Edge flow in inhomogeneous canopy
Louis-Etienne Boudreault, Barry Gardiner, Andreas Bechmann, Ebba Dellwik
To cite this version:
Louis-Etienne Boudreault, Barry Gardiner, Andreas Bechmann, Ebba Dellwik. Edge flow in inhomogeneous canopy. Mathematical Modelling of Wind Damage Risk to Forests, Oct 2015, Arcachon,
France. hal-02740297
HAL Id: hal-02740297
https://hal.inrae.fr/hal-02740297
Submitted on 2 Jun 2020
HAL is a multi-disciplinary open access
archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.
❊❞❣❡ ✢♦✇ ✐♥ ✐♥❤♦♠♦❣❡♥❡♦✉s
❝❛♥♦♣②
▲♦✉✐s✲➱t✐❡♥♥❡ ❇♦✉❞r❡❛✉❧t
❙②❧✈❛✐♥ ❉✉♣♦♥t
❆♥❞r❡❛s ❇❡❝❤♠❛♥♥
❊❜❜❛ ❉❡❧❧✇✐❦
▲♦✉✐s✲➱t✐❡♥♥❡ ❇♦✉❞r❡❛✉❧t
❊❞❣❡ ✢♦✇ ✐♥ ✐♥❤♦♠♦❣❡♥❡♦✉s ❝❛♥♦♣②
✷✽ ♦❝t♦❜❡r ✷✵✶✺
▼♦t✐✈❛t✐♦♥
◮
◮
▼♦st ♦❢ ❦♥♦✇❧❡❞❣❡ ♦♥ ❢♦r❡st ❡❞❣❡ ✢♦✇s ✿ ♥✉♠❡r✐❝❛❧ ❛♥❞ ✇✐♥❞✲t✉♥♥❡❧
❡①♣❡r✐♠❡♥ts ✇❤❡r❡ ❝❛♥♦♣② ❤♦r✐③♦♥t❛❧❧② ❤♦♠♦❣❡♥❡♦✉s
❉✐✛❡r❡♥❝❡s ✐♥ ✐♥❤♦♠♦❣❡♥❡♦✉s ❝❛♥♦♣② ❄
✭✸❉ tr❡❡✲s❝❛❧❡ ❤❡t❡r♦❣❡♥❡✐t✐❡s✮
✶✲✶✵♠
▲♦✉✐s✲➱t✐❡♥♥❡ ❇♦✉❞r❡❛✉❧t
❊❞❣❡ ✢♦✇ ✐♥ ✐♥❤♦♠♦❣❡♥❡♦✉s ❝❛♥♦♣②
✷✽ ♦❝t♦❜❡r ✷✵✶✺
❊❞❣❡ s✐t❡
❍❡❧✐❝♦♣t❡r✲❜❛s❡❞ ❤✐❣❤ r❡s♦❧✉t✐♦♥ s❝❛♥s ✭> ✶✵ r❡t✉r♥s/♠✷ ✮
✭❉❡❧❧✇✐❦
→
▲❊❙ ✐♥♣✉t
❡t ❛❧✳✱
✭❇♦✉❞r❡❛✉❧t
✷✵✶✹✱
❡t ❛❧✳✱
◗❏❘▼❙✮
✷✵✶✺✱
❆❋▼✮
❋♦r❡st ❣r✐❞ ✿ ∆① , ② = ✷ ♠
∆③ = ✶ ♠
▲♦✉✐s✲➱t✐❡♥♥❡ ❇♦✉❞r❡❛✉❧t
❊❞❣❡ ✢♦✇ ✐♥ ✐♥❤♦♠♦❣❡♥❡♦✉s ❝❛♥♦♣②
✷✽ ♦❝t♦❜❡r ✷✵✶✺
▼♦❞❡❧ ❞❡t❛✐❧s
◆❡✉tr❛❧ ✢♦✇
❉♦♠❛✐♥
▲❊❙ ♠♦❞❡❧
20h
10h
◆❙^
− ❡q♥s .
◮
❙♣❛t✐❛❧❧②✲✜❧t❡r❡❞
◮
✶✳✺✲♦r❞❡r ❙●❙ ♠♦❞❡❧
40h
W
in
d
✭❉❡❛r❞♦✛✱ ✶✾✽✵✮
◮
M2
▼♦❞✐✜❡❞ ❢♦r ❝❛♥♦♣② ✢♦✇
✭❉✉♣♦♥t ✫ ❇r✉♥❡t✱ ✷✵✵✽✱ ✷✵✵✾ ❀ ❉✉♣♦♥t ❡t ❛❧✳✱ ✷✵✶✶✮
M1
▲❊❙ r❡s♦❧✉t✐♦♥ ✿
◮
❙♦❧✈❡❞ ✇✐t❤ ❆❘P❙ ❝♦❞❡
✭❳✉❡ ❡t ❛❧✳✱ ✶✾✾✺ ❀ ✷✵✵✵ ❀ ✷✵✵✶✮
✶♠
✷♠
▲♦✉✐s✲➱t✐❡♥♥❡ ❇♦✉❞r❡❛✉❧t
✷♠
❊❞❣❡ ✢♦✇ ✐♥ ✐♥❤♦♠♦❣❡♥❡♦✉s ❝❛♥♦♣②
✷✽ ♦❝t♦❜❡r ✷✵✶✺
z (m)
❈❛s❡ ❞❡s❝r✐♣t✐♦♥
100
80
60
40
20
0
a y (m2 m 3 )
z (m)
0.25
0.10
0.05
-3 -2 -1 0
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
100
80
60
40
20
0
0.50
❍❡t❡r♦❣❡♥❡♦✉s ❡❞❣❡✲❝❛s❡
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15
h/
0.01
hy
PAI y
PAI/
3
2
1 0
1
2
a y (m2 m 3 )
3
4
5
6
7
8
9 10 11 12 13 14 15
❍♦♠♦❣❡♥❡♦✉s ❡❞❣❡✲❝❛s❡
0.50
0.25
0.10
0.05
-3 -2 -1 0
1
2
▲♦✉✐s✲➱t✐❡♥♥❡ ❇♦✉❞r❡❛✉❧t
3
4
5
6 7
x/h
8
9 10 11 12 13 14 15
❊❞❣❡ ✢♦✇ ✐♥ ✐♥❤♦♠♦❣❡♥❡♦✉s ❝❛♥♦♣②
0.01
✷✽ ♦❝t♦❜❡r ✷✵✶✺
❋❧♦✇ ❛✈❡r❛❣✐♥❣ ❢r❛♠❡✇♦r❦
◮
❚✐♠❡ ✰ s♣❛t✐❛❧ ❛✈❡r❛❣✐♥❣ ✿
φ′✐ = φ✐ − φ̄✐
φ̄′′✐ = φ̄✐ − hφ̄✐ i
◮
(hφ̄✐ i② ♦r hφ̄✐ i①② )
■♥❤♦♠♦❣❡♥❡♦✉s ❝❛♥♦♣② ✿ ❞✐s♣❡rs✐✈❡ ✢✉①❡s ✐♠♣♦rt❛♥t ❄
∂h¯
✉✐ i
∂h¯
✉ i ✶ ∂h¯♣ i ∂h❚✐❥t♦t i
= −h¯
✉❥ i ✐ −
−
− h❋❉t♦t i
∂t
∂ ①❥
ρ ∂ ①✐
∂ ①❥
❙❡❝♦♥❞✲♦r❞❡r ♠♦♠❡♥ts ✿
h❚✐❥t♦t i = h✉✐′ ✉❥′ i + h✉¯✐ ′′ ✉¯❥ ′′ i
| {z } | {z }
t✉r❜✉❧❡♥t
❞✐s♣❡rs✐✈❡
❚❤✐r❞✲♦r❞❡r ♠♦♠❡♥ts ✭s❦❡✇♥❡ss✮ ✿
h❚✐✐✐t♦t i = h✉✐′ ✉✐′ ✉✐′ i + ✸h✉✐ ✉✐ ′′ ✉¯✐ ′′ i − ✻h✉¯✐ ih✉¯✐ ′′ ✉¯✐ ′′ i + ✷h✉¯✐ ′′ ✉¯✐ ′′ ✉¯✐ ′′ i
{z
}
| {z } |
t✉r❜✉❧❡♥t
▲♦✉✐s✲➱t✐❡♥♥❡ ❇♦✉❞r❡❛✉❧t
❞✐s♣❡rs✐✈❡
❊❞❣❡ ✢♦✇ ✐♥ ✐♥❤♦♠♦❣❡♥❡♦✉s ❝❛♥♦♣②
✷✽ ♦❝t♦❜❡r ✷✵✶✺
❍❛❧❢✲❝❛♥♦♣② ❤❡✐❣❤t ✈✐❡✇
❍❡t❡r♦❣❡♥❡♦✉s ❡❞❣❡✲❝❛s❡
20
PAI
20
u/ uref
10
y/h
15
8
0.40
15
0.35
0.30
6
10
xy
0.45
0.25
10
4
0.20
0.15
5
2
0.10
5
0.05
0
0
-5
0
5
x/h
▲♦✉✐s✲➱t✐❡♥♥❡ ❇♦✉❞r❡❛✉❧t
10
15
0.00
0
-5
0
5
10
15
x/h
❊❞❣❡ ✢♦✇ ✐♥ ✐♥❤♦♠♦❣❡♥❡♦✉s ❝❛♥♦♣②
✷✽ ♦❝t♦❜❡r ✷✵✶✺
❚✇♦✲❞✐♠❡♥s✐♦♥❛❧ ✈✐❡✇ ✿ str❡❛♠✇✐s❡ ✈❡❧♦❝✐t②
z (m)
❍❡t❡r♦❣❡♥❡♦✉s
100
80
60
40
20
0
u y/ uref
xy
-3 -2 -1 0
z (m)
❍♦♠♦❣❡♥❡♦✉s
100
80
60
40
20
0
u y/ uref
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15
xy
-3 -2 -1 0
1
2
▲♦✉✐s✲➱t✐❡♥♥❡ ❇♦✉❞r❡❛✉❧t
3
4
5
6 7
x/h
8
9 10 11 12 13 14 15
❊❞❣❡ ✢♦✇ ✐♥ ✐♥❤♦♠♦❣❡♥❡♦✉s ❝❛♥♦♣②
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
✷✽ ♦❝t♦❜❡r ✷✵✶✺
❚✇♦✲❞✐♠❡♥s✐♦♥❛❧ ✈✐❡✇ ✿ t✉r❜✉❧❡♥t ❦✐♥❡t✐❝ ❡♥❡r❣②
z (m)
❍❡t❡r♦❣❡♥❡♦✉s
100
80
60
40
20
0
Etot y/ u2 ,ref
xy
-3 -2 -1 0
1
z (m)
❍♦♠♦❣❡♥❡♦✉s
100
80
60
40
20
0
Etot y/ u2 ,ref
-3 -2 -1 0
2
3
4
5
6
7
8
9 10 11 12 13 14 15
xy
1
2
▲♦✉✐s✲➱t✐❡♥♥❡ ❇♦✉❞r❡❛✉❧t
3
4
5
6 7
x/h
8
9 10 11 12 13 14 15
❊❞❣❡ ✢♦✇ ✐♥ ✐♥❤♦♠♦❣❡♥❡♦✉s ❝❛♥♦♣②
4.2
3.9
3.6
3.3
3.0
2.7
2.4
2.1
1.8
1.5
1.2
0.9
0.6
0.3
0.0
4.2
3.9
3.6
3.3
3.0
2.7
2.4
2.1
1.8
1.5
1.2
0.9
0.6
0.3
0.0
✷✽ ♦❝t♦❜❡r ✷✵✶✺
z (m)
❚✇♦✲❞✐♠❡♥s✐♦♥❛❧ ✈✐❡✇ ✿ t✉r❜✉❧❡♥t ✢✉①
❍❡t❡r♦❣❡♥❡♦✉s
100
80
60
40
20
0
2
Ttot
uw y/ u ,ref
xy
-3 -2 -1 0
1
z (m)
❍♦♠♦❣❡♥❡♦✉s
100
80
60
40
20
0
2
Ttot
uw y/ u ,ref
-3 -2 -1 0
2
3
4
5
6
7
8
9 10 11 12 13 14 15
xy
1
2
▲♦✉✐s✲➱t✐❡♥♥❡ ❇♦✉❞r❡❛✉❧t
3
4
5
6 7
x/h
8
9 10 11 12 13 14 15
❊❞❣❡ ✢♦✇ ✐♥ ✐♥❤♦♠♦❣❡♥❡♦✉s ❝❛♥♦♣②
0.4
0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
0.4
0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
✷✽ ♦❝t♦❜❡r ✷✵✶✺
❚✇♦✲❞✐♠❡♥s✐♦♥❛❧ ✈✐❡✇ ✿ ❝♦rr❡❧❛t✐♦♥ ❝♦❡✣❝✐❡♥t
z (m)
❍❡t❡r♦❣❡♥❡♦✉s
100
80
60
40
20
0
rtot
uw
-3 -2 -1 0
z (m)
❍♦♠♦❣❡♥❡♦✉s
100
80
60
40
20
0
rtot
uw
0.5
0.4
0.3
0.2
0.1
0.0
0.1
0.2
0.3
y
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15
0.5
0.4
0.3
0.2
0.1
0.0
0.1
0.2
0.3
y
-3 -2 -1 0
1
2
▲♦✉✐s✲➱t✐❡♥♥❡ ❇♦✉❞r❡❛✉❧t
3
4
5
6 7
x/h
8
9 10 11 12 13 14 15
❊❞❣❡ ✢♦✇ ✐♥ ✐♥❤♦♠♦❣❡♥❡♦✉s ❝❛♥♦♣②
✷✽ ♦❝t♦❜❡r ✷✵✶✺
❚✇♦✲❞✐♠❡♥s✐♦♥❛❧ ✈✐❡✇ ✿ s❦❡✇♥❡ss ♦❢ str❡❛♠✇✐s❡ ✈❡❧♦❝✐t②
z (m)
❍❡t❡r♦❣❡♥❡♦✉s
100
80
60
40
20
0
Sktot
u
-3 -2 -1 0
z (m)
❍♦♠♦❣❡♥❡♦✉s
100
80
60
40
20
0
Sktot
u
1.8
1.5
1.2
0.9
0.6
0.3
0.0
0.3
y
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15
1.8
1.5
1.2
0.9
0.6
0.3
0.0
0.3
y
-3 -2 -1 0
1
2
▲♦✉✐s✲➱t✐❡♥♥❡ ❇♦✉❞r❡❛✉❧t
3
4
5
6 7
x/h
8
9 10 11 12 13 14 15
❊❞❣❡ ✢♦✇ ✐♥ ✐♥❤♦♠♦❣❡♥❡♦✉s ❝❛♥♦♣②
✷✽ ♦❝t♦❜❡r ✷✵✶✺
❚✇♦✲❞✐♠❡♥s✐♦♥❛❧ ✈✐❡✇ ✿ s❦❡✇♥❡ss ♦❢ ✈❡rt✐❝❛❧ ✈❡❧♦❝✐t②
z (m)
❍❡t❡r♦❣❡♥❡♦✉s
100
80
60
40
20
0
Sktot
w
z (m)
0.0
0.3
0.6
0.9
1.2
1.5
-3 -2 -1 0
❍♦♠♦❣❡♥❡♦✉s
100
80
60
40
20
0
0.3
y
Sktot
w
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15
0.3
y
0.0
0.3
0.6
0.9
1.2
1.5
-3 -2 -1 0
1
2
▲♦✉✐s✲➱t✐❡♥♥❡ ❇♦✉❞r❡❛✉❧t
3
4
5
6 7
x/h
8
9 10 11 12 13 14 15
❊❞❣❡ ✢♦✇ ✐♥ ✐♥❤♦♠♦❣❡♥❡♦✉s ❝❛♥♦♣②
✷✽ ♦❝t♦❜❡r ✷✵✶✺
z (m)
❚✇♦✲❞✐♠❡♥s✐♦♥❛❧ ✈✐❡✇ ✿ r❛t✐♦ ♦❢ ❞✐s♣❡rs✐✈❡ t♦ t♦t❛❧ ✢✉①
h✉¯✐ ′′ ✉¯❥ ′′ i②
h✉¯✐ ′′ ✉¯❥ ′′ i② +h✉ ′ ✉ ′ i②
✉✲✈❛r✐❛♥❝❡
uu
-3 -2 -1 0
1
2
3
❥
z (m)
✐
z (m)
ξ✐❥ =
100
80
60
40
20
0
100
80
60
40
20
0
100
80
60
40
20
0
4
5
6
7
8
9 10 11 12 13 14 15
✇✲✈❛r✐❛♥❝❡
ww
-3 -2 -1 0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15
✉✇✲❝♦✈❛r✐❛♥❝❡
uw
-3 -2 -1 0
1
▲♦✉✐s✲➱t✐❡♥♥❡ ❇♦✉❞r❡❛✉❧t
2
3
4
5
6 7
x/h
8
9 10 11 12 13 14 15
❊❞❣❡ ✢♦✇ ✐♥ ✐♥❤♦♠♦❣❡♥❡♦✉s ❝❛♥♦♣②
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
✷✽ ♦❝t♦❜❡r ✷✵✶✺
z (m)
z (m)
❚✇♦✲❞✐♠❡♥s✐♦♥❛❧ ✈✐❡✇ ✿ r❛t✐♦ ♦❢ ❞✐s♣❡rs✐✈❡ t♦ t♦t❛❧ ✢✉①
100
80
60
40
20
0
100
80
60
40
20
0
✉ ✸ ✲♠♦♠❡♥t
uuu
-3 -2 -1 0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15
✇ ✸ ✲♠♦♠❡♥t
www
-3 -2 -1 0
1
2
▲♦✉✐s✲➱t✐❡♥♥❡ ❇♦✉❞r❡❛✉❧t
3
4
5
6 7
x/h
8
9 10 11 12 13 14 15
❊❞❣❡ ✢♦✇ ✐♥ ✐♥❤♦♠♦❣❡♥❡♦✉s ❝❛♥♦♣②
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
✷✽ ♦❝t♦❜❡r ✷✵✶✺
✶❉ ✉✲✈❡❧♦❝✐t②✴❚❑❊
✉✲✈❡❧♦❝✐t②
100
Homogeneous
Heterogeneous
80
z (m)
t✉r❜✉❧❡♥t ❦✐♥❡t✐❝ ❡♥❡r❣②
100
80
60
60
40
40
20
0
20
❘❡❧❛t✐✈❡ ❞✐✛❡r❡♥❝❡
❛t ❝❛♥♦♣② ❤❡✐❣❤t ✿ ✸✺%
0
2
4
u xy/ u
6
8
✶✽%
10
0
0
1
,ref xy
▲♦✉✐s✲➱t✐❡♥♥❡ ❇♦✉❞r❡❛✉❧t
2
E
❊❞❣❡ ✢♦✇ ✐♥ ✐♥❤♦♠♦❣❡♥❡♦✉s ❝❛♥♦♣②
tot
3
xy/
u
4
5
2
,ref
xy
✷✽ ♦❝t♦❜❡r ✷✵✶✺
✶❉ ✉✲❜✉❞❣❡t
t♦t❛❧ ❜✉❞❣❡t
100
Homogeneous
Heterogeneous
80
❞r❛❣ t❡r♠ ❜✉❞❣❡t
100
80
■♥t❡❣r❛t❡❞ ❞r❛❣ ✿ ✸.✻% ❧♦✇❡r
z (m)
60
60
Ftot
D
40
Ftot
D
u w
z
20
0
uw
z
xy
❙✐♥❦
xy
Ftot
D
20
❙♦✉r❝❡
0
Tempo. terms + Disp. terms
Tempo. terms
xy
2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2
(h/ u ,ref xy) * u xy/ t
▲♦✉✐s✲➱t✐❡♥♥❡ ❇♦✉❞r❡❛✉❧t
40
xy =
Disp. terms
xy
❙✐♥❦
15
10
❊❞❣❡ ✢♦✇ ✐♥ ✐♥❤♦♠♦❣❡♥❡♦✉s ❝❛♥♦♣②
❙♦✉r❝❡
5
2
(h/ u ,ref
0
xy) *
5
u
xy/
10
15
t
✷✽ ♦❝t♦❜❡r ✷✵✶✺
❈♦♥❧✉s✐♦♥
■♠♣❛❝ts ♦❢ tr❡❡✲s❝❛❧❡ ❤❡t❡r♦❣❡♥❡✐t✐❡s ✐♥ ❡❞❣❡ ✢♦✇ ❛♥❛❧②s❡❞
■♥s✐❞❡ t❤❡ ❝❛♥♦♣② ✿
✶✳
✷✳
✸✳
✹✳
✺✳
✻✳
❋❛st❡r ✢♦✇ ♣❡♥❡tr❛t✐♦♥
❍✐❣❤❡r ❚❑❊
▲♦✇❡r ❡✣❝✐❡♥❝②
❍✐❣❤❡r s❦❡✇♥❡ss ✭❣✉sts✮
▲♦✇❡r ❞r❛❣
■♠♣♦rt❛♥t ❞✐s♣❡rs✐✈❡ ✢✉①❡s ❛t t❤❡ ❡❞❣❡ ✭✶✵✲✽✵✪ ♦❢ t♦t❛❧ ✢✉①✮✱ ✉♣ t♦
✺✵✪ ❛t ❝❛♥♦♣② t♦♣ ❢♦r ✉✲✈❛r✐❛♥❝❡
❆❜♦✈❡ t❤❡ ❝❛♥♦♣② ✿
✶✳ ❙❧✐❣❤t❧② ❤✐❣❤❡r ✇✐♥❞ s♣❡❡❞ ✴ s❛♠❡ ❧❡✈❡❧ ♦❢ ❚❑❊
▲♦✉✐s✲➱t✐❡♥♥❡ ❇♦✉❞r❡❛✉❧t
❊❞❣❡ ✢♦✇ ✐♥ ✐♥❤♦♠♦❣❡♥❡♦✉s ❝❛♥♦♣②
✷✽ ♦❝t♦❜❡r ✷✵✶✺
❈♦♥s❡q✉❡♥❝❡s ✿
✶✳ ■♠♣♦rt❛♥t t♦ ♣✐❝t✉r❡ ✇❡❧❧ t❤❡ ❡❞❣❡ ✈❡rt✐❝❛❧ ❢♦❧✐❛❣❡ ❞✐str✐❜✉t✐♦♥ ✐♥
♥✉♠❡r✐❝❛❧ s✐♠✉❧❛t✐♦♥ ♦❢ ❤♦♠♦❣❡♥❡♦✉s ❝❛♥♦♣②
✷✳ ❯♥❞❡r❡st✐♠❛t✐♦♥ ♦❢ ❣✉st ♦❝❝✉r❡♥❝❡ ✐♥ ❤♦♠♦❣❡♥❡♦✉s ❝❛♥♦♣②
✭s❦❡✇♥❡ss ❧♦❝❛❧✮
✸✳ ▲♦✇❡r ❧♦❛❞s ♦♥ tr❡❡s ✴ ❤✐❣❤❡r ♣r♦❞✉❝t✐♦♥ ❢♦r ✇✐♥❞ t✉r❜✐♥❡s
❚❤❛♥❦ ②♦✉ ❢♦r ②♦✉r ❛tt❡♥t✐♦♥ ✦
▲♦✉✐s✲➱t✐❡♥♥❡ ❇♦✉❞r❡❛✉❧t
❊❞❣❡ ✢♦✇ ✐♥ ✐♥❤♦♠♦❣❡♥❡♦✉s ❝❛♥♦♣②
✷✽ ♦❝t♦❜❡r ✷✵✶✺