Academia.eduAcademia.edu

Crystalline complexes of 18-crown-6 with methyl sulfonates

1993, Can J Chem

ROBERT CRENEVERT, RENE GAGNON, DANIEL CHAMBERLAND, and MICHEL SIMARD. Can. J. Chem. 71, 1225Chem. 71, (1993. The macrocyclic polyether 18-crown-6 forms crystalline complexes with methyl sulfonates. Most complexes have a 2: 1 (su1fonate:crown) stoichiometry whereas small aliphatic sulfonates give a 1 : 1 ratio. In the 2: 1 ratio complexes, the guest molecules are coordinated above and below the crown in such a way that the dipoles are compensated. In the 1 : 1 ratio complexes, there is a polymeric type association with the two ends of the sulfonate interacting with different crown molecules. A crystal structure is reported for each type of complex. The complex 18-crown-6. CH3S03CH3 crystallizes in the monoclinic system, space group P2,/c with Z = 4. The unit cell dimensions are as follows: a = 8.525(4), b = 16.401(7), c = 15.071(6) A, P = 113.92(3)". Final R,,, = 0.064 for 3650 reflections. The complex 18-crown 6 . (C6H5S03Me)2 (I) crystallizes in the monoclinic systemo, space group P2,/c with Z = 2. The unit cell dimensions are as follows: a = 8.101(3), b = 17.136(5), c = 12.990(5) A, P = 121.30(3)". Final R,, = 0.048 for 2913 reflections. ROBERT CHENEVERT, RENE GAGNON, DANIEL CHAMBERLAND et MICHEL SIMARD. Can. J. Chem. 71, 1225 (1993).

Crystalline complexes of 18-crown-6 with methyl sulfonates ROBERT CHENEVERT' , RENEGAGNON, AND DANIEL CHAMBERLAND Depurternent de chimie, Fuculti des sciences et de genie, Universite Luval, Quebec, PQ GIK 7P4, Canada AND MICHELSIMARD Departement de chimie, UniversitP de Montreal, C.P. 6128, Succ. A . Montreal, PQ H3C 3J7, Canada Can. J. Chem. Downloaded from www.nrcresearchpress.com by 182.30.3.84 on 06/06/13 For personal use only. Received August 24, 1992' ROBERT CRENEVERT, RENEGAGNON, DANIEL CHAMBERLAND, and MICHEL SIMARD. Can. J . Chem. 71, 1225 (1993). The macrocyclic polyether 18-crown-6 forms crystalline complexes with methyl sulfonates. Most complexes have a 2: 1 (su1fonate:crown) stoichiometry whereas small aliphatic sulfonates give a 1 : 1 ratio. In the 2: 1 ratio complexes, the guest molecules are coordinated above and below the crown in such a way that the dipoles are compensated. In the 1 : 1 ratio complexes, there is a polymeric type association with the two ends of the sulfonate interacting with different crown molecules. A crystal structure is reported for each type of complex. The complex 18-crown-6. CH3S03CH3(7) crystallizes in the monoclinic system, space group P 2 , / c with Z = 4. The unit cell dimensions are as follows: a = 8.525(4), b = 16.401(7), c = 15.071(6) A, P = 113.92(3)". Final R,,, = 0.064 for 3650 reflections. The complex 18-crown 6 . (C6H5S03Me)2( I ) crystallizes in the monoclinic systemo,space group P2,/c with Z = 2. The unit cell dimensions are as follows: a = 8.101(3), b = 17.136(5), c = 12.990(5) A, P = 121.30(3)". Final R,, = 0.048 for 2913 reflections. SIMARD. Can. J. Chem. 71, 1225 (1993). ROBERT CHENEVERT, RENEGAGNON, DANIEL CHAMBERLAND et MICHEL Le polyether macrocyclique 18-couronne-6 forme des complexes cristallins avec des sulfonates de mkthyle. La plupart des complexes ont un rapport sulfonate/couronne de 2 : 1 alors que deux sulfonates de petite taille conduisent B des rapports 1 : 1. Dans les complexes de rapport 2 : 1, les sulfonates sont situks de part et d'autre de la couronne de f a ~ o n B compenser les dip6les. Dans les autres complexes, il y a une association de type polymkrique oii les deux extrkmitks du sulfonate interagissent avec des couronnes diffkrentes. Une structure cristalline est rapport6e pour chaque type de complexes. Le complexe 18-couronne-6. CH3S03CH3{7) cristallise dans le systkme monoclinique, groupe d'espace P2,/ c avec a = 8,525(4), b = 16,401(7), c = 15,071(6) A, P = 113,92(3)" et Z = 4. La valeur finale de R,, = 0.064 avec 3650 reflexions. Le complexe 18-couronne-6. (C6H,S03Me)2(l)ocristallisedans le systkme monoclinique, groupe d'espace P2,/c avec a = 8,101(3), b = 17,136(5), c = 12,990(5) A, P = 121,30(3)" et Z = 2. La valeur finale de R, = 0.048 avec 2913 rkflexions. Introduction The ability of synthetic receptor molecules such as crown ethers to complex inorganic or organic cations has been the subject of numerous reports during the last two decades (1). The study of well-defined complexes formed between crown compounds and neutral molecules represents a much less explored area. The latter complexes are widely recognized as model systems for molecular recognition of neutral polar molecules, which play an important role in biological systems. Small neutral molecules can form adducts with crown ethers if they present one or both of the following structural features: a relatively large dipole moment and X-H bonds (X = 0 , N, C) able to form hydrogen bonds with oxygens of the crown ligand in a complementary spatial arrangement (2-5). Several complexes of this kind have a 1 :2 stoichiometric ratio of host/guest and the guest molecules are coordinated above and below the crown in such a way that the dipoles are compensated. All complexes are far reported contain either polar 0-H bonds (2, 6) (water, alcohols, gem-diols, diacids), polar N-H bonds (urea and analogues (7, 8), amides (9)), or polar C-H bonds (nitriles (10, 1l), nitro compounds (10-12), dimethyl sulfone (13), dimethyl sulfate (14), dimethyl diesters (15, 16)). Another type of neutral component complex has been obtained with weakly acidic compounds such as phenols, carboxylic acids, and weak inorganic acids (17-20). The guest ' ~ u t h o rto whom correspondence may be addressed. 'Revision received May 10, 1993. usually contains only one hydrogen suitable for hydrogen bonding and one water molecule per guest serves as a linkage between the acid and the crown (2-4). Although a number of crystallographic, thermodynamic, and molecular mechanics studies have been performed, the nature of the interactions between the partners in such complexes is only partly understood (21-29). We report here the formation of well-defined complexes between 18-crown-6 and several methyl sulfonates. TABLE1. Crystal data for complexes 1 and 7 Parameter Formula FW F(000) Crystal system Space group a, 4 b, A c, A P>deg v, A3 Complex 1 C26H400 12S2 608.72 648 Monoclinic P21/c 8.101 (3) 17.136 (5) 12.990 (5) 121.30 (3) 1540.8 (9) 1.312 2 2.02 1.54178 Complex 7 C14H3009S 374.46 808 Monoclinic p2,/c 8.525 (4) 16.401 (7) 15.071 (6) 113.92 (3) 1926.2 (15) 1.291 4 1.82 1.54178 CAN. J. CHEM. VOL. 71, 1993 TABLE2. Data collection and refinement Complex 1 Parameter Radiation Scan Scan width, deg Octant measured Number of measured reflections Acceptance level I/u(l) Number of unique reflections Can. J. Chem. Downloaded from www.nrcresearchpress.com by 182.30.3.84 on 06/06/13 For personal use only. Rf R," G.O.F. w-' Residual fluctuations in electron density map, e P\-" Maximum shift/u ratio Complex 7 CuKcl CuKcl W 0 (0.80 + 0.14 tan 0) - 9 5 h 5 8 O 5 k 5 2 0 0 5 1 5 15 5923 3.0 2913 0.041 0.048 2.00 u2(F0) + 0.000 1(F,)' -0.51, 0.27 0.29 (0.80 + 0.14 tan 0) -10 5 h 5 9 O s k 5 1 9 0 5 1 5 1 8 7309 3 .O 3650 0.051 0.064 2.89 u'(F,) + 0.000 1(F,)' -0.57, 0.51 0.49 TABLE3. Final atomic coordinates with their esd's (X lo4; S , X 10') and equivalent isotropic temperature factors ( X 10') for the C26H40012SZ compound 1 Atom x Y z uc, "Labels A and B stand for major (occ.: 0.70) and minor (occ.: 0.30) disorder model. Experimental The NMR spectra were taken on a Varian XL-200 multinuclear spectrometer. The infrared spectra, obtained from a KBr pressed disc, were run on a Beckman 4250 or an FT-IR Bomem MB 102 spectrometer. The microanalyses were performed on a Carlo Erba Strumentazione- 1 10.6 elemental analysis instrument. Preparation of the complexes (general procedure) The methyl sulfonate (2 mmol) is dissolved in dry tetrahydrofuran (10 mL) and this solution is added to a solution of 18crown-6 (2 mmol) in dry tetrahydrofuran (10 mL). The complex crystallizes upon addition of diethyl ether an cooling. The colorless solid complex is filtered and dried under vacuum. The complex is recrystallized in the appropriate solvent and dried under vacuum until constant melting point is obtained. Physical data pertaining to the individual complexes are given below. (C6H5S03CH3)2.18-crown-6. 1 Yield: 76%; mp 69-70°C (from ether). IR(KBr): 3050, 2870, 1465, 1440, 1345, 1215, 1180, 1030, 1010, 955, 825 cm-'. 'H NMR (CDCI,) 6: 3.62 (24H, s, crown), 3.69 (6H, s , OCH,), 7.55 Can. J. Chem. Downloaded from www.nrcresearchpress.com by 182.30.3.84 on 06/06/13 For personal use only. FIG. 2. ORTEP view of the association of the 2: 1 complex for the CI3H,,O6S compound (1). Pseudo hydrogen bonds represented by thin bonds. 850 cm-'. 'H NMR (CDCI,) 6: 3.67 (24H, s, crown), 3.84 (6H, s, OCH,), 8.11 (4H, d, J = 9 Hz), 8.41 (4H, d, J = 9 Hz). I3c NMR (CDCI,) 6: 57.0 (OCH,), 70.3 (crown), 123.3, 124.4, 129.3, C 44.69, H 5.48; found: 14 1.0. Anal. calcd. for C26H38016NZS2: C 45.02, H 5.38. FIG. 1. ORTEP view of the two molecules in complex 1 with the numbering scheme adopted. Ellipsoids drawn at 50% probability level. Hydrogen represented by spheres of arbitrary size. (6H, m), 7.85 (4H, m). "C NMR (CDCl,) 6: 56.2 (OCH3),70.4 (crown), 127.8, 129.1, 133.7, 134.9. Anal. calcd. for C26H,u01,S2: C 51.30, H 6.62; found: C 51.61, H 6.50. (p-CH,C6H,S03CH3)2.18-crown-6, 2 Yield: 80%; mp 63-65°C (from ether). IR(KBr): 2900, 1600, 1475, 1460, 1350, 1225, 1190, 1105, 1045, 1030, 1010, 960, 835, 810 cm-'. 'H NMR (CDCl,) 6: 2.38 (6H, s), 3.62 (24H, s, crown), 3.67 (6H, s, OCH,), 7.30 (4H, d, J = 8 Hz), 7.72 (4H, d , J = 8 Hz). "C NMR (CDCl,) 6: 21.5, 55.1 (OCH,), 70.5 (crown), 127.8, 129.6, 132.1, 144.8. Anal. calcd. ~ O ~ C , ~ H ~ OC52.81, ,,S~: H 6.96; found: C 52.47, H 7.14. (p-BrC6H,S03CH3), .18-crown-6, 3 Yield: 74%; mp 54-56°C (from ether). IR(KBr). 2900, 1580, 1475, 1355, 1240, 1195, 1105, 1030, 1005, 960, 835, 820 cm-I. 'H NMR (CDCI,) 6: 3.65 (24H, s, crown), 3.75 (6H, s, OCH,), 7.68 (4H, d, J = 8 Hz), 7.75 (4H, d, J = 8 Hz). "C NMR (CDCl,) 6: 56.5 (OCH,), 70.5 (crown), 128.9, 129.3, 132.4, 134.1. Anal. calcd. for C,6H38012SzBr,:C 40.74, H 5.00; found: C 41.09, H 4.88. (p-N02C6H,S03CH3)Z. 18-c~owrz-6,4 Yield: 71%; mp 87-88 5°C (from THF-hexane). IR(KBr) : 3 100, 2970, 1610, 1530, 1365 1350, 1190, 1105, 1095, 970, 860, (m-N02C6H,S0,CHI)2.18-crown-6, 5 Yield: 84%; mp 68-70°C (from ether). IR(KBr): 3075, 2880, 1520, 1465, 1345, 1235, 1200, 1085, 1025, 955, 870, 835 cm-I. 'H NMR (CDCI,) 6: 3.65 (24H, s, crown), 3.83 (6H, s, OCH,), 7.80 (2H, t, J = 8 Hz), 8.22 (2H, ddd, J I = 8 Hz, J, = 2 HZ, J3= 1 Hz), 8.50 (2H, ddd, JI = 8 Hz, J, = 2 Hz, J3= 1 HZ), 8.72 (2H, t, J = 2 Hz). I3C NMR (CDC1,) 6: 57.0 (OCH,), 70.6 (crown), 123.2, 128.3, 130,8, 133.4, 137.4, 148.3. Anal. calcd. for C ~ ~ H ~ XC N 44.69, ~ ~ H~5.48; ~ S found: ~ : C 44.94, H 5.76. fCH,(CH2)3S0.3CH.7]2.18-crown-6, 6 Yield: 75%; mp 38-39°C (from ether-hexane). IR (KBr): 2900, 1470, 1355, 1345, 1280, 1250, 1190, 1110, 1060, 965, 840 cn1-I. 'H NMR (CDC1,) 6: 0.92 (6H, t, J = 7 Hz), 1.45 (4H, nl), 1.80 (4H, m), 3.06 (4H, m), 3.64 (24H, s, crown), 3.85 (6H, s, OCH,). I3cNMR (CDCI,) 6: 13.4, 21.4, 25.3, 49.4, 55.0 (OCH,), 70.6 (crown). Anal. calcd. for C22H48012SZ: C 46.46, H 8.51; found; C 46.91, H 8.27. CH,S03CH3. 18-crowrl-6, 7 Yield: 71%; mp 88-89.5"C (from benzene). IR (KBr): 2900, 1475, 1355, 1345, 1280, 1250, 1195, 1 1 10, 1060, 965, 835 cm-'. 'H NMR (CDCI,) 6; 3.00 (3H, s), 3.67 (24H, s, crown), 3.90 (3H, s, OCH,). I3cNMR (CDC1,) 6: 36.5, 55.4, (OCH,), 70.5 (crown). Anal. calcd. for Cl,H3009Sl:C 44.91, H 8.07; found: C 45.22, H 7.69. CHI-CH2-S03CH,. 18-crowrz-6, 8 Yield: 84%; mp 56-57°C (from ether). IR(KBr): 2900, 1475, 1355, 1345, 1280, 1250, 1190, 1 1 10, 1060, 965, 835 cm-I. 'H NMR (CDCI), 6: 1.40 (3H, t, J = 7 Hz), 3.11 (2H, q , J = 7 HZ), NMR (CDC1,)S 8.2, 3.65 (24H, s, crown), 3.87 (3H, s, OCH,). '" C A N . J . CHEM. VOL. 71. 1993 TABLE 4. Distances and angles for the C2bH-10012S2 compound 1 Can. J. Chem. Downloaded from www.nrcresearchpress.com by 182.30.3.84 on 06/06/13 For personal use only. Bond S-O( 1OA) S-O( 1 1 A) S-0( 12A) S-C(I 1 ) 0(10A)-C( 10) C(11)-C(12) C( 12)-C( 13) C( 14)-C( 15) O( 1 )-C(2) C(2)-C(3) 0(4)-C(5) C(6)-0(7) C(8)-C(9) Bonds Distances (esd's), A 1.562(2) 1.377(3) 1.474(3) 1.756(3) 1.450(4) 1.381(3) 1.387(5) 1.373(4) 1.4 13(3) 1.491(4) 1.416(4) 1.406(3) 1.485(4) Angles (esd's). deg Bond Distances (esd's), S-O( IOB) S-0(1 IB) S-0C 12B) 1.703(6) 1.485(8) 1.297(7) O( I0B)-C( 10) C( l 1 )-C( 16) CC 13)-C(14) C( 15)-C(16) O( I )-C(9)" C(3)-0(4) C(5)-C(6) 0(7)-C(8) I .340C7) 1.391(3) 1.379(4) 1.388(4) 1.416(3) 1.420(4) I.507(5) 1.420(4) Bonds A Angles (esd's), deg TABLE5. Torsion angles for the crown molecule in complex 1 Bonds Torsion angles (esd's), deg Bonds Torsion angles (esd's), deg Can. J. Chem. Downloaded from www.nrcresearchpress.com by 182.30.3.84 on 06/06/13 For personal use only. FIG.4. ORTEP view of the association (sulfonate model A, crown model A) of the polymeric type I : I complex of the C,,H,,,O,S cornpound (7). Pseudo hydrogen bonds represented by thin bonds. Frc;. 3. OKTEP view of the two n~oleculesin cornplex 7 (models A only) with the numbering scheme adopted. Ellipsoids drawn at 40% probability level. Hydrogens represented by spheres of arbitrary size. Secondary extinction coefficients not refined. The scattering curves for the non-hydrogen atoms were taken from Cromer and Mann (33) and those for the H-atoms from Stewart, Davidson, and Simpson (34). Anomalous dispersion contributions (df' and df") were from Cromer and Liberman (35). Results and discussion The methyl sulfonates were prepared under phase-transC 44.3, 55.1 (OCH,), 70.6 (crown). Anal. calcd. for Cl.iH3209SI: fer catalysed conditions according to a known procedure (36). 46.38, H 8.29; found: C 46.77, H 7.96. Sulfonate - crown ether complexes were prepared in good Crystallographic characterization of cotnple.res I ctnd 7 yield (71-86%) by mixing the methyl sulfonate and 18The intensity data were collected on a Nonius diffractometer crown-6 in tetrahydrofuran. The complexes 1-8 (Scheme 1) using the o/20 mode and graphite monochromatized CuKa radiaare stable solids with sharp melting points. In most cases, the tion. The unit cell dimensions were computed from the angular melting point of the complex is above those of the constitsettings of 24 well-centered reflections in the range 40 5 200 5 50" uents. For instance, the melting point of complex 1 (69-70°C) (I) or 45 5 20 5 55" (2). The final parameters and other crystal is above those of the crown (40°C) or the sulfonate (liquid data of interest are presented in Table 1 and data collection and refinement indicators are in Table 2. The structures were solved by at room temperature). The stoichiometry of compounds 1direct methods using NRCVAX and difference Fourier synthesis using 8 was determined by elemental analysis (carbon, hydrogen) SHELX-76.' Disorder model introduced to account for high residual and by integration of signals of the constituents in NMR. The peaks in the sulfonate vicinity, with occupancies initially refined, analyses are in agreement with those observed in the X-ray then fixed in final refinement cycles. Full-matrix least-squares redetermination for compounds 1 and 7 . Both the frequencies finement based on F's all non-hydrogen atoms anisotropic, hydroand spectral activity of the crown ether bands in the infrared gen atoms isotropic. Hydrogen atoms found from a difference spectra of the complexes are comparable to those found in Fourier map and (or) calculate$, disorder H-atoms introduced at various complexes in which the crown is known to have a ideal positions (Dc-., = 0.95 A) with B,,,, refined. regular D,, symmetry. CH, rocking bands at -960 cm-' and C-C stretching at -835 cm-' are singlets in complexes 1he programs used here are N R C V A X , program system for 8. Distortion of the crown causes a splitting of these vibrastructure analysis (Gabe, LePage, Charland, and Lee (30)), SHELX76, program for structure analysis (Sheldrick (31)), and ORTEP, tional bands (3, 20). These observations suggest that the stereodrawings (Johnson (32)). shape of the crown in the complexes described here is es- C A N . J . CHEM. VOL. 71, 1993 Can. J. Chem. Downloaded from www.nrcresearchpress.com by 182.30.3.84 on 06/06/13 For personal use only. TABLE 6. Bond distances (A) and angles (deg) related to the pseudo hydrogen bonding in complex 1 Distances (esd's) Bond (A-H...B) A-B Bonds Angles (esd's), deg A-H H-B Bonds Angles (esd's) A-H-B Angles (esd's), deg "I - 1, 1 - y , - z . "Hydrogen calculated at ideal position sentially that of a regular crown of symmetry D,,, although some distortion is probably present, especially in the 1 : 1 ratio complexes. The 'H and "C NMR signals of the crown protons and carbons in complexes 1-8 are on average close to the shifts of the free crown hydrogens and carbons in the same solvent (CDC1,). The average chemical shift of protons is 3.65 ppm compared to 3.67 ppm for the free crown and the average position of carbons is 70.51 ppm compared to 70.76 ppm for the free crown. To gain further insight in the structures, X-ray analyses were undertaken. We report here the structures of 18-crown6 2 methyl benzenesulfonate (1) and 18-crown-6-methyl methanesulfonate (7) .4 Crystal structure of 18-crown-6*2(methyl benzenesulfonate) complex ( I ) The final atomic coordinates and the equivalent U values of the anisotropic temperature factors are given in Table 3. A stereoview showing the molecular conformations and the atomic numberings of both constituents is shown in Fig. 1. The centrosyrnmetrical 18-crown-6 ligand adopts apand proximative D,, conformation with C-0-C-C 0-C-C-0 torsion angles near 180" (average value 178.6") and 70" (average value 70.5"), which is the ex'A satisfactory X-ray analysis of complex 2 (18-crown-6. methyl p-toluenesulfonate) has also been obtained. This structure is very similar to the structure of 1 and is not described here. pected ganche confomiation of the ethyleneoxy units (Table 5). Tee C-0 and C-C bond distances average 1.41 and and C-0-C angles average 1.49 A while the 0-C-C 109. 1" and 1 12.6", respectively (Table 4). The values are consistent with those reported for the majority of 18-crown6 complexes that exhibit the pseudo D,, conformation. The sulfonate molecule is disordered over two conformations of unequal proportion (70:30). A view of the major model association is shown in Fig. 2. The sulfonate molecules are coordinated above and below the crown in such a way that the dipoles are compensated. The methyl group of each sulfonate molecule yields three C-H---0 contacts to alternate oxygen atoms of the crown. The hydrogen bonding contacts and geometries can be found in Table 6 . The C-H---0 bridge angles are 125", 138", and 143" with methyl C---0 distances of 3.262, 3.327, and CH---0 distances of 2.64, 2.53, 2.42, and 3.310 shorter than the sum of the van der Waals radii (2.7 A). The most important geometrical characteristic of hydrogen bonds is that the distance between the proton and the acceptor atom is shorter than the sum of their van der Waals radii (37, 38). The existence of only one H - - - 0 short contact indicates the lower stability of the minor association (supplementary data). Crystal structure of 18-crown-6-methyl mc~thatzesulfotzate mnplex (7) This complex contains more disorder than the previous one; the crown has two occupancies (A and B) of almost equal population (55 :45) and the sulfonate molecule is dis- A TABLE 7. Final atomic coordinates with their e.s.d's (S X lo5; 0 , C, X lo4) and equivalent isotropic temperature factors ( X lo3) for the C,,H3,09S compound 7 Sulfonate Can. J. Chem. Downloaded from www.nrcresearchpress.com by 182.30.3.84 on 06/06/13 For personal use only. Atom Y x Ucq z Occ. Crown Atom x Y z ucq O(11A)" O(14A)" O(17A)" O(20A)" O(23A)" O(26A)" 0 ( 1 lB)" O(14B)" O(17B)" O(20B)" O(23B)" O(26B)" C(12A)" C(13A)" C(15A)" C(16A)" C(18A)" C(19A)" C(2 1A)" C(22A)" C(24A)" C(25A)" C(27A)" C(28A)" C(12B)" C(13B)" C(15B)" C(16B)" C(18B)" C(19B)" C(21B)" C(22B)" C(24B)" C(25B)" C(27B)" C(28B)" "Labels A and B stand for major (occ.:0.55) and minor (occ.: 0.45) crown disorder. equal population (55:45) and the sulfonate molecule is disordered over one major and two minor orientations. The atomic numbering is given in the diagram in Fig. 3. The bond distances and angles, calculated from the final atomic coordinates (Table 7), are given in Table 8. The crown ligand has a pseudo D3dsymmetry in both conformation A and B with C-0-C-C and 0-C-C-0 torsion angles (Table 9) near 180" (average values 173. 1" (A) and 176. 1" (B)) and 70" (average values 71. 1" (A) and 72. 1" (B)). The C-0 and C-C bond distances average 1.41 (A), 1.41 (B) and 1.51 C A N . 1. CHEM. V O L . 71, 1993 TABLE8. Distances and angles for the C,,H,,O,S Can. J. Chem. Downloaded from www.nrcresearchpress.com by 182.30.3.84 on 06/06/13 For personal use only. Bond Distances (esd's), A Bond compound 7 Distances (esd's), S-O(1A) S-O(1 B) S-O( 1C) 1.642(6) 1.567(10) 1.583(11) S-O(2A) S-O(2B) S-O(2C) 1.288(19) 1.532(19) 1.466( 18) S-O(3A) S-O(3B) S-O(3C) I .46 1 (20) 1.630(9) 1.243(16) O(1A)-C(1) O(1 B)-C(1) O( 1C)-C( I ) 1.42 l(6) 1.46 1 (9) 1.388(10) S-C(2) 1.725(3) O( 1 1 A)-C( 12A) C( 12A)-C( 13A) C( 13A)-0( 14A) O(14A)-C( 15A) C( 15A)-C(16A) C( 16A)-0( 17A) 0 ( 17A)-C( 18A) C( 18A)-C( 19A) C( 19A)-O(20A) O(20A)-C(2 1 A) C(2 1 A)-C(22A) C(22A)-O(23A) O(23A)-C(24A) C(24A)-C(25A) C(25A)-O(26A) O(26A)-C(27A) C(27A)-C(28A) C(28A)-0( 1 1 A) 1.401(8) 1.488(10) 1.424(8) 1.416(8) 1.495(11) 1.418(10) 1.4 12(9) 1.491(1 1) 1.424(9) 1.414(10) 1.491(11) 1.424(8) 1.41 l(8) 1.530(1 1) 1.402(11) 1.347(11 ) 1.466(11 ) 1.43 l(8) O( 11 B)-C( 12B) C(12B)-C(13B) C(13B)-0( 14B) O(14B)-C(15B) C(15B)-C(16B) C( 16B)-O(17B) 0 ( 17B)-C(18B) C( 18B)-C(19B) C( 19B)-O(20B) O(20B)-C(2 1 B) C(2 1 B)-C(22B) C(22B)-O(23B) O(23B)-C(24B) C(24B)-C(25B) C(25B)-O(26B) O(26B)-C(27B) C(27B)-C(28B) C(28B)-O(11B) 1.403( 14) 1.493(14) 1.432(10) 1.387(11) 1.528(14) 1.420( 10) 1.420( 10) 1.489( 13) 1.416(10) 1.395(12) 1.493(13) 1.413(11) 1.431(11) 1.440( 16) 1.224(14) 1.500(10) 1.596(16) 1.425(10) Bonds Angles (esd's), deg Bonds A Angles (esd's). deg CHENEVERT ET AL. TABLE8 (concluded) Bonds Angles (esd's), deg Can. J. Chem. Downloaded from www.nrcresearchpress.com by 182.30.3.84 on 06/06/13 For personal use only. O(20A)-C(2 1A)-C(22A) C(2 1A)-C(22A)-O(23A) C(22A)-O(23A)-C(24A) O(23A)-C(24A)-C(25A) C(24A)-C(25A)-O(26A) C(25A)-O(26A)-C(27A) O(26A)-C(27A)-C(28A) O(11A)-C(28A)-C(27A) 109.0(6) 110.9(6) 113.8(5) 110.0(5) 102.8(6) 108.6(6) 117.4(7) 108.4(6) Angles (esd's), deg Bonds 109.6(8) 109.6(7) 115.4(7) 11 1.9(8) 105.3(8) 105.1(7) 109.2(7) 109.5(7) O(20B)-C(2 1B)-C(22B) C(2 1B)-C(22B)-O(23B) C(22B)-O(23B)-C(24B) O(23B)-C(24B)-C(25b) C(24B)-C(25B)-O(26B) C(25B)-O(26B)-C(27B) O(26B)-C(27B)-C(28B) O(l1B)-C(28B)-C(27B) TABLE9. Torsion angles for the crown part of the C,,H,,O,S compound 7 Torsion angles (esd's), deg Bonds TABLE10. Bond distances Bond (A-H...B) Major occ. (A. 0.55) (A) and Minor occ. (B, 0.45) angles (deg) related to the pseudo hydrogen bonding in complex 7 Distances (esd's) A-B A-H H-B Angles (esd's) A-H-B CAN. J . CHEM. VOL. 71, 1993 TABLE10 (concluded) Bonds Angles (esd's), deg Angles (esd's), deg Bonds o ( ~ A ) - ~ ( 1 ) . .. 0 ( 2 6 ~ ) ~ O ( ~ B ) - ~ ( 1 )... 0 ( 2 6 ~ ) " O( 1C)-C( 1). .. 0 ( 2 6 ~ ) " O(1 A)-C(1). . . 0 ( 2 6 ~ ) " O ( I B ) - ~ ( 1 ) . .. 0 ( 2 6 ~ ) " o ( ~ c ) - ~ ( 1 ) ...0 ( 2 6 ~ ) ~ Can. J. Chem. Downloaded from www.nrcresearchpress.com by 182.30.3.84 on 06/06/13 For personal use only. C(13A)-O(14A) ...H(11A)' C(13A)-O(14A). ..H(l IB)' C(15A)-O(14A) ...H(1 IA)' C(l5A)-O(14A). . .H(l lB)' C(25A)-O(26A). C(25A)-O(26A). ..H(12B)' C(27A)-O(26A). C(27A)-O(26A). ..H(12B)' . .H( 1lC)' C(13B)-O(14B). C(13B)-O(14B). . .H(l IA)' . .H(1 IB)' ..H(llC)' C(15B)-O(14B) ...H(1 IA)' C(15B)-O(14B) ...H(1 IB)' C(25B)-O(26B). ..H(12B)' C(25B)-O(26B). ..H(1 IC)' C(27B)-O(26B). ..H(12B)' C(27B)-O(26B). ..H(1 IC)' S-C(2)-H(2 1) S-C(2)-H(22) S-C(2)-H(23) H(2 1)-C(2)-H(22) H(2 1)-C(2)-H(23) H(22)-C(2)-H(23) C(12A)-O(11 A). . .C(2) C(28A)-O(11 A). . .C(2) C(12A)-O(l1A) ...H(21) C(28A)-0(1 IA) ...H(2l) C(16A)-O(17A). ..H(22) C(18A)-O(17A) ...H(22) C(22A)-O(23A). C(24A)-O(23A). . .H(23) . .H(23) C(12B)-0(1 1B)...H(21) C(28B)-O(11B). ..H(21) C(16B)-O(17B). C(18B)-O(17B). . .H(22) C(22B)-O(23B). C(24B)-O(23B). . .H(23) . .H(23) . .H(22) "Calculated hydrogen atoms. "x, 1/2 - y , 1/2 + 2 . <x, 1/2 - y , -1/2 + 2 . (A), 1.44 (B), respectively. The 0-C-C and C-0-C angles average 109.4" (A), 108.9" (B) and 112.3" (C), 112.0" (B). In this 1 : 1 ratio complex, the sulfonate molecule acts as a bifunctional guest linking the crown molecules and thus giving rise to infinite chains. Similar complexes were observed with dimethyl sulfate or dimethyl acetylenecarboxylate (14, 16) but complex 7 is unique because two different methyl groups, CH3-0 and CH3-SO3, are involved in the association. A view of the major model association (sulfonate A, crown model A) of the polymeric type 1 : 1 complex 7 is shown in Fig. 4. The hydrogen bonding contacts and geometries can be found in Table 10. On the CH3-SO, end of the sulfonate molecule, all three methyl hydrogen atoms participate in interactions with alternate oxygen atoms of the bridge angles are 175", 147", and crown. The C-H---0 152"; the corresponding C---0 distances are 3.377, 3.257, and 3.328 whereas CH---0 distances are 2.32, 2.46, and shorter than the sum of the van der Waals radii. 2.46 On the CH3-0 end of the sulfonate molecule, where hydrogens are much less acidic than CH3-SO, methyl hydrogens, interactions are very weak. In the association model in Fig, 4, there is only 9ne weak interaction (C---0 = 3.394 A , CH---0 = 2.64 A , and C-H---0 angle = 137"). The other two hydrogens are directed away from the crown ether.' The hydrogen bond is one of the significant factors in the formation of natural or synthetic supramolecular structures. The recent reports on molecular recognition are concerned almost exclusively with strong hydrogen bonding of the conventional type (0-H---0, N-H---0). The present work shows that molecular arrays can be constructed with weaker C-H---X hydrogen bonds. Can. J. Chem. Downloaded from www.nrcresearchpress.com by 182.30.3.84 on 06/06/13 For personal use only. A, A I I. E. Weber, S . Franken, J. Ahrendt, and H. Puff. J. Org. Chem. 52, 5291 (1987). 12. R.D. Rogers and P.D. Richards. J. Inclusion Phenom. 5 , 6 3 1 (1987). 13. J.A. Bandy and M.R. Truter. Acta Crystallogr. Sect. B: Struct. Crystallogr. Cryst. Chem. B37, 1568 (1981). 14. G. Weber, J. Mol. Struct. 98, 333 (1983). 15. A. van Zon, F. de Jong, D.N. Reinhoudt, G.J. Torny, and Y. Onverzen. Recl. Trav. Chim. Pays-Bas, 100, 453 (198 1). 16. I. Goldberg. Acta Crystallogr. Sect. B: Struct. Crystallogr. Cryst. Chem. B31, 754 (1975). 17. L. Parenteau and F. Brisse. Can. J. Chem. 67, 1293 (1989). 18. S . Deguise, F. Brisse, J. Ouellet, and R. Savoie. Can. J. Chem. 64, 142 (1986). 19. D. Belamri and C. Baroux. Acta Crystallogr. Sect. C: Cryst. Struct. Commun. C44, 2173 (1988). 20. R. Savoie, A. Rodrigue, M. Pigeon-Gosselin, and R. ChCnevert. Can. J . Chenl. 63, 1457 (1985). 21. C.I. Tarcliffe. J.A. Ri~nleester.G.W. Buchanan. and J.K. Denike. J. A;. ~ h e m . ' ~ o c114, . 3294 (1992). 22. C.J. van Staveren, V.M.L.J. Aarts, P. D.J. Grootenhuis. J. van Eerden, S. Hardema, and D.N. Reinhoudt. J. Anl. Chem. Soc. 108, 5271 (1986). 23. P.D. J. Grootenhuis, J. van Eerden. P.J. Dijkstra, S . Harkema, and D.N. Reinhoudt. J. Am. Chenl. Soc. 109, 8044 (1987). 24. J.W.H.M. Uitenvijk, S. Harkema, and D. Feil. J. Chem. Soc. Perkin Trans. 2, 72 1 ( 1987). 25. P.D.J. Grootenhuis and P.A. Kollman. J. Am. Chem. SOC. 111, 4046 (1989). 26. T . Koritsanszky, J. Buschmann, L. Denner, P. Luger, A. Knochel, M. Haarich, and M. Patz. J. Am. Chem. Soc. 113, 8388, 1991. 27. R.A. Kumpf and J.R. Darnerwood. J. Chem. Soc. Chem. Commun. 621 (1988). 28. J.A.A. de Boer, D.N. Reinhoudt, S . Harkema, G.J. van Hummel, and F. de Jong. J. Am. Chem. Soc. 104, 4073 (1982). 29. A.R. van Doorn, R. Schaafstra, M. Bos, S . Harkema, J. van Eerden, W. Vergoom, and D.N. Reinhoudt. J. Org. Chem. 56, 6083 (1991). 30. E.J. Gabe, Y. Le Page, J.-P. Charland and F.L. Lee. NRCVAX, an interactive program system for structure analysis. J. Appl. Crystallogr. 22, 384 (1989). 3 1. G . Sheldrick. SHELX 76, A crystallographic co~nputationsystem for crystal structure determination. Univ. of Cambridge, England. 1976. 32. C.K. Johnson. OKTEP, Report ORNL-3794, Oak Ridge National Laboratory, Tenn. 1965. 33. D.T. Cromer and J.B. Mann. Acta Crystallogr. Sect. A: Cryst. Phys. Diffr. Theor. Gen. Crystallogr. A24, 321 (1968). 34. R.F. Stewart, E.R. Davidson, and W.T. Simpson. J. Chem. Phys. 42, 3175 (1965). 35. D.T. Cromer and D. Liberman. J. Chem. Phys. 53, 1891 (1970). 36. W. Szeja. Synthesis, 822 (1979). 37. G.R. Desiraju. Acc. Chem. Res. 24, 290 ( 199 1). 38. R. Taylor and 0 . Kennard. J. Am. Chem. SOC. 104, 5063 (1982). ~ Acknowledgements We acknowledge the financial support of this work by the Natural Sciences and Engineer,ing Research Council of Canada and the "Ministkre de 1'Education du Qukbec." I . R.M. Izatt, K. Pawlak, J.S. Bradshaw, and R.L. Bruening. Chem. Rev. 91, 1721 (1991). 2. F. Vogtle, W.M. Miiller, and W.H. Watson. Top. Curr. Chem. 125, 131 (1985). 3. A. Elbasyouny, H.J. Briigge, K. von Deuten, M. Dickel, A. Knochel, K.U. Koch, J. Kopf, D. Melzer, and G . Rudolph. J. Am. Chem. Soc. 105, 6568 (1983). 4. W.H. Watson, J. Galloy, D.A. Grossie, F. Vogtle, and W.M. Miiller. J. Org. Chem. 49. 347 (1984). 5. F. Vogtle, W.M. Miiller, and E. Weber. Chem. Ber. 113, 1130 (1980). 6. J. van Eerden, M. Skowronska-Ptasinska, P.D.J. Grootenhuis, S . Harkema, and D.N. Reinhoudt. J. Anl. Chenl. Soc. 111, 700 (1989). 7. S. Harkema, G.J. van Hummel, K. Daasvatn, and D.N. Reinhoudt. J. Chem. Soc. Chem. Commun. 368. (1991). 8. C.J. Pedersen. J. Org. Chenl. 36, 1690 ( 197 1). 9. G . W. Buchanan, C. Morat, J.P. Charland, C.I. Ratcliffe, and J.A. Ripmeester. Can. J. Chem. 67, 1212 (1989). 10. R.D. Rogers, L.K. Kurihara, and P.D. Richards. J. Chem. Soc. Chem. Commun. 604. (1987). 5 ~ a b l eof s atomic coordinates, bond distances and angles, temperature factors, and structure factor amplitudes, as well as stereoviews of 1 and 7 may be purchased from: The Depository of Unpublished Data. Document Delivery, CISTI, National Research Council Canada, Ottawa, Canada KLA 052. Tables of ato~niccoordinates, bond distances and angles, and stereoviews of 1 and 7 have also been deposited with the Cambridge Crystallographic Data Centre and can be obtained on request from The Director, Cambridge Crystallographic Data Centre, University of Chemical Laboratory, 12 Union Road, Cambridge, CB2 1EZ. U.K. View publication stats ~