Academia.eduAcademia.edu

1-(2-Methyl-5-nitro-1H-imidazol-1-yl)acetone

2013, Acta crystallographica. Section E, Structure reports online

In the mol-ecule of the title compound, C7H9N3O3, the nitro and carbonyl groups are tilted with respect to the imidazole ring by 9.16 (6) and 65.47 (7)°, respectively. Neighbouring chains are linked via C-H⋯N and C-H⋯O hydrogen bonds forming two-dimensional slab-like networks lying parallel to (01-1).

organic compounds Acta Crystallographica Section E  = 0.11 mm1 T = 273 K 0.52  0.33  0.24 mm = 97.350 (2) V = 868.62 (12) Å3 Z=4 Mo K radiation Structure Reports Online ISSN 1600-5368 Data collection 1-(2-Methyl-5-nitro-1H-imidazol-1-yl)acetone Bruker SMART APEX CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2000) Tmin = 0.944, Tmax = 0.974 Sammer Yousuf,a* Khalid M. Khan,a Frazana Naz,a Shahanaz Perveenb and Ghulam A. Mianac Refinement a H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan, bPCSIR Laboratories Complex Karachi, Shahrah-e-Dr Salimuzzaman Siddiqui, Karachi 75280, Pakistan, and cRipha Institute of Pharmaceutical Sciences, Ripha International University, 7th Avenue G-7/4 Islamabad, Pakistan Correspondence e-mail: [email protected] Received 2 March 2013; accepted 7 March 2013 R[F 2 > 2(F 2)] = 0.041 wR(F 2) = 0.122 S = 1.06 1614 reflections 120 parameters H-atom parameters constrained max = 0.19 e Å3 min = 0.15 e Å3 Table 1 Hydrogen-bond geometry (Å,  ). D—H  A Key indicators: single-crystal X-ray study; T = 273 K; mean (C–C) = 0.003 Å; R factor = 0.041; wR factor = 0.122; data-to-parameter ratio = 13.4. 5030 measured reflections 1614 independent reflections 1328 reflections with I > 2(I) Rint = 0.019 i C2—H2B  N2 C5—H5B  O2ii C7—H7B  O3iii D—H H  A D  A D—H  A 0.93 0.97 0.96 2.56 2.57 2.49 3.361 (2) 3.527 (2) 3.340 (2) 144 167 147 Symmetry codes: (i) x  1; y þ 1; z þ 1; (ii) x þ 12; y þ 12; z þ 12; (iii) x þ 1; y; z. In the molecule of the title compound, C7H9N3O3, the nitro and carbonyl groups are tilted with respect to the imidazole ring by 9.16 (6) and 65.47 (7) , respectively. Neighbouring chains are linked via C—H  N and C—H  O hydrogen bonds forming two-dimensional slab-like networks lying parallel to (011). Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2009). Related literature For the antibiotic properties of metronidazole and mecnidazole, see: Lin et al. (2012); Almirall et al. (2011); Zhang et al. (2011). For the crystal structure of related imidazoles, see: Yousuf et al. (2012); Zeb et al. (2012). The authors gratefully acknowledge the Pakistan Academy of Sciences for funding project No. 5-9/PAS/8418 entitled ‘Biology-oriented Parallel Synthesis on Nitroimidazoles in Search of Better Therapeutic Agents’. Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ5048). References Experimental Crystal data C7H9N3O3 Mr = 183.17 Monoclinic, P21 =n o552 Yousuf et al. a = 4.7548 (4) Å b = 12.3971 (9) Å c = 14.8580 (11) Å Almirall, P., Escobedo, A. A., Ayala, I., Alfonso, M., Salazar, Y., Cañete, R., Cimerman, S., Galloso, M., Olivero, I., Robaina, M. & Tornés, K. (2011). J. Parasitol. Res., Article ID 636857, doi:10.1155/2011/636857. Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Lin, Y., Su, Y., Liao, X., Yang, N., Yang, X. & Choi, M. M. F. (2012). Talanta, 88, 646–652. Nardelli, M. (1995). J. Appl. Cryst. 28, 659. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Spek, A. L. (2009). Acta Cryst. D65, 148–155. Yousuf, S., Zeb, A., Batool, F. & Basha, F. Z. (2012). Acta Cryst. E68, o2781. Zeb, A., Yousuf, S. & Basha, F. Z. (2012). Acta Cryst. E68, o1218. Zhang, H.-J., Zhu, D.-D., Li, Z.-L., Sun, J. & Zhu, H. L. (2011). Bioorg. Med. Chem. 19, 4513–4519. doi:10.1107/S1600536813006569 Acta Cryst. (2013). E69, o552 supplementary materials supplementary materials Acta Cryst. (2013). E69, o552 [doi:10.1107/S1600536813006569] 1-(2-Methyl-5-nitro-1H-imidazol-1-yl)acetone Sammer Yousuf, Khalid M. Khan, Frazana Naz, Shahanaz Perveen and Ghulam A. Miana Comment Imidazole nuclei containing metronidazole and mecnidazole are widely used antibiotics, known to be effective against anaerobic microorganisms. These drugs employed to cure amoebiasis (Almirall et al., 2011) and protozoal infections (Lin et al., 2012). Secnidazoles is also reported to have anti-inflammatory and urease inhibiton activites (Zhang et al., 2011). The title compound is a derivative of secnidazole obtained during our attempts to make more effective structure analogues of this important antibacterial drug. The structure of the title compound (Fig. 1) is similar to that of our previously published compound 2-(2-methyl-5nitro-1H-imidazol-1-yl)-ethyl methanesulfonate (Zeb et al., 2012) with the difference that the ethyl methanesulfonate attached to the imidazole ring is replaced by an acetone (O3/C5—C7) group. Bond length and angles were found to be similar to those reported for related structures (Yousuf et al., 2012). In the crystal, molecules are linked by C2— H2B···N2, C5—H5B···O2 and C7—H7B···O3 intermolecular interactions (Table 1) to form a three-dimensional network (Fig. 2). Experimental Periodic acid (2.8 mmol, 0.64 g), pyridinium chlorochromate (PCC, 4 mol%) were suspended in acetonitrile (20 ml) and stirred vigorously for five minutes. The mixture was allowed to cool on an ice-salt bath followed by the addition of secnidazole (2.7 mmol, 0.50 g) and allowed to stir for 36 h at ambient temperature. After the completion of the reaction [TLC analysis], the reaction mixture was washed with brine/water (1:1 v/v), saturated aqueous Na2SO3 solution, dried (Na2SO4) and filtered. The filtrate was evaporated in vacuum to afford off-white crystals which were washed and recrystalized by dissolving in petroleum ether to obtained colorless crystals of the title compound (0.32 g, 64% yield) found suitable for single-crystal X-ray diffraction analysis. Refinement H atoms of methyl, methylene and methine carbon atoms were positioned geometrically with C—H = 0.93–0.96 Å and constrained to ride on their parent atoms with Uiso(H)= 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms. A rotating group model was applied to the methyl group. Computing details Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009). Acta Cryst. (2013). E69, o552 sup-1 supplementary materials Figure 1 The molecular structure of the title compound with displacement ellipsoids drawn at 30% probability level. Figure 2 The crystal packing of the title compound. Intermolecular hydrogen bonds are shown as dashed lines. Acta Cryst. (2013). E69, o552 sup-2 supplementary materials 1-(2-Methyl-5-nitro-1H-imidazol-1-yl)acetone Crystal data F(000) = 384 Dx = 1.401 Mg m−3 Mo Kα radiation, λ = 0.71073 Å Cell parameters from 1790 reflections θ = 2.8–26.7° µ = 0.11 mm−1 T = 273 K Block, colorless 0.52 × 0.33 × 0.24 mm C7H9N3O3 Mr = 183.17 Monoclinic, P21/n Hall symbol: -P 2yn a = 4.7548 (4) Å b = 12.3971 (9) Å c = 14.8580 (11) Å β = 97.350 (2)° V = 868.62 (12) Å3 Z=4 Data collection Bruker SMART APEX CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scan Absorption correction: multi-scan (SADABS; Bruker, 2000) Tmin = 0.944, Tmax = 0.974 5030 measured reflections 1614 independent reflections 1328 reflections with I > 2σ(I) Rint = 0.019 θmax = 25.5°, θmin = 2.2° h = −5→5 k = −14→15 l = −14→17 Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.041 wR(F2) = 0.122 S = 1.06 1614 reflections 120 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained w = 1/[σ2(Fo2) + (0.0591P)2 + 0.2124P] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max < 0.001 Δρmax = 0.19 e Å−3 Δρmin = −0.15 e Å−3 Special details Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) O1 O2 O3 N1 N2 x y z Uiso*/Ueq −0.1621 (4) 0.1562 (3) −0.2465 (3) −0.0008 (3) −0.2805 (3) 0.29596 (12) 0.37418 (11) 0.53369 (11) 0.57463 (11) 0.59824 (13) 0.33611 (13) 0.26792 (12) 0.15962 (9) 0.33181 (9) 0.43940 (10) 0.0887 (5) 0.0791 (5) 0.0622 (4) 0.0424 (4) 0.0574 (4) Acta Cryst. (2013). E69, o552 sup-3 supplementary materials N3 C1 C2 H2B C3 C4 H4A H4B H4C C5 H5A H5B C6 C7 H7A H7B H7C −0.0337 (3) −0.1098 (3) −0.2784 (4) −0.3781 −0.1137 (4) −0.0467 (5) −0.1214 −0.1305 0.1552 0.1509 (3) 0.3240 0.2034 −0.0235 (3) 0.1011 (4) −0.0270 0.2783 0.1326 0.37691 (12) 0.47575 (13) 0.49243 (16) 0.4389 0.64611 (14) 0.76284 (16) 0.7951 0.7965 0.7725 0.60187 (13) 0.5598 0.6775 0.58087 (13) 0.62131 (17) 0.6069 0.5855 0.6976 0.31638 (12) 0.35252 (12) 0.41793 (12) 0.4442 0.38648 (11) 0.38973 (15) 0.4404 0.3346 0.3963 0.25566 (11) 0.2597 0.2595 0.16507 (12) 0.08469 (13) 0.0307 0.0810 0.0905 0.0589 (4) 0.0464 (4) 0.0554 (5) 0.067* 0.0485 (4) 0.0728 (6) 0.109* 0.109* 0.109* 0.0444 (4) 0.053* 0.053* 0.0451 (4) 0.0653 (5) 0.098* 0.098* 0.098* Atomic displacement parameters (Å2) O1 O2 O3 N1 N2 N3 C1 C2 C3 C4 C5 C6 C7 U11 U22 U33 U12 U13 U23 0.1009 (12) 0.0790 (10) 0.0539 (8) 0.0423 (7) 0.0622 (9) 0.0590 (9) 0.0465 (9) 0.0541 (10) 0.0529 (9) 0.0993 (16) 0.0436 (8) 0.0457 (9) 0.0693 (12) 0.0431 (8) 0.0538 (9) 0.0678 (9) 0.0430 (8) 0.0651 (10) 0.0430 (9) 0.0426 (9) 0.0610 (12) 0.0508 (10) 0.0555 (12) 0.0444 (9) 0.0395 (9) 0.0784 (14) 0.1246 (15) 0.1115 (13) 0.0641 (9) 0.0437 (8) 0.0487 (9) 0.0751 (11) 0.0509 (10) 0.0530 (11) 0.0432 (9) 0.0684 (14) 0.0479 (9) 0.0518 (10) 0.0502 (11) −0.0117 (8) 0.0122 (7) −0.0109 (6) −0.0021 (6) −0.0007 (7) 0.0029 (7) −0.0010 (7) −0.0045 (9) −0.0007 (8) −0.0068 (11) −0.0045 (7) 0.0047 (7) −0.0027 (10) 0.0248 (10) 0.0387 (9) 0.0049 (6) 0.0123 (6) 0.0216 (7) 0.0098 (8) 0.0098 (7) 0.0138 (8) 0.0112 (8) 0.0296 (12) 0.0159 (7) 0.0124 (7) 0.0151 (9) 0.0121 (8) −0.0036 (8) −0.0016 (6) 0.0018 (6) 0.0031 (7) 0.0065 (7) 0.0075 (7) 0.0145 (9) −0.0011 (7) −0.0125 (10) 0.0003 (7) −0.0012 (7) 0.0038 (10) Geometric parameters (Å, º) O1—N3 O2—N3 O3—C6 N1—C3 N1—C1 N1—C5 N2—C3 N2—C2 N3—C1 C1—C2 C2—H2B 1.230 (2) 1.225 (2) 1.205 (2) 1.358 (2) 1.381 (2) 1.457 (2) 1.326 (2) 1.350 (3) 1.404 (2) 1.352 (2) 0.9300 C3—C4 C4—H4A C4—H4B C4—H4C C5—C6 C5—H5A C5—H5B C6—C7 C7—H7A C7—H7B C7—H7C 1.481 (3) 0.9600 0.9600 0.9600 1.510 (2) 0.9700 0.9700 1.486 (3) 0.9600 0.9600 0.9600 C3—N1—C1 104.93 (14) C3—C4—H4C 109.5 Acta Cryst. (2013). E69, o552 sup-4 supplementary materials C3—N1—C5 C1—N1—C5 C3—N2—C2 O2—N3—O1 O2—N3—C1 O1—N3—C1 C2—C1—N1 C2—C1—N3 N1—C1—N3 N2—C2—C1 N2—C2—H2B C1—C2—H2B N2—C3—N1 N2—C3—C4 N1—C3—C4 C3—C4—H4A C3—C4—H4B H4A—C4—H4B 125.87 (14) 128.02 (14) 105.74 (15) 122.92 (17) 119.63 (15) 117.45 (17) 107.35 (15) 127.87 (16) 124.56 (15) 109.97 (15) 125.0 125.0 112.01 (16) 124.07 (16) 123.86 (16) 109.5 109.5 109.5 H4A—C4—H4C H4B—C4—H4C N1—C5—C6 N1—C5—H5A C6—C5—H5A N1—C5—H5B C6—C5—H5B H5A—C5—H5B O3—C6—C7 O3—C6—C5 C7—C6—C5 C6—C7—H7A C6—C7—H7B H7A—C7—H7B C6—C7—H7C H7A—C7—H7C H7B—C7—H7C 109.5 109.5 112.47 (13) 109.1 109.1 109.1 109.1 107.8 123.21 (16) 121.44 (15) 115.35 (14) 109.5 109.5 109.5 109.5 109.5 109.5 C3—N1—C1—C2 C5—N1—C1—C2 C3—N1—C1—N3 C5—N1—C1—N3 O2—N3—C1—C2 O1—N3—C1—C2 O2—N3—C1—N1 O1—N3—C1—N1 C3—N2—C2—C1 N1—C1—C2—N2 N3—C1—C2—N2 −0.39 (18) −168.41 (15) −175.31 (16) 16.7 (3) −168.38 (18) 11.0 (3) 5.5 (3) −175.14 (16) 0.3 (2) 0.1 (2) 174.76 (17) C2—N2—C3—N1 C2—N2—C3—C4 C1—N1—C3—N2 C5—N1—C3—N2 C1—N1—C3—C4 C5—N1—C3—C4 C3—N1—C5—C6 C1—N1—C5—C6 N1—C5—C6—O3 N1—C5—C6—C7 −0.6 (2) −177.73 (19) 0.60 (18) 168.96 (14) 177.77 (18) −13.9 (3) −106.10 (18) 59.6 (2) −9.0 (2) 171.59 (15) Hydrogen-bond geometry (Å, º) D—H···A i C2—H2B···N2 C5—H5B···O2ii C7—H7B···O3iii D—H H···A D···A D—H···A 0.93 0.97 0.96 2.56 2.57 2.49 3.361 (2) 3.527 (2) 3.340 (2) 144 167 147 Symmetry codes: (i) −x−1, −y+1, −z+1; (ii) −x+1/2, y+1/2, −z+1/2; (iii) x+1, y, z. Acta Cryst. (2013). E69, o552 sup-5 supplementary materials supplementary materials Acta Cryst. (2013). E69, o552 [doi:10.1107/S1600536813006569] 1-(2-Methyl-5-nitro-1H-imidazol-1-yl)acetone Sammer Yousuf, Khalid M. Khan, Frazana Naz, Shahanaz Perveen and Ghulam A. Miana Comment Imidazole nuclei containing metronidazole and mecnidazole are widely used antibiotics, known to be effective against anaerobic microorganisms. These drugs employed to cure amoebiasis (Almirall et al., 2011) and protozoal infections (Lin et al., 2012). Secnidazoles is also reported to have anti-inflammatory and urease inhibiton activites (Zhang et al., 2011). The title compound is a derivative of secnidazole obtained during our attempts to make more effective structure analogues of this important antibacterial drug. The structure of the title compound (Fig. 1) is similar to that of our previously published compound 2-(2-methyl-5nitro-1H-imidazol-1-yl)-ethyl methanesulfonate (Zeb et al., 2012) with the difference that the ethyl methanesulfonate attached to the imidazole ring is replaced by an acetone (O3/C5—C7) group. Bond length and angles were found to be similar to those reported for related structures (Yousuf et al., 2012). In the crystal, molecules are linked by C2— H2B···N2, C5—H5B···O2 and C7—H7B···O3 intermolecular interactions (Table 1) to form a three-dimensional network (Fig. 2). Experimental Periodic acid (2.8 mmol, 0.64 g), pyridinium chlorochromate (PCC, 4 mol%) were suspended in acetonitrile (20 ml) and stirred vigorously for five minutes. The mixture was allowed to cool on an ice-salt bath followed by the addition of secnidazole (2.7 mmol, 0.50 g) and allowed to stir for 36 h at ambient temperature. After the completion of the reaction [TLC analysis], the reaction mixture was washed with brine/water (1:1 v/v), saturated aqueous Na2SO3 solution, dried (Na2SO4) and filtered. The filtrate was evaporated in vacuum to afford off-white crystals which were washed and recrystalized by dissolving in petroleum ether to obtained colorless crystals of the title compound (0.32 g, 64% yield) found suitable for single-crystal X-ray diffraction analysis. Refinement H atoms of methyl, methylene and methine carbon atoms were positioned geometrically with C—H = 0.93–0.96 Å and constrained to ride on their parent atoms with Uiso(H)= 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms. A rotating group model was applied to the methyl group. Computing details Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009). Acta Cryst. (2013). E69, o552 sup-1 supplementary materials Figure 1 The molecular structure of the title compound with displacement ellipsoids drawn at 30% probability level. Figure 2 The crystal packing of the title compound. Intermolecular hydrogen bonds are shown as dashed lines. Acta Cryst. (2013). E69, o552 sup-2 supplementary materials 1-(2-Methyl-5-nitro-1H-imidazol-1-yl)acetone Crystal data F(000) = 384 Dx = 1.401 Mg m−3 Mo Kα radiation, λ = 0.71073 Å Cell parameters from 1790 reflections θ = 2.8–26.7° µ = 0.11 mm−1 T = 273 K Block, colorless 0.52 × 0.33 × 0.24 mm C7H9N3O3 Mr = 183.17 Monoclinic, P21/n Hall symbol: -P 2yn a = 4.7548 (4) Å b = 12.3971 (9) Å c = 14.8580 (11) Å β = 97.350 (2)° V = 868.62 (12) Å3 Z=4 Data collection Bruker SMART APEX CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scan Absorption correction: multi-scan (SADABS; Bruker, 2000) Tmin = 0.944, Tmax = 0.974 5030 measured reflections 1614 independent reflections 1328 reflections with I > 2σ(I) Rint = 0.019 θmax = 25.5°, θmin = 2.2° h = −5→5 k = −14→15 l = −14→17 Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.041 wR(F2) = 0.122 S = 1.06 1614 reflections 120 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained w = 1/[σ2(Fo2) + (0.0591P)2 + 0.2124P] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max < 0.001 Δρmax = 0.19 e Å−3 Δρmin = −0.15 e Å−3 Special details Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) O1 O2 O3 N1 N2 x y z Uiso*/Ueq −0.1621 (4) 0.1562 (3) −0.2465 (3) −0.0008 (3) −0.2805 (3) 0.29596 (12) 0.37418 (11) 0.53369 (11) 0.57463 (11) 0.59824 (13) 0.33611 (13) 0.26792 (12) 0.15962 (9) 0.33181 (9) 0.43940 (10) 0.0887 (5) 0.0791 (5) 0.0622 (4) 0.0424 (4) 0.0574 (4) Acta Cryst. (2013). E69, o552 sup-3 supplementary materials N3 C1 C2 H2B C3 C4 H4A H4B H4C C5 H5A H5B C6 C7 H7A H7B H7C −0.0337 (3) −0.1098 (3) −0.2784 (4) −0.3781 −0.1137 (4) −0.0467 (5) −0.1214 −0.1305 0.1552 0.1509 (3) 0.3240 0.2034 −0.0235 (3) 0.1011 (4) −0.0270 0.2783 0.1326 0.37691 (12) 0.47575 (13) 0.49243 (16) 0.4389 0.64611 (14) 0.76284 (16) 0.7951 0.7965 0.7725 0.60187 (13) 0.5598 0.6775 0.58087 (13) 0.62131 (17) 0.6069 0.5855 0.6976 0.31638 (12) 0.35252 (12) 0.41793 (12) 0.4442 0.38648 (11) 0.38973 (15) 0.4404 0.3346 0.3963 0.25566 (11) 0.2597 0.2595 0.16507 (12) 0.08469 (13) 0.0307 0.0810 0.0905 0.0589 (4) 0.0464 (4) 0.0554 (5) 0.067* 0.0485 (4) 0.0728 (6) 0.109* 0.109* 0.109* 0.0444 (4) 0.053* 0.053* 0.0451 (4) 0.0653 (5) 0.098* 0.098* 0.098* Atomic displacement parameters (Å2) O1 O2 O3 N1 N2 N3 C1 C2 C3 C4 C5 C6 C7 U11 U22 U33 U12 U13 U23 0.1009 (12) 0.0790 (10) 0.0539 (8) 0.0423 (7) 0.0622 (9) 0.0590 (9) 0.0465 (9) 0.0541 (10) 0.0529 (9) 0.0993 (16) 0.0436 (8) 0.0457 (9) 0.0693 (12) 0.0431 (8) 0.0538 (9) 0.0678 (9) 0.0430 (8) 0.0651 (10) 0.0430 (9) 0.0426 (9) 0.0610 (12) 0.0508 (10) 0.0555 (12) 0.0444 (9) 0.0395 (9) 0.0784 (14) 0.1246 (15) 0.1115 (13) 0.0641 (9) 0.0437 (8) 0.0487 (9) 0.0751 (11) 0.0509 (10) 0.0530 (11) 0.0432 (9) 0.0684 (14) 0.0479 (9) 0.0518 (10) 0.0502 (11) −0.0117 (8) 0.0122 (7) −0.0109 (6) −0.0021 (6) −0.0007 (7) 0.0029 (7) −0.0010 (7) −0.0045 (9) −0.0007 (8) −0.0068 (11) −0.0045 (7) 0.0047 (7) −0.0027 (10) 0.0248 (10) 0.0387 (9) 0.0049 (6) 0.0123 (6) 0.0216 (7) 0.0098 (8) 0.0098 (7) 0.0138 (8) 0.0112 (8) 0.0296 (12) 0.0159 (7) 0.0124 (7) 0.0151 (9) 0.0121 (8) −0.0036 (8) −0.0016 (6) 0.0018 (6) 0.0031 (7) 0.0065 (7) 0.0075 (7) 0.0145 (9) −0.0011 (7) −0.0125 (10) 0.0003 (7) −0.0012 (7) 0.0038 (10) Geometric parameters (Å, º) O1—N3 O2—N3 O3—C6 N1—C3 N1—C1 N1—C5 N2—C3 N2—C2 N3—C1 C1—C2 C2—H2B 1.230 (2) 1.225 (2) 1.205 (2) 1.358 (2) 1.381 (2) 1.457 (2) 1.326 (2) 1.350 (3) 1.404 (2) 1.352 (2) 0.9300 C3—C4 C4—H4A C4—H4B C4—H4C C5—C6 C5—H5A C5—H5B C6—C7 C7—H7A C7—H7B C7—H7C 1.481 (3) 0.9600 0.9600 0.9600 1.510 (2) 0.9700 0.9700 1.486 (3) 0.9600 0.9600 0.9600 C3—N1—C1 104.93 (14) C3—C4—H4C 109.5 Acta Cryst. (2013). E69, o552 sup-4 supplementary materials C3—N1—C5 C1—N1—C5 C3—N2—C2 O2—N3—O1 O2—N3—C1 O1—N3—C1 C2—C1—N1 C2—C1—N3 N1—C1—N3 N2—C2—C1 N2—C2—H2B C1—C2—H2B N2—C3—N1 N2—C3—C4 N1—C3—C4 C3—C4—H4A C3—C4—H4B H4A—C4—H4B 125.87 (14) 128.02 (14) 105.74 (15) 122.92 (17) 119.63 (15) 117.45 (17) 107.35 (15) 127.87 (16) 124.56 (15) 109.97 (15) 125.0 125.0 112.01 (16) 124.07 (16) 123.86 (16) 109.5 109.5 109.5 H4A—C4—H4C H4B—C4—H4C N1—C5—C6 N1—C5—H5A C6—C5—H5A N1—C5—H5B C6—C5—H5B H5A—C5—H5B O3—C6—C7 O3—C6—C5 C7—C6—C5 C6—C7—H7A C6—C7—H7B H7A—C7—H7B C6—C7—H7C H7A—C7—H7C H7B—C7—H7C 109.5 109.5 112.47 (13) 109.1 109.1 109.1 109.1 107.8 123.21 (16) 121.44 (15) 115.35 (14) 109.5 109.5 109.5 109.5 109.5 109.5 C3—N1—C1—C2 C5—N1—C1—C2 C3—N1—C1—N3 C5—N1—C1—N3 O2—N3—C1—C2 O1—N3—C1—C2 O2—N3—C1—N1 O1—N3—C1—N1 C3—N2—C2—C1 N1—C1—C2—N2 N3—C1—C2—N2 −0.39 (18) −168.41 (15) −175.31 (16) 16.7 (3) −168.38 (18) 11.0 (3) 5.5 (3) −175.14 (16) 0.3 (2) 0.1 (2) 174.76 (17) C2—N2—C3—N1 C2—N2—C3—C4 C1—N1—C3—N2 C5—N1—C3—N2 C1—N1—C3—C4 C5—N1—C3—C4 C3—N1—C5—C6 C1—N1—C5—C6 N1—C5—C6—O3 N1—C5—C6—C7 −0.6 (2) −177.73 (19) 0.60 (18) 168.96 (14) 177.77 (18) −13.9 (3) −106.10 (18) 59.6 (2) −9.0 (2) 171.59 (15) Hydrogen-bond geometry (Å, º) D—H···A i C2—H2B···N2 C5—H5B···O2ii C7—H7B···O3iii D—H H···A D···A D—H···A 0.93 0.97 0.96 2.56 2.57 2.49 3.361 (2) 3.527 (2) 3.340 (2) 144 167 147 Symmetry codes: (i) −x−1, −y+1, −z+1; (ii) −x+1/2, y+1/2, −z+1/2; (iii) x+1, y, z. Acta Cryst. (2013). E69, o552 sup-5