Crystalline complexes of 18-crown-6 with methyl sulfonates
ROBERT
CHENEVERT' , RENEGAGNON,
AND DANIEL
CHAMBERLAND
Depurternent de chimie, Fuculti des sciences et de genie, Universite Luval, Quebec, PQ GIK 7P4, Canada
AND
MICHELSIMARD
Departement de chimie, UniversitP de Montreal, C.P. 6128, Succ. A . Montreal, PQ H3C 3J7, Canada
Can. J. Chem. Downloaded from www.nrcresearchpress.com by 182.30.3.84 on 06/06/13
For personal use only.
Received August 24, 1992'
ROBERT
CRENEVERT,
RENEGAGNON,
DANIEL
CHAMBERLAND,
and MICHEL
SIMARD.
Can. J . Chem. 71, 1225 (1993).
The macrocyclic polyether 18-crown-6 forms crystalline complexes with methyl sulfonates. Most complexes have a
2: 1 (su1fonate:crown) stoichiometry whereas small aliphatic sulfonates give a 1 : 1 ratio. In the 2: 1 ratio complexes, the
guest molecules are coordinated above and below the crown in such a way that the dipoles are compensated. In the 1 : 1
ratio complexes, there is a polymeric type association with the two ends of the sulfonate interacting with different crown
molecules. A crystal structure is reported for each type of complex. The complex 18-crown-6. CH3S03CH3(7) crystallizes in the monoclinic system, space group P 2 , / c with Z = 4. The unit cell dimensions are as follows: a = 8.525(4),
b = 16.401(7), c = 15.071(6) A, P = 113.92(3)". Final R,,, = 0.064 for 3650 reflections. The complex 18-crown
6 . (C6H5S03Me)2( I ) crystallizes in the monoclinic systemo,space group P2,/c with Z = 2. The unit cell dimensions are
as follows: a = 8.101(3), b = 17.136(5), c = 12.990(5) A, P = 121.30(3)". Final R,, = 0.048 for 2913 reflections.
SIMARD.
Can. J. Chem. 71, 1225 (1993).
ROBERT
CHENEVERT,
RENEGAGNON,
DANIEL
CHAMBERLAND
et MICHEL
Le polyether macrocyclique 18-couronne-6 forme des complexes cristallins avec des sulfonates de mkthyle. La plupart des complexes ont un rapport sulfonate/couronne de 2 : 1 alors que deux sulfonates de petite taille conduisent B des
rapports 1 : 1. Dans les complexes de rapport 2 : 1, les sulfonates sont situks de part et d'autre de la couronne de f a ~ o n
B compenser les dip6les. Dans les autres complexes, il y a une association de type polymkrique oii les deux extrkmitks
du sulfonate interagissent avec des couronnes diffkrentes. Une structure cristalline est rapport6e pour chaque type de
complexes. Le complexe 18-couronne-6. CH3S03CH3{7) cristallise dans le systkme monoclinique, groupe d'espace P2,/
c avec a = 8,525(4), b = 16,401(7), c = 15,071(6) A, P = 113,92(3)" et Z = 4. La valeur finale de R,, = 0.064 avec
3650 reflexions. Le complexe 18-couronne-6. (C6H,S03Me)2(l)ocristallisedans le systkme monoclinique, groupe d'espace P2,/c avec a = 8,101(3), b = 17,136(5), c = 12,990(5) A, P = 121,30(3)" et Z = 2. La valeur finale de R, =
0.048 avec 2913 rkflexions.
Introduction
The ability of synthetic receptor molecules such as crown
ethers to complex inorganic or organic cations has been the
subject of numerous reports during the last two decades (1).
The study of well-defined complexes formed between crown
compounds and neutral molecules represents a much less
explored area. The latter complexes are widely recognized
as model systems for molecular recognition of neutral polar
molecules, which play an important role in biological systems. Small neutral molecules can form adducts with crown
ethers if they present one or both of the following structural
features: a relatively large dipole moment and X-H bonds
(X = 0 , N, C) able to form hydrogen bonds with oxygens
of the crown ligand in a complementary spatial arrangement (2-5). Several complexes of this kind have a 1 :2 stoichiometric ratio of host/guest and the guest molecules are
coordinated above and below the crown in such a way that
the dipoles are compensated. All complexes are far reported contain either polar 0-H bonds (2, 6) (water, alcohols, gem-diols, diacids), polar N-H bonds (urea and
analogues (7, 8), amides (9)), or polar C-H bonds (nitriles
(10, 1l), nitro compounds (10-12), dimethyl sulfone (13),
dimethyl sulfate (14), dimethyl diesters (15, 16)).
Another type of neutral component complex has been obtained with weakly acidic compounds such as phenols, carboxylic acids, and weak inorganic acids (17-20). The guest
' ~ u t h o rto whom correspondence may be addressed.
'Revision received May 10, 1993.
usually contains only one hydrogen suitable for hydrogen
bonding and one water molecule per guest serves as a linkage between the acid and the crown (2-4).
Although a number of crystallographic, thermodynamic,
and molecular mechanics studies have been performed, the
nature of the interactions between the partners in such complexes is only partly understood (21-29). We report here the
formation of well-defined complexes between 18-crown-6
and several methyl sulfonates.
TABLE1. Crystal data for complexes 1 and 7
Parameter
Formula
FW
F(000)
Crystal system
Space group
a, 4
b, A
c, A
P>deg
v, A3
Complex 1
C26H400 12S2
608.72
648
Monoclinic
P21/c
8.101 (3)
17.136 (5)
12.990 (5)
121.30 (3)
1540.8 (9)
1.312
2
2.02
1.54178
Complex 7
C14H3009S
374.46
808
Monoclinic
p2,/c
8.525 (4)
16.401 (7)
15.071 (6)
113.92 (3)
1926.2 (15)
1.291
4
1.82
1.54178
CAN. J. CHEM. VOL. 71, 1993
TABLE2. Data collection and refinement
Complex 1
Parameter
Radiation
Scan
Scan width, deg
Octant measured
Number of measured reflections
Acceptance level I/u(l)
Number of unique reflections
Can. J. Chem. Downloaded from www.nrcresearchpress.com by 182.30.3.84 on 06/06/13
For personal use only.
Rf
R,"
G.O.F.
w-'
Residual fluctuations in electron density map, e P\-"
Maximum shift/u ratio
Complex 7
CuKcl
CuKcl
W
0
(0.80 + 0.14 tan 0)
- 9 5 h 5 8
O 5 k 5 2 0
0 5 1 5 15
5923
3.0
2913
0.041
0.048
2.00
u2(F0) + 0.000 1(F,)'
-0.51, 0.27
0.29
(0.80 + 0.14 tan 0)
-10 5 h 5 9
O s k 5 1 9
0 5 1 5 1 8
7309
3 .O
3650
0.051
0.064
2.89
u'(F,) + 0.000 1(F,)'
-0.57, 0.51
0.49
TABLE3. Final atomic coordinates with their esd's (X lo4; S , X
10') and equivalent isotropic temperature factors ( X 10') for the
C26H40012SZ
compound 1
Atom
x
Y
z
uc,
"Labels A and B stand for major (occ.: 0.70) and minor (occ.: 0.30)
disorder model.
Experimental
The NMR spectra were taken on a Varian XL-200 multinuclear
spectrometer. The infrared spectra, obtained from a KBr pressed
disc, were run on a Beckman 4250 or an FT-IR Bomem MB 102
spectrometer. The microanalyses were performed on a Carlo Erba
Strumentazione- 1 10.6 elemental analysis instrument.
Preparation of the complexes (general procedure)
The methyl sulfonate (2 mmol) is dissolved in dry tetrahydrofuran (10 mL) and this solution is added to a solution of 18crown-6 (2 mmol) in dry tetrahydrofuran (10 mL). The complex
crystallizes upon addition of diethyl ether an cooling. The colorless solid complex is filtered and dried under vacuum. The complex is recrystallized in the appropriate solvent and dried under
vacuum until constant melting point is obtained. Physical data
pertaining to the individual complexes are given below.
(C6H5S03CH3)2.18-crown-6. 1
Yield: 76%; mp 69-70°C (from ether). IR(KBr): 3050, 2870,
1465, 1440, 1345, 1215, 1180, 1030, 1010, 955, 825 cm-'. 'H
NMR (CDCI,) 6: 3.62 (24H, s, crown), 3.69 (6H, s , OCH,), 7.55
Can. J. Chem. Downloaded from www.nrcresearchpress.com by 182.30.3.84 on 06/06/13
For personal use only.
FIG. 2. ORTEP view of the association of the 2: 1 complex for
the CI3H,,O6S compound (1). Pseudo hydrogen bonds represented
by thin bonds.
850 cm-'. 'H NMR (CDCI,) 6: 3.67 (24H, s, crown), 3.84 (6H,
s, OCH,), 8.11 (4H, d, J = 9 Hz), 8.41 (4H, d, J = 9 Hz). I3c
NMR (CDCI,) 6: 57.0 (OCH,), 70.3 (crown), 123.3, 124.4, 129.3,
C 44.69, H 5.48; found:
14 1.0. Anal. calcd. for C26H38016NZS2:
C 45.02, H 5.38.
FIG. 1. ORTEP view of the two molecules in complex 1 with
the numbering scheme adopted. Ellipsoids drawn at 50% probability level. Hydrogen represented by spheres of arbitrary size.
(6H, m), 7.85 (4H, m). "C NMR (CDCl,) 6: 56.2 (OCH3),70.4
(crown), 127.8, 129.1, 133.7, 134.9. Anal. calcd. for C26H,u01,S2:
C 51.30, H 6.62; found: C 51.61, H 6.50.
(p-CH,C6H,S03CH3)2.18-crown-6, 2
Yield: 80%; mp 63-65°C (from ether). IR(KBr): 2900, 1600,
1475, 1460, 1350, 1225, 1190, 1105, 1045, 1030, 1010, 960, 835,
810 cm-'. 'H NMR (CDCl,) 6: 2.38 (6H, s), 3.62 (24H, s, crown),
3.67 (6H, s, OCH,), 7.30 (4H, d, J = 8 Hz), 7.72 (4H, d , J =
8 Hz). "C NMR (CDCl,) 6: 21.5, 55.1 (OCH,), 70.5 (crown),
127.8, 129.6, 132.1, 144.8. Anal. calcd. ~ O ~ C , ~ H ~ OC52.81,
,,S~:
H 6.96; found: C 52.47, H 7.14.
(p-BrC6H,S03CH3), .18-crown-6, 3
Yield: 74%; mp 54-56°C (from ether). IR(KBr). 2900, 1580,
1475, 1355, 1240, 1195, 1105, 1030, 1005, 960, 835, 820 cm-I.
'H NMR (CDCI,) 6: 3.65 (24H, s, crown), 3.75 (6H, s, OCH,),
7.68 (4H, d, J = 8 Hz), 7.75 (4H, d, J = 8 Hz). "C NMR (CDCl,)
6: 56.5 (OCH,), 70.5 (crown), 128.9, 129.3, 132.4, 134.1. Anal.
calcd. for C,6H38012SzBr,:C 40.74, H 5.00; found: C 41.09, H
4.88.
(p-N02C6H,S03CH3)Z.
18-c~owrz-6,4
Yield: 71%; mp 87-88 5°C (from THF-hexane). IR(KBr) : 3 100,
2970, 1610, 1530, 1365 1350, 1190, 1105, 1095, 970, 860,
(m-N02C6H,S0,CHI)2.18-crown-6, 5
Yield: 84%; mp 68-70°C (from ether). IR(KBr): 3075, 2880,
1520, 1465, 1345, 1235, 1200, 1085, 1025, 955, 870, 835 cm-I.
'H NMR (CDCI,) 6: 3.65 (24H, s, crown), 3.83 (6H, s, OCH,),
7.80 (2H, t, J = 8 Hz), 8.22 (2H, ddd, J I = 8 Hz, J, = 2 HZ,
J3= 1 Hz), 8.50 (2H, ddd, JI = 8 Hz, J, = 2 Hz, J3= 1 HZ), 8.72
(2H, t, J = 2 Hz). I3C NMR (CDC1,) 6: 57.0 (OCH,), 70.6 (crown),
123.2, 128.3, 130,8, 133.4, 137.4, 148.3. Anal. calcd. for
C ~ ~ H ~ XC N
44.69,
~ ~ H~5.48;
~ S found:
~ : C 44.94, H 5.76.
fCH,(CH2)3S0.3CH.7]2.18-crown-6, 6
Yield: 75%; mp 38-39°C (from ether-hexane). IR (KBr): 2900,
1470, 1355, 1345, 1280, 1250, 1190, 1110, 1060, 965,
840 cn1-I. 'H NMR (CDC1,) 6: 0.92 (6H, t, J = 7 Hz), 1.45 (4H,
nl), 1.80 (4H, m), 3.06 (4H, m), 3.64 (24H, s, crown), 3.85 (6H,
s, OCH,). I3cNMR (CDCI,) 6: 13.4, 21.4, 25.3, 49.4, 55.0
(OCH,), 70.6 (crown). Anal. calcd. for C22H48012SZ:
C 46.46, H
8.51; found; C 46.91, H 8.27.
CH,S03CH3. 18-crowrl-6, 7
Yield: 71%; mp 88-89.5"C (from benzene). IR (KBr): 2900,
1475, 1355, 1345, 1280, 1250, 1195, 1 1 10, 1060, 965, 835 cm-'.
'H NMR (CDCI,) 6; 3.00 (3H, s), 3.67 (24H, s, crown), 3.90 (3H,
s, OCH,). I3cNMR (CDC1,) 6: 36.5, 55.4, (OCH,), 70.5 (crown).
Anal. calcd. for Cl,H3009Sl:C 44.91, H 8.07; found: C 45.22, H
7.69.
CHI-CH2-S03CH,. 18-crowrz-6, 8
Yield: 84%; mp 56-57°C (from ether). IR(KBr): 2900, 1475,
1355, 1345, 1280, 1250, 1190, 1 1 10, 1060, 965, 835 cm-I. 'H
NMR (CDCI), 6: 1.40 (3H, t, J = 7 Hz), 3.11 (2H, q , J = 7 HZ),
NMR (CDC1,)S 8.2,
3.65 (24H, s, crown), 3.87 (3H, s, OCH,).
'"
C A N . J . CHEM. VOL. 71. 1993
TABLE
4. Distances and angles for the C2bH-10012S2
compound 1
Can. J. Chem. Downloaded from www.nrcresearchpress.com by 182.30.3.84 on 06/06/13
For personal use only.
Bond
S-O( 1OA)
S-O( 1 1 A)
S-0( 12A)
S-C(I 1 )
0(10A)-C( 10)
C(11)-C(12)
C( 12)-C( 13)
C( 14)-C( 15)
O( 1 )-C(2)
C(2)-C(3)
0(4)-C(5)
C(6)-0(7)
C(8)-C(9)
Bonds
Distances (esd's),
A
1.562(2)
1.377(3)
1.474(3)
1.756(3)
1.450(4)
1.381(3)
1.387(5)
1.373(4)
1.4 13(3)
1.491(4)
1.416(4)
1.406(3)
1.485(4)
Angles (esd's). deg
Bond
Distances (esd's),
S-O( IOB)
S-0(1 IB)
S-0C 12B)
1.703(6)
1.485(8)
1.297(7)
O( I0B)-C( 10)
C( l 1 )-C( 16)
CC 13)-C(14)
C( 15)-C(16)
O( I )-C(9)"
C(3)-0(4)
C(5)-C(6)
0(7)-C(8)
I .340C7)
1.391(3)
1.379(4)
1.388(4)
1.416(3)
1.420(4)
I.507(5)
1.420(4)
Bonds
A
Angles (esd's), deg
TABLE5. Torsion angles for the crown molecule in complex 1
Bonds
Torsion angles
(esd's), deg
Bonds
Torsion angles
(esd's), deg
Can. J. Chem. Downloaded from www.nrcresearchpress.com by 182.30.3.84 on 06/06/13
For personal use only.
FIG.4. ORTEP view of the association (sulfonate model A, crown
model A) of the polymeric type I : I complex of the C,,H,,,O,S
cornpound (7). Pseudo hydrogen bonds represented by thin bonds.
Frc;. 3. OKTEP view of the two n~oleculesin cornplex 7 (models
A only) with the numbering scheme adopted. Ellipsoids drawn at
40% probability level. Hydrogens represented by spheres of arbitrary size.
Secondary extinction coefficients not refined. The scattering
curves for the non-hydrogen atoms were taken from Cromer and
Mann (33) and those for the H-atoms from Stewart, Davidson, and
Simpson (34). Anomalous dispersion contributions (df' and df")
were from Cromer and Liberman (35).
Results and discussion
The methyl sulfonates were prepared under phase-transC
44.3, 55.1 (OCH,), 70.6 (crown). Anal. calcd. for Cl.iH3209SI:
fer catalysed conditions according to a known procedure (36).
46.38, H 8.29; found: C 46.77, H 7.96.
Sulfonate - crown ether complexes were prepared in good
Crystallographic characterization of cotnple.res I ctnd 7
yield (71-86%) by mixing the methyl sulfonate and 18The intensity data were collected on a Nonius diffractometer
crown-6
in tetrahydrofuran. The complexes 1-8 (Scheme 1)
using the o/20 mode and graphite monochromatized CuKa radiaare stable solids with sharp melting points. In most cases, the
tion. The unit cell dimensions were computed from the angular
melting point of the complex is above those of the constitsettings of 24 well-centered reflections in the range 40 5 200 5 50"
uents. For instance, the melting point of complex 1 (69-70°C)
(I) or 45 5 20 5 55" (2). The final parameters and other crystal
is above those of the crown (40°C) or the sulfonate (liquid
data of interest are presented in Table 1 and data collection and refinement indicators are in Table 2. The structures were solved by
at room temperature). The stoichiometry of compounds 1direct methods using NRCVAX and difference Fourier synthesis using
8 was determined by elemental analysis (carbon, hydrogen)
SHELX-76.'
Disorder model introduced to account for high residual
and by integration of signals of the constituents in NMR. The
peaks in the sulfonate vicinity, with occupancies initially refined,
analyses are in agreement with those observed in the X-ray
then fixed in final refinement cycles. Full-matrix least-squares redetermination for compounds 1 and 7 . Both the frequencies
finement based on F's all non-hydrogen atoms anisotropic, hydroand spectral activity of the crown ether bands in the infrared
gen atoms isotropic. Hydrogen atoms found from a difference
spectra of the complexes are comparable to those found in
Fourier map and (or) calculate$, disorder H-atoms introduced at
various complexes in which the crown is known to have a
ideal positions (Dc-., = 0.95 A) with B,,,, refined.
regular D,, symmetry. CH, rocking bands at -960 cm-' and
C-C stretching at -835 cm-' are singlets in complexes 1he programs used here are N R C V A X , program system for
8. Distortion of the crown causes a splitting of these vibrastructure analysis (Gabe, LePage, Charland, and Lee (30)), SHELX76, program for structure analysis (Sheldrick (31)), and ORTEP, tional bands (3, 20). These observations suggest that the
stereodrawings (Johnson (32)).
shape of the crown in the complexes described here is es-
C A N . J . CHEM. VOL. 71, 1993
Can. J. Chem. Downloaded from www.nrcresearchpress.com by 182.30.3.84 on 06/06/13
For personal use only.
TABLE
6. Bond distances
(A) and
angles (deg) related to the pseudo hydrogen bonding in complex 1
Distances (esd's)
Bond
(A-H...B)
A-B
Bonds
Angles
(esd's), deg
A-H
H-B
Bonds
Angles (esd's)
A-H-B
Angles
(esd's), deg
"I - 1, 1 - y , - z .
"Hydrogen calculated at ideal position
sentially that of a regular crown of symmetry D,,, although
some distortion is probably present, especially in the 1 : 1 ratio
complexes.
The 'H and "C NMR signals of the crown protons and
carbons in complexes 1-8 are on average close to the shifts
of the free crown hydrogens and carbons in the same solvent (CDC1,). The average chemical shift of protons is
3.65 ppm compared to 3.67 ppm for the free crown and the
average position of carbons is 70.51 ppm compared to
70.76 ppm for the free crown.
To gain further insight in the structures, X-ray analyses
were undertaken. We report here the structures of 18-crown6 2 methyl benzenesulfonate (1) and 18-crown-6-methyl
methanesulfonate (7) .4
Crystal structure of 18-crown-6*2(methyl
benzenesulfonate) complex ( I )
The final atomic coordinates and the equivalent U values
of the anisotropic temperature factors are given in Table 3.
A stereoview showing the molecular conformations and the
atomic numberings of both constituents is shown in Fig. 1.
The centrosyrnmetrical 18-crown-6 ligand adopts apand
proximative D,, conformation with C-0-C-C
0-C-C-0
torsion angles near 180" (average value
178.6") and 70" (average value 70.5"), which is the ex'A satisfactory X-ray analysis of complex 2 (18-crown-6. methyl
p-toluenesulfonate) has also been obtained. This structure is very
similar to the structure of 1 and is not described here.
pected ganche confomiation of the ethyleneoxy units (Table
5). Tee C-0 and C-C bond distances average 1.41 and
and C-0-C
angles average
1.49 A while the 0-C-C
109. 1" and 1 12.6", respectively (Table 4). The values are
consistent with those reported for the majority of 18-crown6 complexes that exhibit the pseudo D,, conformation.
The sulfonate molecule is disordered over two conformations of unequal proportion (70:30). A view of the major
model association is shown in Fig. 2. The sulfonate molecules are coordinated above and below the crown in such a
way that the dipoles are compensated. The methyl group of
each sulfonate molecule yields three C-H---0 contacts to
alternate oxygen atoms of the crown.
The hydrogen bonding contacts and geometries can be
found in Table 6 . The C-H---0 bridge angles are 125",
138", and 143" with methyl C---0 distances of 3.262, 3.327,
and CH---0 distances of 2.64, 2.53, 2.42,
and 3.310
shorter than the sum of the van der Waals radii (2.7 A). The
most important geometrical characteristic of hydrogen bonds
is that the distance between the proton and the acceptor atom
is shorter than the sum of their van der Waals radii (37, 38).
The existence of only one H - - - 0 short contact indicates the
lower stability of the minor association (supplementary data).
Crystal structure of 18-crown-6-methyl mc~thatzesulfotzate
mnplex (7)
This complex contains more disorder than the previous
one; the crown has two occupancies (A and B) of almost
equal population (55 :45) and the sulfonate molecule is dis-
A
TABLE
7. Final atomic coordinates with their e.s.d's (S X lo5; 0 , C, X lo4) and
equivalent isotropic temperature factors ( X lo3) for the C,,H3,09S compound 7
Sulfonate
Can. J. Chem. Downloaded from www.nrcresearchpress.com by 182.30.3.84 on 06/06/13
For personal use only.
Atom
Y
x
Ucq
z
Occ.
Crown
Atom
x
Y
z
ucq
O(11A)"
O(14A)"
O(17A)"
O(20A)"
O(23A)"
O(26A)"
0 ( 1 lB)"
O(14B)"
O(17B)"
O(20B)"
O(23B)"
O(26B)"
C(12A)"
C(13A)"
C(15A)"
C(16A)"
C(18A)"
C(19A)"
C(2 1A)"
C(22A)"
C(24A)"
C(25A)"
C(27A)"
C(28A)"
C(12B)"
C(13B)"
C(15B)"
C(16B)"
C(18B)"
C(19B)"
C(21B)"
C(22B)"
C(24B)"
C(25B)"
C(27B)"
C(28B)"
"Labels A and B stand for major (occ.:0.55) and minor (occ.: 0.45) crown disorder.
equal population (55:45) and the sulfonate molecule is disordered over one major and two minor orientations. The
atomic numbering is given in the diagram in Fig. 3. The bond
distances and angles, calculated from the final atomic coordinates (Table 7), are given in Table 8. The crown ligand
has a pseudo D3dsymmetry in both conformation A and B
with C-0-C-C
and 0-C-C-0
torsion angles (Table
9) near 180" (average values 173. 1" (A) and 176. 1" (B)) and
70" (average values 71. 1" (A) and 72. 1" (B)). The C-0 and
C-C bond distances average 1.41 (A), 1.41 (B) and 1.51
C A N . 1. CHEM. V O L . 71, 1993
TABLE8. Distances and angles for the C,,H,,O,S
Can. J. Chem. Downloaded from www.nrcresearchpress.com by 182.30.3.84 on 06/06/13
For personal use only.
Bond
Distances (esd's),
A
Bond
compound 7
Distances (esd's),
S-O(1A)
S-O(1 B)
S-O( 1C)
1.642(6)
1.567(10)
1.583(11)
S-O(2A)
S-O(2B)
S-O(2C)
1.288(19)
1.532(19)
1.466( 18)
S-O(3A)
S-O(3B)
S-O(3C)
I .46 1 (20)
1.630(9)
1.243(16)
O(1A)-C(1)
O(1 B)-C(1)
O( 1C)-C( I )
1.42 l(6)
1.46 1 (9)
1.388(10)
S-C(2)
1.725(3)
O( 1 1 A)-C( 12A)
C( 12A)-C( 13A)
C( 13A)-0( 14A)
O(14A)-C( 15A)
C( 15A)-C(16A)
C( 16A)-0( 17A)
0 ( 17A)-C( 18A)
C( 18A)-C( 19A)
C( 19A)-O(20A)
O(20A)-C(2 1 A)
C(2 1 A)-C(22A)
C(22A)-O(23A)
O(23A)-C(24A)
C(24A)-C(25A)
C(25A)-O(26A)
O(26A)-C(27A)
C(27A)-C(28A)
C(28A)-0( 1 1 A)
1.401(8)
1.488(10)
1.424(8)
1.416(8)
1.495(11)
1.418(10)
1.4 12(9)
1.491(1 1)
1.424(9)
1.414(10)
1.491(11)
1.424(8)
1.41 l(8)
1.530(1 1)
1.402(11)
1.347(11 )
1.466(11 )
1.43 l(8)
O( 11 B)-C( 12B)
C(12B)-C(13B)
C(13B)-0( 14B)
O(14B)-C(15B)
C(15B)-C(16B)
C( 16B)-O(17B)
0 ( 17B)-C(18B)
C( 18B)-C(19B)
C( 19B)-O(20B)
O(20B)-C(2 1 B)
C(2 1 B)-C(22B)
C(22B)-O(23B)
O(23B)-C(24B)
C(24B)-C(25B)
C(25B)-O(26B)
O(26B)-C(27B)
C(27B)-C(28B)
C(28B)-O(11B)
1.403( 14)
1.493(14)
1.432(10)
1.387(11)
1.528(14)
1.420( 10)
1.420( 10)
1.489( 13)
1.416(10)
1.395(12)
1.493(13)
1.413(11)
1.431(11)
1.440( 16)
1.224(14)
1.500(10)
1.596(16)
1.425(10)
Bonds
Angles (esd's), deg
Bonds
A
Angles (esd's). deg
CHENEVERT ET AL.
TABLE8 (concluded)
Bonds
Angles (esd's), deg
Can. J. Chem. Downloaded from www.nrcresearchpress.com by 182.30.3.84 on 06/06/13
For personal use only.
O(20A)-C(2 1A)-C(22A)
C(2 1A)-C(22A)-O(23A)
C(22A)-O(23A)-C(24A)
O(23A)-C(24A)-C(25A)
C(24A)-C(25A)-O(26A)
C(25A)-O(26A)-C(27A)
O(26A)-C(27A)-C(28A)
O(11A)-C(28A)-C(27A)
109.0(6)
110.9(6)
113.8(5)
110.0(5)
102.8(6)
108.6(6)
117.4(7)
108.4(6)
Angles (esd's), deg
Bonds
109.6(8)
109.6(7)
115.4(7)
11 1.9(8)
105.3(8)
105.1(7)
109.2(7)
109.5(7)
O(20B)-C(2 1B)-C(22B)
C(2 1B)-C(22B)-O(23B)
C(22B)-O(23B)-C(24B)
O(23B)-C(24B)-C(25b)
C(24B)-C(25B)-O(26B)
C(25B)-O(26B)-C(27B)
O(26B)-C(27B)-C(28B)
O(l1B)-C(28B)-C(27B)
TABLE9. Torsion angles for the crown part of the C,,H,,O,S
compound 7
Torsion angles (esd's), deg
Bonds
TABLE10. Bond distances
Bond
(A-H...B)
Major occ. (A. 0.55)
(A) and
Minor occ. (B, 0.45)
angles (deg) related to the pseudo hydrogen bonding in complex 7
Distances (esd's)
A-B
A-H
H-B
Angles (esd's)
A-H-B
CAN. J . CHEM. VOL. 71, 1993
TABLE10 (concluded)
Bonds
Angles
(esd's), deg
Angles
(esd's), deg
Bonds
o ( ~ A ) - ~ ( 1 ) . .. 0 ( 2 6 ~ ) ~
O ( ~ B ) - ~ ( 1 )... 0 ( 2 6 ~ ) "
O( 1C)-C( 1). .. 0 ( 2 6 ~ ) "
O(1 A)-C(1). . . 0 ( 2 6 ~ ) "
O ( I B ) - ~ ( 1 ) . .. 0 ( 2 6 ~ ) "
o ( ~ c ) - ~ ( 1 ) ...0 ( 2 6 ~ ) ~
Can. J. Chem. Downloaded from www.nrcresearchpress.com by 182.30.3.84 on 06/06/13
For personal use only.
C(13A)-O(14A) ...H(11A)'
C(13A)-O(14A). ..H(l IB)'
C(15A)-O(14A) ...H(1 IA)'
C(l5A)-O(14A). . .H(l lB)'
C(25A)-O(26A).
C(25A)-O(26A).
..H(12B)'
C(27A)-O(26A).
C(27A)-O(26A).
..H(12B)'
. .H( 1lC)'
C(13B)-O(14B).
C(13B)-O(14B).
. .H(l IA)'
. .H(1 IB)'
..H(llC)'
C(15B)-O(14B) ...H(1 IA)'
C(15B)-O(14B) ...H(1 IB)'
C(25B)-O(26B). ..H(12B)'
C(25B)-O(26B). ..H(1 IC)'
C(27B)-O(26B). ..H(12B)'
C(27B)-O(26B). ..H(1 IC)'
S-C(2)-H(2
1)
S-C(2)-H(22)
S-C(2)-H(23)
H(2 1)-C(2)-H(22)
H(2 1)-C(2)-H(23)
H(22)-C(2)-H(23)
C(12A)-O(11 A). . .C(2)
C(28A)-O(11 A). . .C(2)
C(12A)-O(l1A) ...H(21)
C(28A)-0(1 IA) ...H(2l)
C(16A)-O(17A). ..H(22)
C(18A)-O(17A) ...H(22)
C(22A)-O(23A).
C(24A)-O(23A).
. .H(23)
. .H(23)
C(12B)-0(1 1B)...H(21)
C(28B)-O(11B). ..H(21)
C(16B)-O(17B).
C(18B)-O(17B).
. .H(22)
C(22B)-O(23B).
C(24B)-O(23B).
. .H(23)
. .H(23)
. .H(22)
"Calculated hydrogen atoms.
"x, 1/2 - y , 1/2 + 2 .
<x, 1/2 - y , -1/2 + 2 .
(A), 1.44 (B), respectively. The 0-C-C
and C-0-C
angles average 109.4" (A), 108.9" (B) and 112.3" (C), 112.0"
(B).
In this 1 : 1 ratio complex, the sulfonate molecule acts as
a bifunctional guest linking the crown molecules and thus
giving rise to infinite chains. Similar complexes were observed with dimethyl sulfate or dimethyl acetylenecarboxylate (14, 16) but complex 7 is unique because two different
methyl groups, CH3-0 and CH3-SO3, are involved in the
association. A view of the major model association (sulfonate A, crown model A) of the polymeric type 1 : 1 complex
7 is shown in Fig. 4. The hydrogen bonding contacts and
geometries can be found in Table 10. On the CH3-SO, end
of the sulfonate molecule, all three methyl hydrogen atoms
participate in interactions with alternate oxygen atoms of the
bridge angles are 175", 147", and
crown. The C-H---0
152"; the corresponding C---0 distances are 3.377, 3.257,
and 3.328 whereas CH---0 distances are 2.32, 2.46, and
shorter than the sum of the van der Waals radii.
2.46
On the CH3-0 end of the sulfonate molecule, where
hydrogens are much less acidic than CH3-SO, methyl hydrogens, interactions are very weak. In the association model
in Fig, 4, there is only 9ne weak interaction (C---0 =
3.394 A , CH---0 = 2.64 A , and C-H---0 angle = 137").
The other two hydrogens are directed away from the crown
ether.'
The hydrogen bond is one of the significant factors in the
formation of natural or synthetic supramolecular structures.
The recent reports on molecular recognition are concerned
almost exclusively with strong hydrogen bonding of the
conventional type (0-H---0, N-H---0). The present work
shows that molecular arrays can be constructed with weaker
C-H---X hydrogen bonds.
Can. J. Chem. Downloaded from www.nrcresearchpress.com by 182.30.3.84 on 06/06/13
For personal use only.
A,
A
I I. E. Weber, S . Franken, J. Ahrendt, and H. Puff. J. Org. Chem.
52, 5291 (1987).
12. R.D. Rogers and P.D. Richards. J. Inclusion Phenom. 5 , 6 3 1
(1987).
13. J.A. Bandy and M.R. Truter. Acta Crystallogr. Sect. B: Struct.
Crystallogr. Cryst. Chem. B37, 1568 (1981).
14. G. Weber, J. Mol. Struct. 98, 333 (1983).
15. A. van Zon, F. de Jong, D.N. Reinhoudt, G.J. Torny, and Y.
Onverzen. Recl. Trav. Chim. Pays-Bas, 100, 453 (198 1).
16. I. Goldberg. Acta Crystallogr. Sect. B: Struct. Crystallogr.
Cryst. Chem. B31, 754 (1975).
17. L. Parenteau and F. Brisse. Can. J. Chem. 67, 1293 (1989).
18. S . Deguise, F. Brisse, J. Ouellet, and R. Savoie. Can. J.
Chem. 64, 142 (1986).
19. D. Belamri and C. Baroux. Acta Crystallogr. Sect. C: Cryst.
Struct. Commun. C44, 2173 (1988).
20. R. Savoie, A. Rodrigue, M. Pigeon-Gosselin, and R.
ChCnevert. Can. J . Chenl. 63, 1457 (1985).
21. C.I. Tarcliffe. J.A. Ri~nleester.G.W. Buchanan. and J.K.
Denike. J. A;. ~ h e m . ' ~ o c114,
. 3294 (1992).
22. C.J. van Staveren, V.M.L.J. Aarts, P. D.J. Grootenhuis. J. van
Eerden, S. Hardema, and D.N. Reinhoudt. J. Anl. Chem. Soc.
108, 5271 (1986).
23. P.D. J. Grootenhuis, J. van Eerden. P.J. Dijkstra, S . Harkema,
and D.N. Reinhoudt. J. Am. Chenl. Soc. 109, 8044 (1987).
24. J.W.H.M. Uitenvijk, S. Harkema, and D. Feil. J. Chem. Soc.
Perkin Trans. 2, 72 1 ( 1987).
25. P.D.J. Grootenhuis and P.A. Kollman. J. Am. Chem. SOC.
111, 4046 (1989).
26. T . Koritsanszky, J. Buschmann, L. Denner, P. Luger, A.
Knochel, M. Haarich, and M. Patz. J. Am. Chem. Soc. 113,
8388, 1991.
27. R.A. Kumpf and J.R. Darnerwood. J. Chem. Soc. Chem.
Commun. 621 (1988).
28. J.A.A. de Boer, D.N. Reinhoudt, S . Harkema, G.J. van
Hummel, and F. de Jong. J. Am. Chem. Soc. 104, 4073
(1982).
29. A.R. van Doorn, R. Schaafstra, M. Bos, S . Harkema, J. van
Eerden, W. Vergoom, and D.N. Reinhoudt. J. Org. Chem.
56, 6083 (1991).
30. E.J. Gabe, Y. Le Page, J.-P. Charland and F.L. Lee. NRCVAX,
an interactive program system for structure analysis. J. Appl.
Crystallogr. 22, 384 (1989).
3 1. G . Sheldrick. SHELX 76, A crystallographic co~nputationsystem for crystal structure determination. Univ. of Cambridge,
England. 1976.
32. C.K. Johnson. OKTEP, Report ORNL-3794, Oak Ridge National Laboratory, Tenn. 1965.
33. D.T. Cromer and J.B. Mann. Acta Crystallogr. Sect. A: Cryst.
Phys. Diffr. Theor. Gen. Crystallogr. A24, 321 (1968).
34. R.F. Stewart, E.R. Davidson, and W.T. Simpson. J. Chem.
Phys. 42, 3175 (1965).
35. D.T. Cromer and D. Liberman. J. Chem. Phys. 53, 1891
(1970).
36. W. Szeja. Synthesis, 822 (1979).
37. G.R. Desiraju. Acc. Chem. Res. 24, 290 ( 199 1).
38. R. Taylor and 0 . Kennard. J. Am. Chem. SOC. 104, 5063
(1982).
~
Acknowledgements
We acknowledge the financial support of this work by the
Natural Sciences and Engineer,ing Research Council of
Canada and the "Ministkre de 1'Education du Qukbec."
I . R.M. Izatt, K. Pawlak, J.S. Bradshaw, and R.L. Bruening.
Chem. Rev. 91, 1721 (1991).
2. F. Vogtle, W.M. Miiller, and W.H. Watson. Top. Curr. Chem.
125, 131 (1985).
3. A. Elbasyouny, H.J. Briigge, K. von Deuten, M. Dickel, A.
Knochel, K.U. Koch, J. Kopf, D. Melzer, and G . Rudolph.
J. Am. Chem. Soc. 105, 6568 (1983).
4. W.H. Watson, J. Galloy, D.A. Grossie, F. Vogtle, and W.M.
Miiller. J. Org. Chem. 49. 347 (1984).
5. F. Vogtle, W.M. Miiller, and E. Weber. Chem. Ber. 113, 1130
(1980).
6. J. van Eerden, M. Skowronska-Ptasinska, P.D.J. Grootenhuis,
S . Harkema, and D.N. Reinhoudt. J. Anl. Chenl. Soc. 111,
700 (1989).
7. S. Harkema, G.J. van Hummel, K. Daasvatn, and D.N.
Reinhoudt. J. Chem. Soc. Chem. Commun. 368. (1991).
8. C.J. Pedersen. J. Org. Chenl. 36, 1690 ( 197 1).
9. G . W. Buchanan, C. Morat, J.P. Charland, C.I. Ratcliffe, and
J.A. Ripmeester. Can. J. Chem. 67, 1212 (1989).
10. R.D. Rogers, L.K. Kurihara, and P.D. Richards. J. Chem.
Soc. Chem. Commun. 604. (1987).
5 ~ a b l eof
s atomic coordinates, bond distances and angles, temperature factors, and structure factor amplitudes, as well as
stereoviews of 1 and 7 may be purchased from: The Depository
of Unpublished Data. Document Delivery, CISTI, National Research Council Canada, Ottawa, Canada KLA 052.
Tables of ato~niccoordinates, bond distances and angles, and
stereoviews of 1 and 7 have also been deposited with the Cambridge Crystallographic Data Centre and can be obtained on request from The Director, Cambridge Crystallographic Data Centre,
University of Chemical Laboratory, 12 Union Road, Cambridge,
CB2 1EZ. U.K.
View publication stats
~