t Trig fu ctio s are i
differe t factors. Whe this is ot possi le, look for ays to replace o e or ore Trig
fu ctio s ith others that are also i the e uatio . The Pythagorea Ide tities are
sin
,
particularly useful for this purpose. For e a ple, i the e uatio cos
cos
ca e replaced y
sin , resulti g i a e uatio co tai i g o ly o e Trig
fu ctio .
Extra eous Solutio s. Check each solutio to ake sure it orks i the origi al e uatio . A
solutio of o e factor of a e uatio
ay fail as a solutio overall ecause the origi al
fu ctio does ot e ist at that value. See E a ple . elo .
I fi ite Nu er of Solutio s. Trigo o etric e uatio s ofte have a i fi ite u er of
solutio s ecause of their periodic ature. I such cases, e appe d
or a other ter
to the solutio s to i dicate this. See E a ple .9 elo .
Solutio s i a I terval. Be careful he solutio s are sought i a specific i terval. For the
i terval ,
, there are typically t o solutio s for each factor co tai i g a Trig fu ctio as
lo g as the varia le i the fu ctio has lead coefficie t of e.g., or θ . If the lead
coefficie t is other tha
e.g.,
or θ , the u er of solutio s ill typically e t o
ultiplied y the lead coefficie t e.g.,
solutio s i the i terval ,
for a ter i volvi g
. See E a ple . elo , hich has solutio s o the i terval ,
.
er of these tech i ues are illustrated i the e a ples that follo .
Version 2.1
Page 47 of 109
April 10, 2017
Chapter
Ide tities a d E uatio s
Solvi g Trigo o etric E uatio s – Exa ples
Exa ple . : Solve for
o the i terval
: cos
,
cos
The trick o this pro le is to recog ize the e pressio as a uadratic e uatio . Replace the
trigo o etric fu ctio , i this case, cos , ith a varia le, like , that ill ake it easier to see
ho to factor the e pressio . If you ca see ho to factor the e pressio ithout the trick, y all
ea s proceed ithout it.
Let
cos , a d our e uatio
eco es:
.
This e uatio factors to get:
Su stituti g cos
ack i for
gives:
cos
A d fi ally:
The o ly solutio for this o the i terval
Exa ple . : Solve for
o the i terval
Whe orki g ith a pro le
e pa d the i terval to ,
I this pro le ,
,
,
cos
⇒
is:
cos
√
: sin
i the i terval ,
that i volves a fu ctio of
for the first steps of the solutio .
√
, so e a t all solutio s to sin
here
, it is useful to
is a a gle i the
i terval ,
. Note that, eyo d the t o solutio s suggested y the diagra , additio al
solutio s are o tai ed y addi g ultiples of
to those t o solutio s.
Usi g the diagra
at left, e get the follo i g solutio s:
,
,
7
,
The , dividi g y 4, e get:
Note that there are solutio s
ecause the usual u er of
solutio s i.e., is i creased
y a factor of
.
Version 2.1
,
7
A d si plifyi g, e get:
,
,
,
,
,
,
,
,
Page 48 of 109
,
,
,
,
,
9
,
9
,
,
,
April 10, 2017
Chapter
Ide tities a d E uatio s
Solvi g Trigo o etric E uatio s – Exa ples
Exa ple . : Solve for
tan
sin
tan
tan
o the i terval
tan
sin
or
sin
cos
or
,
sin
,
,
Exa ple . : Solve for
cos
cos cos
cos cos
cos ∙
cos
Version 2.1
so
o the i terval
cos
cos
sin
sin
Exa ple .7: Solve for
,
is a solutio to the e uatio
, tan
is u defi ed at
,
is ot a solutio to this e uatio .
,
: cos
cos sin
,
: cos
cos
,
cos cos
sin sin
tan
sin
o the i terval
cos
sin
While
sin
,π
,
Use:
: tan
,
sin sin
cos cos
cos
cos cos
sin sin
sin sin
⇒
Page 49 of 109
April 10, 2017
Chapter
Ide tities a d E uatio s
Solvi g Trigo o etric E uatio s – Exa ples
Exa ple .9: Solve for all solutio s of :
sin
√
sin
√
sin
√
The dra i g at left illustrates the t o
a gles i
,
tan sec
tan
tan
sec
√
. To
get all solutio s, e eed to add all
i teger ultiples of
to these solutio s.
So,
∈
Exa ple .
for hich sin
: Solve for all solutio s of : tan sec
tan
or
sec
∪
tan
sec
sec
cos
Collecti g the various solutio s,
∈
∪
or
∪
Note: the solutio i volvi g the ta ge t fu ctio has t o a s ers i the i terval ,
.
Ho ever, they are radia s apart, as ost solutio s i volvi g the ta ge t fu ctio are.
Therefore, e ca si plify the a s ers y sho i g o ly o e ase a s er a d addi g , i stead
of sho i g t o ase a s ers that are apart, a d addi g
to each.
For e a ple, the follo i g t o solutio s for tan
give a ove:
…,
…,
Version 2.1
,
,
, ,
, ,
,
,
,…
…
Page 50 of 109
are telescoped i to the si gle solutio
…,
,
, , ,
,…
April 10, 2017
Chapter
Solvi g a O li ue Tria gle
Solvi g a O li ue Tria gle
Several ethods e ist to solve a o li ue tria gle, i.e., a tria gle ith o right a gle. The appropriate
ethod depe ds o the i for atio availa le for the tria gle. All ethods re uire that the le gth of
at least o e side e provided. I additio , o e or t o a gle easures ay e provided. Note that if
t o a gle easures are provided, the easure of the third is deter i ed ecause the su of all
three a gle easures ust e
˚ . The ethods used for each situatio are su
arized elo .
Give Three Sides a d o A gles SSS
Give three seg e t le gths a d o a gle
easures, do the follo i g:
Use the La of Cosi es to deter i e the easure of o e a gle.
Use the La of Si es to deter i e the easure of o e of the t o re ai i g a gles.
Su tract the su of the easures of the t o k o a gles fro
˚ to o tai the easure
of the re ai i g a gle.
Give Two Sides a d the A gle etwee The
Give t o seg e t le gths a d the
SAS
easure of the a gle that is et ee the , do the follo i g:
Use the La of Cosi es to deter i e the le gth of the re ai i g leg.
Use the La of Si es to deter i e the easure of o e of the t o re ai i g a gles.
Su tract the su of the easures of the t o k o a gles fro
˚ to o tai the easure
of the re ai i g a gle.
Give O e Side a d Two A gles ASA or AAS
Give o e seg e t le gth a d the
easures of t o a gles, do the follo i g:
Su tract the su of the easures of the t o k o a gles fro
˚ to o tai the
of the re ai i g a gle.
Use the La of Si es to deter i e the le gths of the t o re ai i g legs.
Give Two Sides a d a A gle ot etwee The
easure
SSA
This is the A iguous Case. Several possi ilities e ist, depe di g o the le gths of the sides a d the
easure of the a gle. The possi ilities are discussed o the e t several pages.
Version 2.1
Page 51 of 109
April 10, 2017
Chapter
Solvi g a O li ue Tria gle
Laws of Si es a d Cosi es
A
c
B
b
C
a
The tria gle a ove ca e orie ted i a y a er. It does ot
Ho ever,
Side is al ays opposite across fro ∠ .
Side is al ays opposite across fro ∠ .
Side is al ays opposite across fro ∠ .
atter hich a gle is ,
or .
Law of Si es see a ove illustratio
Law of Cosi es see a ove illustratio
cos
cos
cos
The la of cosi es ca e descri ed i ords as follo : The s uare of a y side is the su of
the s uares of the other t o sides i us t ice the product of those t o sides a d the cosi e
of the a gle et ee the .
It looks a lot like the Pythagorea Theore , ith the
Version 2.1
Page 52 of 109
i us ter
appe ded.
April 10, 2017
Chapter
Solvi g a O li ue Tria gle
Laws of Si es a d Cosi es – Exa ples
Exa ple . : Solve the tria gle, give : A
°, B
. .
°, a
To solve: fi d the third a gle, a d the use the La of Si es.
∠
°
°
°
°
The use the La of Si es to fi d the le gths of the t o
re ai i g sides.
sin
sin
.
.
°
sin
°
sin
. ∙ sin °
sin °
⇒
°
. ∙ sin
sin °
⇒
°
Exa ple .2: Solve the tria gle, give : a
, c
.
°
.
, B
°.
First, dra the tria gle fro the i for atio you are give . This ill help you get a idea of
hether the values you calculate i this pro le are reaso a le.
rd
Ne t, fi d the le gth of the
La of Cosi es:
√
.
7
side of the tria gle usi g the
cos
cos
.
7 ~
sin
.
sin
Use the La of Si es to fi d the
sin
∠
⇒
sin
sin
.
°
°
.
.
7
easure of o e of the re ai i g a gles.
7
°
⇒
sin
.
The easure of the re ai i g a gle ca e calculated either fro
k o ledge that the su of the three a gles i side a tria gle is
∠
Version 2.1
°
°
°
°
Page 53 of 109
the La of Si es or fro
°.
April 10, 2017
Chapter
Solvi g a O li ue Tria gle
The A
iguous Case SSA
Give t o seg e t le gths a d a a gle that is ot et ee the , it is ot clear hether a tria gle is
defi ed. It is possi le that the give i for atio ill defi e a si gle tria gle, t o tria gles, or eve o
tria gle. Because there are ultiple possi ilities i this situatio , it is called the a iguous case.
Here are the possi ilities:
There are three cases i which
Case :
.
Produces o tria gle ecause
is ot lo g e ough to reach the ase.
Case 2:
Produces o e right tria gle ecause is e actly lo g e ough to reach the
ase. for s a right a gle ith the ase, a d is the height of the tria gle.
Produces t o tria gles ecause is the right size to reach the ase i t o
Case :
places. The a gle fro
hich s i gs fro its ape to eet the ase ca take t o values.
There is o e case i which
Case :
locatio .
Version 2.1
.
Produces o e tria gle ecause
is too lo g to reach the ase i
Page 54 of 109
ore tha o e
April 10, 2017
Chapter
Solvi g a O li ue Tria gle
The A
Solvi g the A
iguous Case SSA
iguous Case
Ho do you solve a tria gle or t o i the a iguous case? Assu e the i for atio give is the
le gths of sides a d , a d the easure of A gle . Use the follo i g steps:
Step : Calculate the height of the tria gle i this develop e t,
Step 2: Co pare
.
to the height of the tria gle, :
If
, the
If
, the
9 °, a d e have Case – a right tria gle. Proceed to Step 4.
If
, the
e have Case or Case 4. Proceed to the Step to deter i e hich.
Step : Co pare
e have Case 1 – there is o tria gle. Stop here.
to .
, the e have Case – t o tria gles. Calculate
usi g the La of Si es. Fi d
If
the t o a gles i the i terval °,
° ith this si e value; each of these ∠ ’s produces a
separate tria gle. Proceed to Step 4 a d calculate the re ai i g values for each.
, the
If
Step 4.
Version 2.1
e have Case 4 – o e tria gle. Fi d
Page 55 of 109
∠ usi g the La of Si es. Proceed to
April 10, 2017
Chapter
Solvi g a O li ue Tria gle
The A
Solvi g the A
iguous Case SSA
iguous Case – co t’d
Step : Calculate . At this poi t, e have the le gths of sides a d , a d the easures of A gles
a d . If e are deali g ith Case – t o tria gles, e ust perfor Steps 4 a d for each tria gle.
Step 4 is to calculate the
easure of A gle
as follo s:
∠
Step : Calculate . Fi ally, e calculate the value of usi g the La of Si es.
sin
sin
Note: usi g
A
⇒
a d∠
sin
sin
ay produce
or
sin
sin
⇒
°
∠
∠
sin
sin
ore accurate results si ce oth of these values are give .
iguous Case Flowchart
Start Here
Compare
Compare
to
to
Two triangles
Calculate , and then
steps and , above).
Version 2.1
Page 56 of 109
April 10, 2017
Chapter
Solvi g a O li ue Tria gle
A
iguous Case – Exa ples
Exa ple . : Deter i e hether the follo i g easure e ts produce o e tria gle, t o tria gles,
or o tria gle: ∠
°, a
.7, c
. . Solve a y tria gles that result.
Si ce e are give t o sides a d a a gle that is ot et ee the , this is the a
We dra this situatio
ith ∠ o the left a d ha gi g do
Step : Calculate
.
Step 2: Co pare to .
.7 ∙ sin
.
Step : Co pare to .
sin
sin
∠
sin
⇒
.
.7
sin
°,
sin
or
°
∠
°
Step :
sin
7.
∠
.
sin
Version 2.1
⇒
⇒
sin
.
°
°
°
Tria gle 2 – Start with:
.7,
∠
Step :
°
sin
°
ust solve each.
°
°
.
∠
Tria gle – Start with:
Step :
.
° have this si e value. Let’s fi d the :
Si ce e ill have t o tria gles, e
°,
.7
.7, so e have Case – t o tria gles.
.
T o a gles i the i terval
∠
.7
elo .
usi g the La of Si es:
Calculate sin
.7,
°
, as sho
iguous case.
∠
°
°
sin
°,
°
Step :
.
°
sin
Page 57 of 109
.
∠
.
sin
°
°
⇒
°
sin 7°
7°
sin
.
°
April 10, 2017
Chapter
Solvi g a O li ue Tria gle
A
iguous Case – Exa ples
Exa ple . : Deter i e hether the follo i g easure e ts produce o e tria gle, t o tria gles,
or o tria gle: ∠B
°, b
, a
. Solve a y tria gles that result.
Si ce e are give t o sides a d a a gle that is ot et ee the , this is the a
We dra this situatio
Step : Calculate
Step 2: Co pare
ith ∠ o the left a d
.
∙ sin
to .
.9
ha gi g do
°
, as sho
iguous case.
elo .
.9
.
Stop. We have Case 1 – o tria gle.
Alter ative Method
Calculate the
sin
∠
sin
sin
easure of a gle
⇒
. 9
sin
sin
usi g the La of Si es:
°
⇒
sin
. 9
. 9 is ot a valid si e value recall that si e values ra ge fro
values do ot defi e a tria gle.
Note: The Alter ative Method for deali g ith the a
Appe di B.
Version 2.1
Page 58 of 109
to
. Therefore, the give
iguous case is laid out i detail i
April 10, 2017
Chapter
Solvi g a O li ue Tria gle
Beari gs
Beari gs are descri ed differe tly fro other a gles i Trigo o etry. A eari g is a clock ise or
cou terclock ise a gle hose i itial side is either due orth or due south. The stude t ill eed to
tra slate these i to refere ce a gles a d/or polar a gles to solve pro le s i volvi g eari gs.
So e eari gs, alo g ith the key associated a gles are sho i the illustratio s elo . The eari g
a gle is sho as , the refere ce a gle is sho as , a d the polar a gle is sho as .
Beari g:
Beari g A gle: β
°
Refere ce A gle: θ
Polar A gle:
Beari g:
Beari g A gle: β
°
Refere ce A gle: θ
Polar A gle:
Version 2.1
Beari g:
°
°
Beari g A gle: β
Refere ce A gle: θ
°
Polar A gle:
Beari g:
°
°
°
Beari g A gle: β
°
Refere ce A gle: θ
°
Polar A gle:
Page 59 of 109
°
°
7 °
°
°
°
April 10, 2017
Chapter
Solvi g a O li ue Tria gle
Beari gs – Exa ples
Exa ple . : T o tracki g statio s are o the e uator 1 7 iles apart. A eather alloo is located
o a eari g of N ° E fro the ester statio a d o a eari g of N ° W fro the easter
statio . Ho far is the alloo fro the ester statio ?
The eari g a gles give are those sho i ora ge i the
diagra at right. The first step is to calculate the refere ce
a gles sho i
age ta i the diagra .
9 °
°
θ
°
9 °
°
°
77°
°
77°
9°
The , use the La of Si es, as follo s:
7
sin 9°
sin 77°
⇒
. miles
Exa ple . : T o sail oats leave a har or i the Baha as at the sa e ti e. The first sails at
ph
i a directio S ° E. The seco d sails at
ph i a directio S 7 ° W. Assu i g that oth oats
ai tai speed a d headi g, after 4 hours, ho far apart are the oats?
Let’s dra a diagra to illustrate this situatio . The le gths of t o sides of a tria gle are ased
o the dista ces the oats travel i four hours. The eari g a gles give are used to calculate
the refere ce sho i ora ge i the diagra
elo .
Boat 1 travels:
mph ∙ hours
miles at a
headi g of S ° E. This gives a refere ce a gle of
9 °
°
° elo the positive ‐a is.
Boat travels:
mph ∙ hours
mi. at a
headi g of S 7 ° W. This gives a refere ce a gle of
9 ° 7 °
° elo the egative ‐a is.
Usi g the La of Cosi es, e ca calculate:
cos
Version 2.1
°
Page 60 of 109
,
⇒
9 . miles
April 10, 2017
Chapter 7
Area of a Tria gle
Area of a Tria gle
Area of a Tria gle
There are a u er of for ulas for the area of a tria gle, depe di g o
a out the tria gle is availa le.
hat i for atio
Geo etry For ula: This for ula, lear ed i Ele e tary Geo etry, is pro a ly ost fa iliar
to the stude t. It ca e used he the ase a d height of a tria gle are either k o or ca
e deter i ed.
here,
is the le gth of the ase of the tria gle.
is the height of the tria gle.
Note: The ase ca e a y side of the tria gle. The height is the le gth of the altitude of
hichever side is selected as the ase. So, you ca use:
or
or
Hero ’s For ula: Hero ’s for ula for the area of a tria gle ca e used he the le gths of
all of the sides are k o . So eti es this for ula, though less appeali g, ca e very useful.
.
here,
Note:
, , are the le gths of the sides of the tria gle.
is called the se i‐peri eter of the tria gle ecause it is half of the tria gle’s peri eter.
Version 2.1
Page 61 of 109
April 10, 2017
Chapter 7
Area of a Tria gle
Area of a Tria gle co t’d
Trigo o etric For ulas
The follo i g for ulas for the area of a tria gle ca
e derived fro
the Geo etry for ula,
, usi g Trigo o etry. Which o e to use depe ds o the i for atio availa le:
Two a gles a d o e side:
∙
∙
∙
∙
Two sides a d the a gle etwee the :
∙
∙
∙
∙
∙
Coordi ate Geo etry For ula
If the three vertices of a tria gle are displayed i a coordi ate pla e, the for ula elo , usi g a
deter i a t, ill give the area of a tria gle.
Let vertices of a tria gle i the coordi ate pla e e:
area of the tria gle is:
,
,
,
,
,
. The , the
∙
Exa ple 7. : For the tria gle i the figure at right, the area is:
∙
∙
∙|
Version 2.1
|
∙ 7
Page 62 of 109
7
April 10, 2017
Chapter 7
Area of a Tria gle
Area of a Tria gle – Exa ples
Exa ple 7.2: Fi d the area of the tria gle if: C = 1
sin
∙ ∙ ∙ sin
°
∙
.
°, a = 4 yards, = yards.
yards
Exa ple 7. : Fi d the area of the tria gle if:
yards,
yards,
yards.
To solve this pro le , e ill use Hero ’s for ula:
First calculate:
The ,
√
∙ ∙7∙
.99 yards
√
Exa ple 7. : Fi d the area of the tria gle i the figure elo usi g Coordi ate Geo etry:
∙
∙
∙
∙|
7
7
9
|
7
∙
Note: It is easy to see that this tria gle has a ase of le gth
Ele e tary Geo etry, the area of the tria gle is:
a d a height of , so fro
∙ ∙
sa e a s er .
The stude t ay ish to test the other ethods for calculati g area that are prese ted i
this chapter to see if they produce the sa e result. Hi t: they do.
Version 2.1
Page 63 of 109
April 10, 2017
Chapter
Polar Coordi ates
Polar Coordi ates
Polar coordi ates are a alter ative ethod of descri i g a poi t i a Cartesia pla e ased o the
dista ce of the poi t fro the origi a d the polar a gle hose ter i al side co tai s the poi t.
Let’s take a look at the relatio ship et ee a poi t’s recta gular coordi ates
coordi ates , .
The
ag itude, r, is the dista ce of the poi t fro
a d its polar
,
the origi :
The a gle, θ, is the polar a gle hose ter i al side co tai s the poi t. Ge erally, this a gle is
e pressed i radia s, ot degrees:
tan
Co versio fro
cos
so
, adjusted to e i the appropriate uadra t.
tan
polar coordi ates to recta gular coordi ates is straightfor ard:
a d
sin
Exa ple . : E press the recta gular for
coordi ates:
Give :
so
tan
tan
tan
,
√
i polar
i Quadra t II,
So, the coordi ates of the poi t are as follo s:
Recta gular coordi ates:
Exa ple .2: E press the polar for
Give :
cos
sin
√
√ ∙ cos
√ ∙ sin
Polar Coordi ates:
,
i recta gular coordi ates:
√ ,
√ ∙
√ ∙
√ ,
√
√
So, the coordi ates of the poi t are as follo s:
Polar Coordi ates:
Version 2.1
Recta gular coordi ates:
√ ,
Page 64 of 109
,
April 10, 2017
Chapter
Polar Coordi ates
Polar For
Expressi g Co plex Nu
of Co plex Nu
ers
ers i Polar For
A co ple u er ca e represe ted as poi t i the Cartesia Pla e, usi g the horizo tal a is for
the real co po e t of the u er a d the vertical a is for the i agi ary co po e t of the u er.
If e e press a co ple
polar coordi ates as
t o for s for are:
u
er i recta gular coordi ates as
, e ca also e press it i
cos
sin , ith ∈ ,
. The , the e uivale ces et ee the
Co vert Recta gular to Polar
Mag itude: | |
A gle:
Co vert Polar to Recta gular
‐coordi ate:
√
tan
y‐coordi ate:
Si ce
ill ge erally have t o values o
resides.
uadra t i hich
Operatio s o Co plex Nu
cos
sin
, e eed to e careful to select the a gle i the
,
ers i Polar For
Arou d 174 , Leo hard Euler proved that:
cos
co ple u er as a e po e tial for of . That is:
sin . As a result, e ca e press a y
cos
sin
∙
∙
, the follo i g rules regardi g
Thi ki g of each co ple u er as ei g i the for
operatio s o co ple u ers ca e easily derived ased o the properties of e po e ts.
Let:
cos
Multiplicatio :
So, to
sin
∙
ultiply co ple
cos
u
u
Po ers:
This results directly fro
Roots:
√
√
This results directly fro
Version 2.1
sin
ers, you
Divisio :
So, to divide co ple
,
ultiply their
cos
sin
ers, you divide their
cos
the
cos
sin
. The ,
ag itudes a d add their a gles.
ag itudes a d su tract their a gles.
sin
ultiplicatio rule.
cos
sin
also, see DeMoi re’s Theorem belo
the po er rule if the e po e t is a fractio .
Page 65 of 109
April 10, 2017
Chapter
Polar Coordi ates
Operatio s o Co plex Nu
Exa ple . : Fi d the product:
cos
√
cos
√
To
ultiply t o u
shortha d is:
shortha d is:
sin
ers i polar for ,
√ ∙ √ ∙ cis
∙
.
∙
sin
ers ‐ Exa ples
√ cis
√ cis
∙
√
∙
√
ultiply the ‐values a d add the a gles.
9
7
√ cis
√ cis
√
because cis
.
Note: ultiplicatio
ay e easier to u dersta d i e po e tial for , si ce e po e ts are added
he values ith the sa e ase are ultiplied:
∙
√
∙
∙ √
√ ∙√ ∙
Exa ple . : Fi d the uotie t:
cos
√
To divide t o u
√
∙
√
√
∙ cis
cis
√
shortha d is:
√ cis
√
.
sin
cos
√
√
shortha d is:
sin
√ cis
∙
√
∙
√
ers i polar for , divide the ‐values a d su tract the a gles.
9
7
√
√
cis
cis
√
because cis
i.
Note: divisio
ay e easier to u dersta d i e po e tial for , si ce e po e ts are su tracted
he values ith the sa e ase are divided:
√
√
Version 2.1
∙
∙
√
√
√
Page 66 of 109
√
√
April 10, 2017
Chapter
Polar Coordi ates
DeMoivre’s Theore
A raha de Moivre 1 7‐17 4 as a Fre ch athe aticia
for deali g ith operatio s o co ple u ers.
If e let
page:
cos
, DeMoivre’s Theore
sin
Exa ple . : Fi d
First, si ce
, e have
The ,
√7
A d,
tan
So,
√
.
° ~
,
Exa ple . : Fi d
√
First, si ce
The ,
A d,
tan
,
So,
√
Version 2.1
;
. 9 ° i Q
.
√
9.
.
.
°
,
9.9
, e have
.
° ~ 9.
, 9 ∙ cos
√ a d
.
°
sin
.
°
.
° i Q
°
cis 9.
.
, 9
√7.
°
;
√
sin
a d
, 9 cis
√7
gives us the po er rule e pressed o the prior
cos
√7
ho developed a very useful Theore
.
°
∙ cos 9.
Page 67 of 109
°
sin 9.
°
April 10, 2017
Chapter
Polar Coordi ates
DeMoivre’s Theore
Let
cos
e uidista t fro
these roots ca
sin
. The , has
disti ct co ple
‐th roots that occupy positio s
each other o a circle of radius √ . Let’s call the roots:
e calculated as follo s
, , ,… ,
:
sin
√ ∙ cos
The for ula could also e restated ith
First, si ce
The ,
√
tan
.
a d
; √
√
°;
The i cre e tal a gle for successive roots is:
~ . 9
.
°
Angle
.
°
.7
°
7 °
.7
°
°
7 °
.7
°
7 °
°
°
7 °
.7
.7
.
.7
7 .7
° i Q4
√
√
. The ,
,… ,
.
The create a chart like this:
Fifth roots of
,
° if this helps i the calculatio .
.
, e have
,
√ ∙ cis
replaced y
Exa ple .7: Fi d the fifth roots of
A d,
for Roots
°
°
roots
~
.
√ ∙
7 °.
.
.
.
7
. 77
7
. 7
.
√ ∙
.
.
°
∙
7
.9 9
.
.
Notice that if e add a other 7 °, e get
.7 °, hich is e uivale t to our first a gle,
.
° ecause
.7 °
°
.
°. This is a good thi g to check. The e t
a gle ill al ays e e uivale t to the first a gle! If it is ’t, go ack a d check your ork.
Roots fit o a circle: Notice that, si ce all of the roots of
have
the sa e ag itude, a d their a gles are 7 ° apart fro each other,
they occupy e uidista t positio s o a circle ith ce ter , a d
radius √
Version 2.1
√
~ . 9
.
Page 68 of 109
April 10, 2017
Chapter 9
Polar Fu ctio s
Polar Graphs
Typically, Polar Graphs ill e plotted o polar graph paper such as that
illustrated at right. O this graph, a poi t , ca e co sidered to e the
i tersectio of the circle of radius a d the ter i al side of the a gle see
the illustratio elo . Note: a free PC app that ca e used to desig a d
pri t your o polar graph paper is availa le at
. athguy.us.
Parts of the Polar Graph
The illustratio
elo sho s the key parts of a polar graph, alo g ith a poi t,
The Pole is the poi t
,
,
.
i.e., the origi .
The Polar A is is the positive ‐a is.
The Li e:
is the positive ‐a is.
Ma y e uatio s that co tai the cosi e
fu ctio are sy
etric a out the ‐a is.
Ma y e uatio s that co tai the si e
fu ctio are sy
etric a out the ‐a is.
Polar E uatio s – Sy
Follo i g are the three
Sy
etry a out:
Pole
‐axis
‐axis
1
etry
ai types of sy
etry e hi ited i
Quadra ts Co tai i g Sy
a y polar e uatio graphs:
etry
Opposite I a d III or II a d IV
Left he isphere II a d III) or
right he isphere I a d IV
Upper he isphere I a d II) or
lo er he isphere III a d IV
Sy
Replace
ith – i the e uatio
Replace
Replace
e uatio
etry Test
,
ith – i the e uatio
ith
,
i the
If perfor i g the i dicated replace e t results i a e uivale t e uatio , the e uatio passes
the sy
etry test a d the i dicated sy
etry e ists. If the e uatio fails the sy
etry test,
sy
etry ay or ay ot e ist.
Version 2.1
Page 69 of 109
April 10, 2017
Chapter 9
Polar Fu ctio s
Graphs of Polar E uatio s
Graphi g Methods
Method : Poi t plotti g
Create a t o‐colu
chart that calculates values of for selected values of . This is aki to a
t o‐colu
chart that calculates values of for selected values of that ca e used to plot a
recta gular coordi ates e uatio e.g.,
.
The ‐values you select for purposes of poi t plotti g should vary depe di g o the e uatio
you are orki g ith i particular, the coefficie t of i the e uatio . Ho ever, a safe et
is to start ith ultiples of
i cludi g
. Plot each poi t o the polar graph a d
see hat shape e erges. If you eed ore or fe er poi ts to see hat curve is e ergi g,
adjust as you go.
If you k o a ythi g a out the curve typical shape, sy
etry, etc. , use it to facilitate
plotti g poi ts.
Co ect the poi ts ith a s ooth curve. Ad ire the result; a y of these curves are
aesthetically pleasi g.
Method 2: Calculator
Usi g a TI‐ 4 Plus Calculator or its e uivale t, do the follo i g:
Make sure your calculator is set to radia s a d polar fu ctio s. Hit the MODE
key; select RADIANS i ro 4 a d POLAR i ro . After you do this, hitti g
CLEAR ill get you ack to the ai scree .
Hit Y= a d e ter the e uatio i the for
. Use the X,T, , key to
, you ay
e ter θ i to the e uatio . If your e uatio is of the for
a d
, a d plot oth.
eed to e ter t o fu ctio s,
Hit GRAPH to plot the fu ctio or fu ctio s you e tered i the previous step.
If ecessary, hit WINDOW to adjust the para eters of the plot.
o If you ca ot see the hole fu ctio , adjust the X‐ a d Y‐ varia les or use )OOM .
o If the curve is ot s ooth, reduce the value of the step varia le. This ill plot ore
poi ts o the scree . Note that s aller values of step re uire ore ti e to plot the
curve, so choose a value that plots the curve ell i a reaso a le a ou t of ti e.
o If the e tire curve is ot plotted, adjust the values of the
i a d
ax varia les u til
you see hat appears to e the e tire plot.
Note: You ca vie the ta le of poi ts used to graph the polar fu ctio
Version 2.1
Page 70 of 109
y hitti g 2ND – TABLE.
April 10, 2017
Chapter 9
Polar Fu ctio s
Graph of Polar E uatio s
Circle
E uatio :
Locatio :
a ove ‐a is if
‐a is if
elo
Radius:
Sy
/
etry:
sin
‐a is
E uatio :
E uatio :
cos
Locatio :
right of ‐a is if
left of ‐a is if
Locatio :
Ce tered o the Pole
Radius:
Radius:
Sy
/
etry:
‐a is
Sy
etry: Pole, ‐a is,
‐a is
Rose
Characteristics of roses:
sin
E uatio :
o Sy
etric a out the ‐a is
E uatio :
cos
o Sy
etric a out the ‐a is
Co tai ed ithi a circle of radius
If is odd, the rose has petals.
If is eve the rose has
petals.
Note that a circle is a rose ith o e petal i.e,
Version 2.1
Page 71 of 109
.
April 10, 2017
Chapter 9
Polar Fu ctio s
Graphs of Polar E uatio s
Li aço of Pascal
E uatio :
E uatio :
sin
Locatio : ul a ove ‐a is if
‐a is if
ul elo
Sy
Locatio : ul right of ‐a is if
ul left of ‐a is if
‐a is
etry:
cos
Sy
etry:
‐a is
Four Li aço Shapes
I
er loop
Cardioid
Di ple
No di ple
Four Li aço Orie tatio s usi g the Cardioid as a e a ple
si e fu ctio
Version 2.1
si e fu ctio
cosi e fu ctio
Page 72 of 109
cosi e fu ctio
April 10, 2017
Chapter 9
Polar Fu ctio s
Graph of Polar E uatio s
Le
iscate of Ber oulli
The le iscate is the set of all poi ts
for hich the product of the
dista ces fro t o poi ts i.e., foci
apart is .
hich are
Characteristics of le
E uatio :
o Sy
E uatio :
o Sy
iscates:
sin
etric a out the li e
cos
etric a out the ‐a is
Co tai ed ithi a circle of radius
Spirals
Hyper olic Spiral
Archi edes’ Spiral
Fer at’s Spiral
Lituus
Characteristics of spirals:
,
E uatio :
o Dista ce fro the Pole i creases ith
E uatio :
,
o Hyper olic Spiral
o Lituus
: asy ptotic to the li e
u its fro
the ‐a is
: asy ptotic to the ‐a is
Not co tai ed ithi a y circle
Version 2.1
Page 73 of 109
April 10, 2017
Chapter 9
Polar Fu ctio s
Graphi g Polar E uatio s – The Rose
Exa ple 9. :
This fu ctio is a rose. Co sider the for s
The u
sin
a d
er of petals o the rose depe ds o the value of .
If is a eve i teger, the rose ill have
petals.
If is a odd i teger, it ill have petals.
cos
.
Let’s create a ta le of values a d graph the e uatio :
/
/
.
/
.
/
/
/
4
7π/
π/
π/
/
/
.
Because this fu ctio i volves a
argu e t of , e a t to start y
looki g at values of θ i
,
, . You could plot ore
poi ts, ut this i terval is sufficie t
to esta lish the ature of the curve;
so you ca graph the rest easily.
‐4
.
The values i the ta le
ge erate the poi ts i the
t o petals right of the ‐a is.
O ce sy
etry is
esta lished, these values
are easily deter i ed.
Blue poi ts o the graph
correspo d to lue values
i the ta le.
K o i g that the curve is a
rose allo s us to graph the
other t o petals ithout
calculati g ore poi ts.
Ora ge poi ts o the
graph correspo d to
ora ge values i the ta le.
The four Rose for s:
Version 2.1
Page 74 of 109
April 10, 2017
Chapter 9
Polar Fu ctio s
Graphi g Polar E uatio s – The Cardioid
Exa ple 9.2:
This cardioid is also a li aço of for
sin
ith
. The use of the si e fu ctio
i dicates that the large loop ill e sy
etric a out the ‐a is. The sig i dicates that the large
loop ill e a ove the ‐a is. Let’s create a ta le of values a d graph the e uatio :
/
/
.7
/
.7
/
/
4
7π/
π/
.
/
.
π/
/
The portio of the graph
a ove the ‐a is results
fro
i Q1 a d Q ,
here the si e fu ctio is
positive.
Ge erally, you a t to look at
values of i
,
. Ho ever,
so e fu ctio s re uire larger
i tervals. The size of the i terval
depe ds largely o the ature of the
fu ctio a d the coefficie t of .
O ce sy
etry is
esta lished, these values
are easily deter i ed.
Blue poi ts o the graph
correspo d to lue values
i the ta le.
Si ilarly, the portio of
the graph elo the ‐a is
results fro
i Q a d
Q4, here the si e
fu ctio is egative.
Ora ge poi ts o the
graph correspo d to
ora ge values i the ta le.
The four Cardioid for s:
Version 2.1
Page 75 of 109
April 10, 2017
Chapter 9
Polar Fu ctio s
Co verti g Betwee Polar a d Recta gular For s of E uatio s
Recta gular to Polar
To co vert a e uatio fro
Recta gular For
cos
Substitute
sin
Substitute
Substitute
Exa ple 9. : Co vert
to Polar For , use the follo i g e uivale ces:
cos
sin
for
for
for
to a polar e uatio of the for
.
Starti g E uatio :
Su stitute
Factor out :
Divide y
a d
cos
cos
sin :
∙ cos
cos
:
sin
∙ sin
sin
Polar to Recta gular
To co vert a e uatio fro
Polar For
cos
Substitute
sin
Substitute
Substitute
Exa ple 9. : Co vert r = cos
Starti g E uatio :
Su stitute cos
, sin
Multiply y :
Su stitute
Su tract
to Recta gular For , use the follo i g e uivale ces:
+ 9 sin
:
for cos
for sin
for
to a recta gular e uatio .
r = cos
9 :
Co plete the s uare:
Version 2.1
9
9
:
Si plify to sta dard for
+ 9 sin
for a circle:
Page 76 of 109
9
9
9
April 10, 2017
Chapter 9
Polar Fu ctio s
Para etric E uatio s
O e ay to defi e a curve is y aki g a d or a d fu ctio s of a third varia le, ofte
for
ti e . The third varia le is called the Para eter, a d fu ctio s defi ed i this a er are said to e
i Para etric For . The e uatio s that defi e the desired fu ctio are called Para etric E uatio s.
I Para etric E uatio s, the para eter is the i depe de t varia le. Each of the other t o or ore
varia les is depe de t o the value of the para eter. As the para eter cha ges, the other varia les
cha ge, ge erati g the poi ts of the fu ctio .
Exa ple 9. : A relatively si ple e a ple is a circle, hich e ca defi e as follo s:
Circle:
cos
As the varia le progresses fro
sin
to
The circle i the illustratio at right ca
, a circle of radius is or .
e defi ed i several ays:
Cartesia for :
Polar for :
Para etric for :
Fa iliar Curves
cos
Ma y curves ith hich the stude t
follo i g:
Curve
sin
ay e fa iliar have para etric for s. A o g those are the
Cartesia For
Para ola ith horizo tal
directri
Polar For
sin
Ellipse ith horizo tal
ajor a is
∙ cos
Hyper ola ith horizo tal
tra sverse a is
∙ cos
Para etric For
cos
sin
sec
tan
As ca e see fro this chart, so eti es the para etric for of a fu ctio is its si plest. I fact,
para etric e uatio s ofte allo us to graph curves that ould e very difficult to graph i either
Polar for or Cartesia for . So e of these are illustrated o the e t page.
Version 2.1
Page 77 of 109
April 10, 2017
Chapter 9
Polar Fu ctio s
So e Fu ctio s Defi ed y Para etric E uatio s
Star Wars fa s: are these the oids you are looki g for?
The graphs elo are e a ples of fu ctio s defi ed y para etric e uatio s. The e uatio s a d a
rief descriptio of the curve are provided for each fu ctio .
Deltoid
Nephroid
Para etric e uatio s:
cos
sin
cos
sin
The deltoid is the path of a
poi t o the circu fere ce
of a circle as it akes three
co plete revolutio s o the
i side of a larger circle.
Astroid
Para etric e uatio s:
cos
sin
cos
sin
The ephroid is the path of a
poi t o the circu fere ce
of a circle as it akes t o
co plete revolutio s o the
outside of a larger circle.
Para etric e uatio s:
cos
sin
The astroid is the path of a
poi t o the circu fere ce
of a circle as it akes four
co plete revolutio s o the
i side of a larger circle.
Cycloid
Para etric e uatio s:
sin
cos
Version 2.1
The cycloid is the path of a poi t o the circu fere ce of a circle as the
circle rolls alo g a flat surface thi k: the path of a poi t o the outside
of a icycle tire as you ride o the side alk . The cycloid is oth a
brachistochrone a d a tautochrone look these up if you are i terested .
Page 78 of 109
April 10, 2017
Chapter 1
Vectors
Vectors
A vector is a ua tity that has oth ag itude a d directio . A e a ple ould e i d
lo i g to ard the east at
iles per hour. A other e a ple ould e the force of a 1 kg
eight ei g pulled to ard the earth a force you ca feel if you are holdi g the eight .
Special U it Vectors
We defi e u it vectors to e vectors of le gth . U it vectors havi g the directio of the
positive a es are very useful. They are descri ed i the chart a d graphic elo .
U it Vector
Directio
Graphical
represe tatio of
positive ‐a is
u it vectors a d j
i t o di e sio s.
positive ‐a is
positive ‐a is
Vector Co po e ts
The le gth of a vector, , is called its ag itude a d is represe ted y the sy ol ‖ ‖. If a
, , , a d its ter i al poi t e di g positio is
vector’s i itial poi t starti g positio is
, , , the the vector displaces
i the ‐directio ,
i the ‐
directio , a d
i the ‐directio . We ca , the , represe t the vector as follo s:
The
ag itude of the vector, , is calculated as:
‖ ‖
√
If this looks fa iliar, it should. The ag itude of a vector i three
di es sio s is deter i ed as the le gth of the space diago al of a
recta gular pris
ith sides , a d .
I t o di e sio s, these co cepts co tract to the follo i g:
‖ ‖
√
I t o di e sio s, the ag itude of the vector is the le gth of the hypote use of a right
tria gle ith sides a d .
Version 2.1
Page 79 of 109
April 10, 2017
Chapter 1
Vectors
Vector Properties
Vectors have a u er of ice properties that ake orki g ith the
oth useful a d
relatively si ple. Let a d
e scalars, a d let u, v a d w e vectors. The ,
If
, the
‖ ‖ cos
a d
ote: this for ula is ofte
‖ ‖ cos
‖ ‖ sin
The ,
used i Force calculatio s
a d
If
If
‖ ‖ sin
, the
, the
Defi e to e the zero vector i.e., it has zero le gth, so that
zero vector is also called the ull vector.
. Note: the
Note:
ca also e sho
ith the follo i g otatio :
,
useful i calculati g dot products a d perfor i g operatio s ith vectors.
. This otatio is
Properties of Vectors
Additive Ide tity
Additive I verse
Co
utative Property
Associative Property
Associative Property
Distri utive Property
Distri utive Property
Multiplicative Ide tity
Also, ote that:
‖
‖ ‖
Version 2.1
‖
| |‖ ‖
Mag itude Property
U it vector i the directio of
Page 80 of 109
April 10, 2017
Chapter 1
Vectors
Vector Properties – Exa ples
Exa ple
. : u = ‐ i ‐ j, v = i + j; Fi d u + v.
A alter ative otatio for a vector i the for
is , . Usi g this alter ative
otatio
akes a y vector operatio s uch easier to ork ith.
To add vectors, si ply li e the
vertically a d add:
up
,
Exa ple
.2: u = ‐ i ‐ 7j a d v = ‐4i ‐ 1j; Fi d ‖
,
,
‖
Exa ple
‖
√
7
,
√
‖.
Su tracti g
,
,
,
is the sa e as addi g
.
To get – , si ply cha ge the sig of each
ele e t of . If you fi d it easier to add
tha to su tract, you ay a t to adopt
this approach to su tracti g vectors.
∙√
√
. : Fi d the u it vector that has the sa e directio as the vector v = i ‐ 1 j.
A u it vector has ag itude . To get a u it vector i the sa e directio as the origi al
vector, divide the vector y its ag itude.
The u it vector is:
Version 2.1
‖ ‖
√
Page 81 of 109
April 10, 2017
Chapter 1
Vectors
Vector Properties – Exa ples
Exa ple
. : Write the vector v i ter s of i a d j if ‖ ‖ = 1 a d directio a gle θ = 1
°.
It helps to graph the vector ide tified i the pro le .
The u it vector i the directio θ
cos
°, sin
Multiply this y ‖ ‖
Version 2.1
°
√
,
° is:
√
to get :
√
√
Page 82 of 109
April 10, 2017
Chapter 1
Vectors
Vector Dot Product
The Dot Product of t o vectors,
follo s:
∘
a d
∙
, is defi ed as
∙
∙
It is i porta t to ote that the dot product is a scalar i.e., a u er , ot a vector. It descri es
so ethi g a out the relatio ship et ee t o vectors, ut is ot a vector itself. A useful
approach to calculati g the dot product of t o vectors is illustrated here:
,
alter ative
vector
otatio
,
,
,
Ge eral
I the e a ple at right the vectors are li ed up vertically.
The u ers i the each colu
are ultiplied a d the
results are added to get the dot product. I the e a ple,
, , ∘ , ,
.
∘
,
,
,
,
Exa ple
∘
,
,
,
,
Properties of the Dot Product
Let
e a scalar, a d let u, v a d w e vectors. The ,
∘
∘
∘
∘
∘
‖ ‖
∘
∘
∘
)ero Property
If
∘
∘
∘
∘
Version 2.1
∘
a d
If there is a scalar
If
Co
are orthogo al to each other.
utative Property
Mag itude S uare Property
More properties:
, a d
∘
∘
a d
such that
is the a gle et ee
Distri utive Property
Multiplicatio
, the
y a Scalar Property
a d are orthogo al perpe dicular .
, the
a d , the cos
Page 83 of 109
a d are parallel.
∘
‖ ‖‖ ‖
.
April 10, 2017
Chapter 1
Vectors
Vector Dot Product – Exa ples
Exa ple
. : u = ‐ i + j, v = i ‐ j, w = ‐ i + 1 j; Fi d u ∙ w + v ∙ w.
The alter ate otatio for vectors co es i especially ha dy i doi g these types of
pro le s. Also, ote that: u ∙ w + v ∙ w = u + v ∘ w. Let’s calculate u + v ∘ w.
u
Exa ple
,
,
∘
v ∘w
∙
Usi g the distri utive property for dot
products results i a easier pro le
ith fe er calculatio s.
,
,
∙
. : Fi d the a gle et ee the give vectors: u = i ‐ j, v = 4i + j.
∘
cos
‖ ‖ ‖ ‖
°
,
,
∘
∘
°
‖ ‖
‖ ‖
cos
Exa ple
∙
∙
∘
cos
‖ ‖ ‖ ‖
√
√
√
√ ∙√
√
9 . °
.7: Are the follo i g vectors parallel, orthogo al, or either? v = 4i + j, w = i ‐ 4j
If vectors are parallel, o e is a
ultiple of the other; also
If vectors are perpe dicular, their dot product is zero.
∘
‖ ‖ ‖ ‖.
Calculate the dot product.
∘
∘
Version 2.1
,
,
∙
So, the vectors are orthogo al.
∙
Page 84 of 109
April 10, 2017
Chapter 1
Vectors
Vector Dot Product – Exa ples
Exa ple
. : Are the vectors are parallel, orthogo al, or either. v = i + 4j, w = i + j
Vector Multiple Approach
Clearly,
It is clearly easier to check hether o e
vector is a ultiple of the other tha to
use the dot product ethod. The
stude t ay use either, u less i structed
to use a particular ethod.
,
,
The vectors are parallel.
Dot Product Approach
To deter i e if t o vectors are parallel usi g the dot product, e check to see if:
∘
∘
∘
‖ ‖ ‖ ‖
,
,
‖ ‖
‖ ‖
‖ ‖ ‖ ‖
∙
∘
The vectors are parallel.
Cross Product Approach see Cross Product elo
To deter i e if t o vectors are parallel usi g the cross product, e check to see if:
x
x
x
v
w
v
w
The vectors are parallel.
Version 2.1
∙
v w
∙
v w
Page 85 of 109
April 10, 2017
Chapter 1
Vectors
Applicatio s of the Vector Dot Product
Vector Projectio
The projectio of a vector, , o to a other vector , is o tai ed usi g the dot product. The
for ula used to deter i e the projectio vector is:
Notice that
I the diagra
proj
∘
‖ ‖
∘
∘
‖ ‖
∘
is a scalar, a d that proj
at right, v
proj
is a vector.
.
Orthogo al Co po e ts of a Vector Deco positio
A vector, , ca e e pressed as the su of t o orthogo al vectors
a ove diagra . The resulti g vectors are:
∘
proj
is parallel to
a d
, as sho
i the
a d
‖ ‖
is orthogo al to
Work
Work is a scalar ua tity i physics that easures the force e erted o a o ject over a
particular dista ce. It is defi ed usi g vectors, as sho
elo . Let:
F e the force vector acti g o a o ject,
e the vector fro
The , e defi e ork as:
‖ ‖
Mag itude
of Force
Version 2.1
poi t
to poi t .
to .
e the a gle et ee F a d
∘
ovi g it fro
cos
Dista ce
Traveled
.
Both of these for ulas are useful.
Which o e to use i a particular
situatio depe ds o hat
i for atio is availa le.
A gle et ee
Vectors
Page 86 of 109
April 10, 2017
Chapter 1
Vectors
Applicatio s of Vectors – Exa ples
Exa ple .9: The ag itude a d directio of t o forces acti g o a o ject are
pou ds,
N ° E, a d 7 pou ds, N ° W, respectively. Fi d the ag itude a d the directio a gle of
the resulta t force.
This pro le re uires the additio of t o vectors. The approach used here is:
1 Co vert each vector i to its i a d j co po e ts, call the
a d ,
Add the resulti g a d values for the t o vectors, a d
Co vert the su to its polar for .
Keep additio al accuracy throughout a d rou d at the e d. This ill preve t error
co pou di g a d ill preserve the re uired accuracy of your fi al solutio s.
Step 1: Co vert each vector i to its i a d j co po e ts
Let
Fro
θ
Let
Fro
φ
e a force of
the diagra
9 °
cos
sin
l s. at eari g: N
at right,
°
°
°
.
°
7
.9
7
e a force of 7 l s. at eari g: N
the diagra
9 °
7 cos
7 sin
at right,
°
°
°
°
°E
°W
.99
.
Step : Add the results for the t o vectors
. 7 ,
.99 ,
.
7 , 99.
Step : Co vert the su
Directio A gle
Mag itude
Version 2.1
.9
.
θ
7
to its polar for
tan
.
.
7
.
99.
9 .7°
Page 87 of 109
99.79 l s.
April 10, 2017
Chapter 1
Vectors
Applicatio s of Vectors – Exa ples
Exa ple . : O e rope pulls a arge directly east ith a force of 79 e to s, a d a other
rope pulls the arge directly orth ith a force of 7 e to s. Fi d the ag itude a d
directio a gle of the resulti g force acti g o the arge.
The process of addi g t o vectors hose headi gs are orth, east,
est or south NEWS is very si ilar to co verti g a set of recta gular
coordi ates to polar coordi ates. So, if this process see s fa iliar,
that’s ecause it is.
Mag itude
Directio A gle
79
θ
tan
7.
7
7. °
newtons
Exa ple . : A force is give y the vector F = i + j. The force oves a o ject alo g a
straight li e fro the poi t , 7 to the poi t 1 , 1 . Fi d the ork do e if the dista ce is
easured
i feet a d the force is easured i pou ds.
For this pro le
it is sufficie t to use the ork for ula,
We are give
We ca calculate
,
.
∙
as the differe ce et ee the t o give poi ts.
,
, 7
The , calculate
∘
∘
Version 2.1
,
∘
Note that the differe ce et ee t o poi ts is a vector.
,
∙
,
∙
77 foot pou ds
Page 88 of 109
April 10, 2017
Chapter 1
Vectors
Applicatio s of Vectors – Exa ples
Exa ple . 2: Deco pose i to t o vectors
orthogo al to . = i ‐ 4j, = i + j
a d
, here
is parallel to w a d
is
The for ulas for this are:
∘
proj
‖ ‖
Let’s do the calculatio s.
∘
∘
‖ ‖
,
,
∙
∙
The ,
∘
proj
‖ ‖
,
,
A d,
,
9
Version 2.1
,
,
Page 89 of 109
April 10, 2017
Chapter 1
Vectors
Vector Cross Product
Cross Product
I three di e sio s,
Let:
u
u
a d
u
The , the Cross Product is give
u
v
x
u
v
y:
u
v
u v
‖ ‖ ‖ ‖ sin
x
v
v
u v
v
u v
u v
u v
u v
Expla atio : The cross product of t o o zero vectors i three di e sio s produces a third
vector that is orthogo al to each of the first t o. This resulti g vector x is, therefore,
or al to the pla e co tai i g the first t o vectors assu i g a d are ot parallel . I the
seco d for ula a ove, is the u it vector or al to the pla e co tai i g the first t o vectors.
Its orie tatio directio is deter i ed usi g the right ha d rule.
Right Ha d Rule
x
Usi g your right ha d:
Poi t your forefi ger i the directio of , a d
Poi t your iddle fi ger i the directio of .
The :
Your thu
ill poi t i the directio of x .
I t o di e sio s,
Let:
The ,
u
x
u
u
v
a d
u
v
v
u v
v
u v
hich is a scalar i t o di e sio s .
The cross product of t o o zero vectors i t o di e sio s is zero if the vectors are parallel.
That is, vectors a d are parallel if x
.
The area of a parallelogra
‖ ‖ ‖ ‖ sin θ.
Version 2.1
havi g
a d as adjace t sides a d a gle θ et ee the :
Page 90 of 109
April 10, 2017
Chapter 1
Vectors
Vector Cross Product
Properties of the Cross Product
Let
e a scalar, a d let u, v a d w e vectors. The ,
x
x
x
x
,
x
,
)ero Property
x
m
x
x
,
x
x
,
, a d
are orthogo al to each other
Reverse orie tatio orthogo ality
x
Every o ‐zero vector is parallel to itself
A ti‐co
x
x
x
x
Distri utive Property
x
x
x
x m
m
utative Property
Distri utive Property
Scalar Multiplicatio
x
More properties:
If
If
x
, the
a d are parallel.
is the a gle et ee
‖
a d , the sin
‖
‖ ‖‖ ‖
.
A gle Betwee Two Vectors
Notice the si ilarities i the for ulas for the a gle et ee t o vectors usi g the dot product
a d the cross product:
cos
Version 2.1
∘
‖ ‖‖ ‖
sin
Page 91 of 109
‖
‖
‖ ‖‖ ‖
April 10, 2017
Chapter 1
Vectors
Vector Triple Products
Scalar Triple Product
Let:
u
u
,
u
v
v
,
v
w
w
w
.
The the triple product ∘ x
gives a scalar represe ti g the volu e of a parallelepiped
a D parallelogra
ith , , a d as edges:
∘
∘
u
v
w
x
x
Note: vectors , , a d
x
u
v
w
∘
u
v
w
are copla ar if a d o ly if
∘
x
.
Other Triple Products
∘
x
x
x
∘
x
x
x
∘
∘
∘
∘
Duplicati g a vector results i a product of
x
x
∘
∘
∘
x
No Associative Property
The associative property of real u
∘
x
Version 2.1
x
∙
∙
x
∘
x
ers does ot tra slate to triple products. I particular,
No associative property of dot products/ ultiplicatio
No associative property of cross products
Page 92 of 109
April 10, 2017
Appe di A
Su
ary of Trigo o etric For ulas
Appendix A
Su
ary of Trigo o etric For ulas
Trigo o etric Fu ctio s
‐ a d ‐ axes
sin θ
sin θ
cos θ
cos θ
tan θ
tan θ
cot θ
cot θ
sec θ
sec θ
csc θ
Si e‐Cosi e Relatio ship
Pythagorea Ide tities
for a y a gle θ
sin
cos
sec
csc
sin θ
sin θ
tan
cot
Cofu ctio s i Quadra t I
cos
⇔
cos
sec
csc
⇔
csc
Version 2.1
cot
⇔
cos θ
cos θ
sec θ
cot θ
tan θ
tan θ
cot θ
cot
sin
sin θ
cos θ
cos θ
sin θ
cos θ
sin θ
Key A gles
°
°
radians
°
radians
°
°
sin
tan
csc θ
csc θ
9 °
radians
radians
radians
tan
sec
Page 93 of 109
April 10, 2017
Appe di A
Su
ary of Trigo o etric For ulas
Trigo o etric Fu ctio s Right Tria gle
SOH‐CAH‐TOA
sin
sin
tan
tan
cos
cos
sin
cos
tan
Laws of Si es a d Cosi es O li ue Tria gle
Law of Si es see illustratio
elo
Law of Cosi es see illustratio
elo
cos
cos
cos
A
c
B
Version 2.1
b
C
a
Page 94 of 109
April 10, 2017
Appe di A
Su
ary of Trigo o etric For ulas
A gle Additio For ulas
sin
sin
sin cos
sin cos
tan
cos sin
cos sin
cos
cos
cos cos
cos cos
sin sin
sin sin
tan
Dou le A gle For ulas
sin
sin cos
cos
tan
Half A gle For ulas
cos
cos
sin
The use of a + or
‐
sin
sig i the half a gle
for ulas depe ds o the uadra t i
sin
the a gle
resides. See chart elo .
Sig s of Trig Fu ctio s
By Quadra t
cos
tan
Version 2.1
hich
Page 95 of 109
si +
cos ‐
ta ‐
si +
cos +
ta +
si ‐
cos ‐
ta +
si ‐
cos +
ta –
April 10, 2017
Appe di A
Su
ary of Trigo o etric For ulas
Power Reduci g For ulas
sin
cos
tan
Product‐to‐Su
For ulas
∙
∙
∙
∙
Su ‐to‐Product For ulas
∙
∙
∙
∙
∙
∙
∙
Version 2.1
∙
Page 96 of 109
April 10, 2017
Appe di A
Su
ary of Trigo o etric For ulas
Tria gle Area For ulas
Geo etry
here,
is the le gth of the ase of the tria gle.
is the height of the tria gle.
Hero ’s For ula
.
here,
, , are the le gths of the sides of the tria gle.
Usi g Both Le gths a d A gles
∙
∙
∙
∙
∙
∙
∙
∙
∙
Coordi ate Geo etry
Let three vertices of a tria gle i the coordi ate pla e e:
,
,
,
,
,
.
∙
Version 2.1
Page 97 of 109
April 10, 2017
Appe di A
Su
Co plex Nu
cos
Operatio s
sin
cis
cos
sin
Let:
cos
Multiplicatio :
∙
Divisio :
Po ers:
Roots:
√
cos
varies fro
has
ers i Polar For
∙
sin
sin
cos
cos
Note:
Version 2.1
cis
ary of Trigo o etric For ulas
cos
sin
sin
sin
,
sin
√ ∙ cos
to
disti ct co ple
‐th roots:
Page 98 of 109
,
,
,…,
April 10, 2017
Appe di A
Su
ary of Trigo o etric For ulas
Vectors
, ,
are the u it vectors i the , , directio s respectively.
di e sio s
‖ ‖
di e sio s
‖ ‖
√
√
Properties
Additive Ide tity
Additive I verse
Co
utative Property
Associative Property
Associative Property
Distri utive Property
Distri utive Property
Multiplicative Ide tity
‖
‖ ‖
‖
Version 2.1
| |‖ ‖
Mag itude Property
U it vector i the directio of
Page 99 of 109
April 10, 2017
Appe di A
Su
ary of Trigo o etric For ulas
Vector Dot Product
Let:
a d
∘
∙
∙
∙
Properties
∘
)ero Property
∘
∘
∘
∘
‖ ‖
∘
∘
cos
∘
∘
, a d
∘
Co
are orthogo al to each other.
utative Property
Mag itude S uare Property
∘
∘
∘
∘
Distri utive Property
∘
Multiplicatio
y a Scalar Property
is the a gle et ee
‖ ‖‖ ‖
a d
Vector Projectio
∘
∘
proj
‖ ‖
∘
Orthogo al Co po e ts of a Vector
proj
Work
∘
‖ ‖
a d
F is the force vector acti g o a o ject,
∘
‖ ‖
Version 2.1
cos
ovi g it fro
poi t
is a gle et ee F a d
Page 100 of 109
to poi t .
.
April 10, 2017
Appe di A
Su
ary of Trigo o etric For ulas
Vector Cross Product
2 Di e sio s
Let:
u
The ,
a d
u
u
v
x
Area of a parallelogra
u
v
v
v
u v
u v
a d
v
havi g
a d as adjace t sides a d a gle θ et ee the :
‖ ‖ ‖ ‖ sin θ
Di e sio s
Let:
u
u
v
x
u
v
u
u
u
v
u v
‖ ‖ ‖ ‖ sin
x
u v
v
v
u v
u v
u v
u v
is the u it vector or al to the pla e co tai i g the first t o vectors ith orie tatio
deter i ed usi g the right ha d rule.
Properties
x
x
,
x
x
x
sin
,
)ero Property
x
x
x
x
‖
x
x
x m
‖
‖ ‖‖ ‖
Version 2.1
,
x
,
, a d
are orthogo al to each other
Reverse orie tatio orthogo ality
x
Every o ‐zero vector is parallel to itself
A ti‐co
x
x
m
x
Distri utive Property
x
x
m
utative Property
Distri utive Property
x
Scalar Multiplicatio
is the a gle et ee
Page 101 of 109
a d
April 10, 2017
Appe di A
Su
ary of Trigo o etric For ulas
Vector Triple Products
Let:
u
u
u
,
v
v
v
,
w
w
w
.
Scalar Triple Product
∘
∘
u
v
w
x
x
x
u
v
w
∘
u
v
w
Other Triple Products
∘
x
x
x
∘
x
x
x
∘
∘
∘
∘
x
x
∘
∘
∘
x
No Associative Property
∘
x
x
∙
Version 2.1
∙
x
∘
x
Page 102 of 109
April 10, 2017
Appe di B
Solvi g the A
iguous Case – Alter ative Method
Appe dix B
Solvi g the A
iguous Case – Alter ative Method
Ho do you solve a tria gle or t o i the a iguous case? Assu e the i for atio give is the
le gths of sides a d , a d the easure of A gle . Use the follo i g steps:
Step : Calculate the si e of the
issi g a gle i this develop e t, a gle
Step 2: Co sider the value of
:
If
, the
If
, the
If
, the
Step : Co pare
e have Case 1 – there is o tria gle. Stop here.
.
Step : Use
sin
sin
9 °, a d e have Case – a right tria gle. Proceed to Step 4.
e have Case or Case 4. Proceed to the e t step to deter i e hich.
a d .
, the e have Case – t o tria gles. Calculate the values of each a gle , usi g the
If
La of Si es. The , proceed to Step 4 a d calculate the re ai i g values for each tria gle.
If
Version 2.1
, the
e have case 4 – o e tria gle. Proceed to Step 4.
Page 103 of 109
April 10, 2017
Appe di B
Solvi g the A
iguous Case – Alter ative Method
Step : Calculate . At this poi t, e have the le gths of sides a d , a d the easures of A gles
a d . If e are deali g ith Case – t o tria gles, e ust perfor Steps 4 a d for each a gle.
Step 4 is to calculate the
easure of A gle
as follo s:
°
Step : Calculate . Fi ally, e calculate the value of usi g the La of Si es.
sin
sin
Note: usi g
A
⇒
a d∠
sin
sin
ay produce
or
sin
sin
Is
?
⇒
sin
sin
ore accurate results si ce oth of these values are give .
iguous Case Alter ative Method Flowchart
Start Here
Value of
sin
yes
no
Two triangles
Calculate , and then .
Steps and , above
Version 2.1
Page 104 of 109
April 10, 2017
Appe di C
Su
ary of Recta gular a d Polar For s
Appendix C
Su
ary of Recta gular a d Polar For s
Recta gular For
Coordi ates
For
Co versio
Co plex
Nu ers
For
Co versio
,
Polar For
,
cos
sin
cos
cos
sin
Vectors
tan
sin
or
tan
For
‖ ‖
‖ ‖∠
ag itude
directio a gle
Co versio
‖ ‖ cos
‖ ‖ sin
Version 2.1
Page 105 of 109
‖ ‖
tan
April 10, 2017
Trigonometry Handbook
Index
Subject
Page
4, 1
A
iguous Case for O li ue Tria gles
,1 4
A
iguous Case for O li ue Tria gles ‐ Flo chart
17
A plitude
A gle
7
A gle Additio For ulas
14
A gle of Depressio
14
A gle of Depressio
7
Arc Measure
1
1
7
7 ,7
Area of a Tria gle
Geo etry For ula
Hero 's For ula
Trigo o etric For ulas
Coordi ate Geo etry For ula
Astroid
Cardioid
17
71
Characteristics of Trigo o etric Fu ctio Graphs
Circles
9
,1
Cofu ctio s
Co ple Nu ers
Co versio et ee Recta gular a d Polar For s
Operatio s i Polar For
Polar For
79
Co po e ts of Vectors
,1
4, 1
7
1
Co versio et ee Recta gular a d Polar For s
Co ple Nu ers
Coordi ates
E uatio s
Vectors
11
Coseca t Fu ctio
11
Cosi e Fu ctio
11
Cota ge t Fu ctio
9
Coter i al A gle
Cross Product
7
Cycloid
Version 2.1
Page 106 of 109
April 10, 2017
Trigonometry Handbook
Index
Page
Subject
11
Defi itio s of Trig Fu ctio s Right Tria gle
9
Defi itio s of Trig Fu ctio s ‐ a d y‐ a es
7
Degrees
7
Deltoid
7
DeMoivre's Theore
DeMoivre's Theore
14
for Roots
Depressio , A gle of
Dot Product
7
Dou le A gle For ulas
77
Ellipse
7
E uatio s
Co versio
47
17
et ee Recta gular a d Polar For s
Solvi g Trigo o etric E uatio s
Fre ue cy
1
77
Graphs
Basic Trig Fu ctio s
Cardioid
Coseca t Fu ctio
Cosi e Fu ctio
Cota ge t Fu ctio
I verse Trigo o etric Fu ctio s
Li aço of Pascal
Polar Fu ctio s
Rose
Seca t Fu ctio
Si e Fu ctio
Ta ge t Fu ctio
Trig Fu ctio Characteristics Ta le
Half A gle For ulas
Har o ic Motio
Hero 's For ula
Hyper ola
4
44
Ide tities ‐ Verificatio
Steps
Tech i ues
1
7
4
7
9
74
4
19
7
Version 2.1
Page 107 of 109
April 10, 2017
Trigonometry Handbook
Index
Page
14
Subject
I cli atio , A gle of
I itial Side of a A gle
4
I verse Trigo o etric Fu ctio s
Defi itio s
Graphs
Pri cipal Values
Ra ges
La of Cosi es
La of Si es
7
Le
7
Li aço of Pascal
7
Nephroid
1
iscate of Ber oulli
O li ue Tria gle ‐ Methods to Solve
Operatio s o Co ple Nu
ers i Polar For
Orthogo al Co po e ts of a Vector
77
Para ola
17
Period
1
Phase Shift
Polar A gle
, 9
4, 1
,1
71
4, 1
41
Polar A is
Polar Coordi ates
Polar For of Co ple Nu
Polar Graph Types
ers
Polar to Recta gular Coordi ate Co versio
Po er Reduci g For ulas
Pri cipal Values of I verse Trigo o etric Fu ctio s
41
Product‐to‐Su
For ulas
Projectio of O e Vector o to A other
Properties of Vectors
9
Pythagorea Ide tities
Quadra tal A gle
7, 9
4,
Radia s
Recta gular to Polar Coordi ate Co versio
Version 2.1
Page 108 of 109
April 10, 2017
Trigonometry Handbook
Index
Page
Subject
Refere ce A gle
71, 74
11
Rose
Seca t Fu ctio
Si ple Har o ic Motio
11
9
Si e Fu ctio
Si e‐Cosi e Relatio ship
11
SOH‐CAH‐TOA
7
Spirals
Sta dard Positio
41
Su ‐to‐Product For ulas
11
Ta ge t Fu ctio
Ter i al Side of a A gle
1
Trigo o etric Fu ctio Values i Quadra ts II, III, a d IV
11
Trigo o etric Fu ctio s of Special A gles
9
Triple Products
1
U it Circle
79
U it Vectors ‐ i a d j
79
79
1
9
Vectors
Co po e ts
Co versio et ee Recta gular a d Polar For s
Cross Product
Dot Product
Orthogo al Co po e ts of a Vector
Projectio
Properties
Special U it Vectors ‐ i a d j
Triple Products
9
Verte of a A gle
1
Vertical Shift
Work
Version 2.1
Page 109 of 109
April 10, 2017