Biosensors interact with biological systems at the surface of the sensor. Coating these sensors with electrically active polymers has been suggested to improve this interface. The electrically conducting polymer poly (3, 4 ethylenedioxythiophene) (PEDOT) enhances electrical recordings by improving conductivity while maintaining chemical stability. It also offers great flexibility in studying cell substrate interactions because of the variety of counter-ions that can be incorporated into the PEDOT matrix. To provide any true benefit in cell culture or in vivo experiments, the cytotoxicity of PEDOT must first be determined. This study evaluated the cytotoxicity of PEDOT doped with either polystyrene sulfonate (PSS) or phosphate buffered saline (PBS) ions and tested the efficacy of using the conductive PEDOT substrates for myoblast proliferation and differentiation. Results show that PEDOT/PBS and PEDOT/PSS are not cytotoxic to cells and successfully support cellular proliferation and differentiation. These results establish PEDOT as a material for cell-substrate interface studies. With biosensors being modified using the new polymer coating PEDOT, this cytotoxicity study provides evidence that PEDOT coatings will not induce a cytotoxic response when implanted in vivo.
Daryl Kipke hasn't uploaded this paper.
Let Daryl know you want this paper to be uploaded.