Academia.eduAcademia.edu

Atracurium and succinylcholine on the masseter muscle

1990, Canadian Journal of Anaesthesia

AI-generated Abstract

Three studies in this issue attempt to correlate neuromuscular monitoring by observing the adductor pollicis with the functionality of the masseter, a critical muscle for jaw closure. The findings indicate variability in the response of the masseter to atracurium compared to adductor pollicis, with implications for anesthesia practices, particularly in children. Results show a lack of significant difference in rest tone after succinylcholine administration in children at risk of masseter spasm, suggesting that further exploration into the qualitative nature of masseter spasm is necessary for effective neuromuscular blockade monitoring.

Editorial Atracurium and succinylcholine on the masseter muscle Barbara W. Brandom MD Three papers in this issue 1-3 make an admirable attempt to correlate a common neuromuscular monitoring practice, observation of the force of contraction of the adductor pollicis, with muscle function at a site of particular clinical interest, the masseter. The masseter is the most powerful muscle influencing jaw closure and perhaps the most easily monitored muscle innervated by the fifth cranial nerve. Knowledge of its sensitivity to neuromuscular blocking drugs would have important implications for airway management during onset and recovery from paralysis, and for intraoperative monitoring of cranial nerve function. Careful documentation of the response of the masseter to succinylcholine might contribute to a better understanding of masseter spasm and its anaesthetic implications. Function of the masseter can be evoked by electrical stimulation in front of the ear just below the zygoma. Function of the orbicularis oculi can be evoked by stimulation at a slightly more cephalad site, just above the zygoma. Previous studies of the orbicularis oculi suggest that this muscle is relatively resistant to the effects of atracurium compared with the adductor pollicis. 4 In contrast, Saddler e t al. ~ documented that the masseter was as sensitive as the adductor pollicis to the effects of atracurium. Therefore one might hope to estimate reasonably well the degree of neuromuscular blockade in the masseter by observation of the function of the adductor pollicis. However, these authors point out that the relative potency of atracurium at these two sites varied. The ED95 at the masseter was as little as 64 per cent and as much as 141 per cent of the ED95 at the adductor pollicis. In six of the ten patients the difference in potency between the two sites was greater than 20 per cent. These data differ from the results of a very similar study in adults, 5 which found Associate Professor of Anesthesiology, Department of Anesthesiology, Children's Hospital of Pittsburgh, and the University of Pittsburgh School o,f Medicine, Pittsburgh, PA 15213-2583 CAN J ANAESTH 1990 / 37:1 /ppT-11 only two of ten patients in whom the thumb was more paralyzed than the jaw muscles following administration of pancuronium. The data suggest that the method of monitoring the function of the masseter used in these studies is more difficult to apply in children than in adults, and that measures of neuromuscular function of the masseter are more variable than measures of adductor pollicis function in children. Nevertheless, onset of neuromuscular paralysis was uniformly more rapid in the masseter than in the adductor pollicis of these children. ,-3 This is further evidence to suggest that the response of the adductor poilicis can be used clinically to predict the response of the masseter following a bolus of nondepolarizing neuromuscular blocking drug. This conclusion is consistent with many observations of intubation conditions during halothane anaesthesia and atracurium-induced paralysis which found adequate visualization of the larynx when the neuromuscular function of the adductor pollicis was depressed by at least 80-90 per cent. Given that the response of the masseter to the effects of a nondepolarizing neuromuscular blocking drug varied little from the response of the standard monitoring site, the adductor pollicis, the report of Plumley e t a l . 2 is particularly interesting. They found that the doseresponse relationship of succinylcholine differed by 30 per cent at these two sites, with the masseter more sensitive than the adductor pollicis. There are several differences in methods between the dose-response studies of atracurium and of succinylcholine which should have increased the likelihood that the investigators would observe a difference in the response to atracurium, and decreased the likelihood of observing a difference in response to succinylcholine. Therefore, there can be no question about the conclusion: if the adductor pollicis is paralyzed after administration of an intubating dose of succinylcholine (1 to 2 mg. kg -~ , or 2.3 to 4.5 times the ED95 at the adductor pollicis) so is the masseter. This is an important documentation and qualification. Individuals with elevated pseudocholinesterase activity 6 might be resistant to the effects of succinylcholine. In any case, 8 lack of neuromuscular function is not necessarily equivalent to flaccidity after administration of succinylcholine. The most interesting finding of these studies 2'3 was that resting tension in the masseter increased in a dose-related manner as succinylcholine blocked neuromuscular function. A similar but less pronounced increase in resting tension was observed in the adductor pollicis. These observations have been foreshadowed by other studies. 7 Using a different method, that did not include neural stimulation, Van Der Spek et al. observed a significant increase in stiffness of the muscles influencing mouth opening after administration of succinylcholine.8- ~o Increased resting tension or stiffness of the muscles moving the mandible can make laryngoscopy difficult. Plumley et al. 2 reported that the time (average plus or minus one standard deviation) from injection of succinylcholine to maximum increase in resting tension of the masseter was 15 to 70 seconds, while the duration of the effect was 10 to 120 seconds. In many patients, therefore, the effect of succinylcholine on resting tension, as measured in this study, could diminish before laryngoscopy is attempted. In other patients, the effect could be maximal during attempted laryngoscopy. The magnitude of this effect was directly dose-related. After administration of 1 mg.kg -~ of succinylcholine the increase in resting tension in the jaw muscles was up to 90 g (one standard deviation above the mean). If the jaw opened as a perfect spring, this increase would appear to be too small to impede laryngoscopy. However, "considerable individual variability" in the effect of succinylcholine on resting tension of the masseter was noted. 2 Van Der Spek et al. s reported a 44-fold range of increases in jaw stiffness after administration of succinylcholine. In several patients this increase in resistance to mouth opening was great enough to impede laryngoscopy. 8'9 The methods used by these investigators 2"3 did not assess ease of mouth opening. Therefore, it is not known if the greatest increase in resting tension they noted could have been detected by the anaesthetist opening the mouth. Those anaesthetists who have been unable to open the mouth of a patient after administration of succinylcholine might claim that these studies 2'3 are measuring background noise rather than something related to masseter spasm. Perhaps masseter spasm, defined as inability to open the jaw caused by increased tension in the masseter after administration of succinylcholine, is an extreme case of the apparently normal dose-related increase in resting tension observed in these studies. More complete evaluation of the force required to open the mouth is necessary to clarify this issue. If the occurrence of masseter spasm were due to an excessive increase in resting tension, then it would be C A N A D IA N J O U R N A L OF A N A E S T H E S I A reasonable to expect that patients at increased risk of masseter spasm might exhibit a greater increase in resting tension after administration of succinylcholine than other patients. Saddler et al. 3 studied eight children with strabismus, a condition said to be associated with increased risk of masseter spasm, and found no difference in their increase in resting tension after succinylcholine compared with that in other children. It would appear that either these children are not more susceptible to masseter spasm, or the factors predisposing to masseter spasm are not reflected by these measurements of resting tension. In an earlier retrospective study claiming an increased incidence of masseter spasm in children with strabismus, I~ the number of cases identified was small and the incidence of masseter spasm only 2.8 per cent or ! in 35. If the power of these measures of change in resting tension 2'3 is similar to that of the retrospective identification of masseter spasm, l~ then to identify an event related to masseter spasm in a population of eight, its incidence would have to be greater than 20 per cent. These investigators were not lucky enough to observe a rare event in the small population of eight children. Perhaps masseter spasm is not only quantitatively different from the changes in resting tension measured here, 8'9 but also qualitatively different. If so, the identifying features of masseter spasm have yet to be described in sufficient detail to allow differentiation of masseter spasm from an extreme instance of the normal increase in resting tension of the masseter following administration of succinylcholine. In summary, these three studies ~-3 quantify aspects of the neuromuscular function of the masseter that are relevant to the effective use of neuromuscular blocking drugs in the practice of anaesthesia. The dilemma of relatively high incidence of masseter spasm,lt'~2 the 50 per cent incidence of muscle biopsy results suggesting susceptibility to malignant hyperthermia in patients with a history of masseter spasm, 13-j5 and the low incidence of malignant hyperthermia j6 cannot be resolved by these studies alone. Nevertheless, these three papers have made an important contribution to our understanding of the effects of neuromuscular blocking drugs in anaesthetized children by identifying a dose-related increase in resting tension of the masseter following administration of succinylcholine in normal children anaesthetized with halothane, and documenting the relative sensitivities of the adductor pollicis and the masseter to both succinylcholine and a nondepolarizing neuromuscular blocker. EDITORIAL Atracurium, et succinylcholine et le muscle mass6ter Dans le present numEro, trois Etudes ~-3 tentent admirablement de corrEler la force de contraction de I'adducteur du pouce, frEquemment employee pour surveiller la fonction neuromusculaire, avec la fonction musculaire un site cliniquement intEressant, le massEter. Le massEter est le muscle le plus puissant de la mfichoire et peut-Etre le plus facile ~t surveiller des muscles innervEs par le cinqui~me neff cr~nien. Connaitre sa sensibilit6 aux bloqueurs neuromusculaires aura des implications importantes sur le management des voies aEriennes pendant l'installation et la rEcup6ration de la paralysie ainsi que pour la surveillance peropEratoire de la fonction des nerfs cr~niens. Une documentation soignEe de la rEponse du massEter :~ la succinylcholine peut contribuer ~ une meilleure comprehension du spasme du massEter et ses implications anesthEsiques. La fonction du massEter peut 6tre EvoquEe par une stimulation Electrique en avant de l'oreille juste en bas de l'os malaire. La fonction de l'orbiculaire peut 6tre EvoquEe par une stimulation IEg~rement plus cEphalade ~t ce site juste en haut de l'os malaire. Des Etudes antErieures sur l'orbiculaire sugg~rent que ce muscle est relativement resistant aux effets de l'atracurium comparativement l'adducteur du pouce. 4 Par contre, Saddler et al. ~ ont prouvE que le massEter Etait aussi sensible que l'adducteur du pouce ~t l'atracurium. Ainsi on peut espErer estimer raisonnablement le degrE du bloc neuromusculaire du massEter par l'observation de la fonction de l'adducteur du pouce. Cependant ces auteurs rappellent que la puissance relative de l'atracurium ~ ces deux sites varie. La ED95 du massEter Etait aussi peu que 64 pour cent et aussi grande que 141 pour cent de celle de l'adducteur du pouce. Chez six sur dix patients la difference de puissance entre les deux sites Etait plus grande que 20 pour cent. Ces donnEes different des rEsultats d'une Etude similaire faite chez des adultes 5 qui trouve que seulement deux sur dix patients chez qui le pouce 6tait plus paralys6 que la m~choire apr~s administraiton de pancuronium. Les donnEes sugg~rent que la mEthode de surveillance de la fonction du massEter Etait plus difficilement applicable chez les enfants comparativement aux adultes et que la mesure de la fonction neuromusculaire du massEter est plus variable que la 9 mesure de la fonction de l'adducteur du pouce chez les enfants. Cependant, l'installation de la paralysie neuromusculaire Etait plus rapide au niveau du massEter que l'adducteur du pouce chez les enfants.l-3 Ceci reprEsente une Evidence de plus que la rEponse de l'adducteur du pouce peut 6tre utilisEe cliniquement pour prEdire la rEponse du massEter apr~s un bolus de bloqueur neuromusculaire non-dEpolarisant. Cette conclusion est en accord avec plusieurs observations des conditions d'intubation lors de l'anesthEsie ~ l'halothane et une paralysie induite par l'atracurium. Une visualisation adequate du larynx est alors observEe quand la fonction neuromusculaire de l'adducteur du pouce Etait diminuEe ~ 80-90 pour cent. Etant donne que la rEponse du massEter au bloc neuromusculaire non-dEpolarisant varie peu de celle de l'adducteur du pouce, l'Etude de Plumley et al. 2 est particuli~rement intEressante. Ils ont trouvE que la relation dose-rEponse de la succinylcholine diff~re de 30 pour cent aux deux sites, le massEter Etant plus sensible que l'adducteur du pouce. Plusieurs differences mEthodologiques entre les Etudes de dose-rEponse de l'atracurium et de la succinylcholine peuvent augmenter la probabilitE pour que les investigateurs trouvent une difference dans la rEponse ~t l'atracurium et diminuent les probabilitEs d'observer une difference celle a la succinylcholine. Ainsi, il n'y aucun doute sur la conclusion : si l'adducteur du pouce est paralysE apr~s des doses d'intubation de succinylcholine (1-2 mg. kg -t , ou 2.3 ~ 4.5 fois la ED95 de l'adducteur du pouce) il en sera de m~me pour le massEter. Ceci reprEsente une preuve irnportante. Les personnes ayant une activitE accrue de la pseudocholinestErase 6 peuvent ~tre rEsistantes aux effets de la succinylcholine. Dans tous les cas l'abolition de la fonction neuromusculaire n'est pas nEcessairement Equivalente :~ la flacciditE apr~s succinylcholine. La trouvaille la plus intEressante de ces Etudes 2'3 est que la tension de repos du massEter augmente d'une fa~on dEpendante de la dose quand la succinylcholine est utilisEe. Une augmentation similaire mais moins prononcEe Etait observEe pour I'adducteur du pouce. Ces observations ont EtE mises ~tl'ombre par d'autres Etudes. 7 Utilisant une mEthode diffErente qui n'induit pas une stimulation nerveuse, Van Der Spek et al. ont observe une augmentation significative des muscles influencant l'ouverture de la bouche apr~s administration de succinylcholine. 8- ~o L'augmentation de la tension de repos ou de la rigidit4 des muscles de la m~choire peut rendre la laryngoscopie difficile. Plumley et al. 2 ont rapportE que le temps (moyenne --+ 1) ~ partir de l'injection de la succinylcholine au maximum d'augmentation de la tension de repos du 10 massrter 6tait de 15-70 secondes, alors que la durre des effets 6tait de 10-120 secondes. Ainsi chez plusieurs patients, les effets de la succinylcholine sur la tension de repos, telle que mesurre dans cette 6tude, peut diminuer avant que la laryngoscopie soit tentre. Chez d'autres patients, l'effet peut 6tre maximal durant la laryngoscopie. La magnitude de cet effet 6tait directement relire ~ la dose. Apr~s administration de I p,g. kg -t de succinylcholine l'augmentation de la tension de repos des muscles de la mhchoire 6tait de 90 gr (1 SD de plus que la moyenne). Si la mfichoire s'ouvrait en ressort, cette augmentation apparaitrait non-significative pour emprcher la laryngoscopie. Cependant, la variabilit6 individuelle consid6rable dans l'effet de la succinylcholine sur la tension de repos du mass~ter ~tait notre. 2 Van Der Spek et al. 8 ont rapport6 une augmentation de 44 pour cent dans la rigidit6 de la m~choire apr~s administration de succinylcholine. Chez plusieurs patients cette augmentation de la rrsistance h l'ouverture de la bouche 6tait assez grande pour emp~cher la laryngoscopie. 8'9 Les m~thodes utilisres par les investigateurs 2'3 n'ont pas 6valu6 la facilit6 de l'ouverture de la bouche. Ainsi, on ne saura pas si le maximum d'augmentation de la tension de repos 6tait drtect6 par l'anesth6siste lors de l'ouverture de la bouche. Les anesthrsistes qui 6taient incapables d'ouvrir la bouche des patients apr~s succinylcholine peuvent dire que ces 6tudes 2'3 mesurent le ~ bruit de fond >>plutrt que quelque chose relire au spasme du massrter. Peut-~tre que le spasme du massrter tel que drfini par l'incapacit6 d'ouvrir la bouche ~t cause d'une augmentation de la tension dans le massrter apr~s administration de succinylcholine est un cas extrrme de l'augmentation normale de la tension observre dans ces 6tudes. Une 6valuation plus complete de la force requise pour ouvrir la bouche est nrcessaire afin de clarifier cette question. Si la survenue du spasme du massrter 6tait due h une augmentation excessive de la tension de repos, il serait raisonnable de s'attendre ~ ce que les patients prrsentant un risque accru de spasme du massrter puisse drmontrer une augmentation de la tension de repos apr~s administration de succinylcholine comparativement h d'autres patients. Saddler et al. 3 ont 6tudi6 huit enfants atteints de strabisme, une condition associre ~ un risque accru de spasme du massrter. Ils n'ont pas trouv6 de diffrrence dans l'augmentation de la tension de repos apr~s succinylcholine comparativement ~ d'autres enfants. I1 s'ensuit que : soit ces enfants ne sont pas plus susceptibles de drmontrer un spasme du massrter, soit que les facteurs prrdisposants au spasme du massrter ne sont pas rrflrtrs par ces mesures de la tension de repos. Dans une 6tude r~trospective rrcente drclarant une incidence accrue de spasme du massrter chez les enfants atteints de strabisme, ~ le nombre de cas identifirs 6tait petit et l'inci- C A N A D IA N J O U R N A L OF A N A E S T H E S I A dence de spasme du massrter 6tait de 2.8 pour cent seulement soit 1 sur 35. Si la puissance de ces mesures des variations de la tension de repos 2'3 est similaire ~ celle de l'identification rrtrospective du spasme du massrter ~ il faudrait pour identifier un 6vrnement reli6 au spasme du massrter dans une population de huit, une incidence suprrieure h 20 pour cent. Ces investigateurs n'rtaient pas assez chanceux pour observer un 6vrnement rare dans une petite population de huit enfants. Peut-~tre que le spasme du massrter n'est pas uniquement quantitativement diffrrent des variations de la tension de repos mesurre ici, 8'9 mais aussi qualitativement diffrrent. S'il en est de m~me, les crit~res identifiants du spasme du massrter demeurent h ~tre drcrits avec suffisamment de drtails pour permettre la diffrrentiation du spasme du massrter avec une augmentation normale de la tension de repos apr~s succinylcholine. En rrsum6, ces trois 6tudes ~-3 quantifient les aspects de la fonction neuromusculaire du massrter qui sont pertinents ~ l'usage efficace des bloqueurs neuromusculaires en anesthrsie. Le dilemme de l'incidence relativement 61ev6 du spasme du massrter ~t'12 l'incidence de 50 pour cent des biopsies musculaires drmontrant une susceptibilit6 ~t l'hyperthermie maligne, chez les patients ayant une histoire de spasme du massrter, ~3-15 et l'incidence basse de l'hyperthermie maligne 16 ne peut 6tre rrsolue par ces seules 6tudes. Nranmoins, ces trois 6tudes ont contribu6 6normrment ~ notre comprrhension des effets des bloqueurs neuromusculaires chez les enfants par l'identification d'une augmentation drpendant de la dose dans la tension de repos du massrter et par la drcouverte des sensibilitrs relatives de l'adducteur du pouce et du massrter ~t la succinylcholine et aux bloqueurs neuromusculaires non-d6polarisants. References 1 Saddler JM, Bevan JC, Plumley MH, Donati F, Bevan DR. The potency of atracurium on masseter and adductor pollicis muscles in children. Can J Anaesth 1989; 37: 26-30. 2 Plumley MH, Bevan JC, Saddler JM, Donati F, Bevan DR. Dose-related effects of succinylcholine on the ad- ductor pollicis and masseter muscles in children. Can J Anaesth 1989; 37: 15-20. 3 Saddler JM, Bevan JC, Plumley MH, Polomeno RC, Donati F, Bevan DR. Jaw tension after succinylcholine in children undergoing strabismus surgery. Can J Anaesth 1989; 37: 21-25. 4 Caffrey RR, Warren ML, Becker KE. Neuromuscular blockade monitoring comparing the orbicularis oculi and adductor pollicis muscles. Anesthesiology 1986; 65: 95-7. EDITORIAL 5 Smith CE, Donati F, Bevan DR. Differential effects of pancuronium on masseter and adductor pollicis muscles in humans. Anesthesiology 1989; 71: 57-61. 6 Whittaker M. Cholinesterase. In: Monographs in Human Genetics, Vol. 11, New York: Karger, 1986. 7 DeCook TH, Goudsouzian NG. Tachyphylaxis and phase II block development during infusion of succinylcholine in children. Anesth Analg 1980; 59: 639-43. 8 Van Der Spek AFL, Fang WB, Ashton-Miller JA, Stohler CS, Carlson DS, Schork MA. The effects of succinylcholine on mouth opening. Anesthesiology 1987; 67: 459-65. 9 Van Der Spek AFL, Fang WB, Ashton-Miller JA, Stohler CS, Carlson DS, Schork MA. Increased masticatory muscle stiffness during limb muscle flaccidity associated with succinylcholine administration. Anesthesiology 1988; 69:11-6. 10 Van Der Spek AFL, Reynolds PI, Ashton-MiUer JA, Stohler CS, Schork MA. Differing effect of agonist and antagonist muscle relaxants on cat jaw muscles. Anesth Analg 1989; 69: 76-80. 11 Carroll JB. Increased incidence of masseter spasm in children with strabismus anesthetized with halothane and succinylcholine. Anesthesiology 1987; 67: 559-61. 12 Schwartz L, Rockoff MA, Koka BV. Masseter spasm with succinylcholine. Anesthesiology 1984; 61: 772-5. 13 Ellis FR, Halsall PJ. Suxamethonium spasm. A differential diagnostic conundrum. Br J Anaesth 1984; 56:381-3. 14 Rosenberg H, Fletcher JE. Masseter muscle rigidity and malignant hyperthermia susceptibility. Anesth Analg 1986; 65: 161-4. 15 Ording H, Rankley E, Fletcher R. Investigation of malignant hyperthermia in Denmark and Sweden. Br J Anaesth 1984; 56:1183-90. 16 Ording H. Incidence of malignant hyperthermia in Denmark. Anesth Analg 1985; 64: 700-5. View publication stats 11